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A singular boundary value problem arising in a pre-breakdown gas discharge *) 

by 

o. Diekmann, D. Hilhorst & L.A. Peletier 

ABSTRACT 

We consider the nonlinear two-point boundary value problem 

sxy" + (g(x)-y)y' = 0, y(O) = 0, y(R) = k, where g is a given function. We 

prove that the problem has a unique solution and we study the limiting be

haviour of this solution as R 7 00 and as s + 0. 

Furthermore, we show how a so-called pre-breakdown discharge in an 

ionized gas between two electrodes can be described by an equation of this 

form, and we interpret the results physically. 

KEY WORDS & PHRASES: singularly perturbed nonlinear two-point boundary 

value problem; pre-breakdown discharge in an ionized 

gas between two electrodes. 

*) 
This report will be submitted for publication elsewhere. 
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1. INTRODUCTION 

In this paper we study the two-point boundary value problem 

(1 .1) e:xy" + (g(x)-y)y' = 0, X E (0 ,R) , 

in which R is a positive number, which may be infinite, and g a given func

tion, which satisfies the hypotheses 

g (0) O; g ' ( x) > 0 and g" ( x) < 0 for all x ~ O. 

We are interested in solutions of (1.1) which satisfy the boundary condi-

tions 

(1. 2) y (0) 0 

( 1. 3) y(R) k 

in which k E (0,g(oo)) and R > x 0 , x 0 being the (unique) root of the equa

tion g(x) = k. 

In section 2 we shall sketch how problem (1.1)-(1.3) arises in the 

study of electrical discharges in an ionized gas. It will appear that y' 

and g' are measures for, respectively, the electron- and ion densities, and 

that the parameter e: is proportional to the temperature of the gas. 

In section 3 we begin the mathematical analysis of problem (1.1)-(1.3). 

We derive some a priori estimates and then prove the existence of a solution. 

Subsequently, in section 4 we prove that the solution is unique. 

The main objective of this paper is the study of the dependence of the 

solution on the parameters e: and R. In section 4 we prove that the solution 

is a monotone function of e: and R. From the physical point of view the in

teresting regions of the parameters are small e: and large R. In section 5 we 

analyze the limiting behaviour of the solution when R tends to infinity and 

e: is kept fixed. It turns out that the solution converges uniformly in x 

to a function y which satisfies (1.1)-(1.2) and the limiting form of (1.3), 
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i.e. y(co) k, if and only if€ ~ g(oo)-k. If on the other hand, this in-

equality is violated, then the solution converges uniformly on compact sub

sets to a function y which satisfies (1.1)-(1.2) and y( 00 ) = max{g( 00 ) - €,0}. 

In particular this implies that y is identically zero if € 2 g(00 ). 

In section 6 we analyze the limiting behaviour of the solution when 

€ tends to zero and R is kept fixed. It turns out that the solution y con

verges uniformly for x E [O,R] to the function y(x) = min{g(x) ,k}, but that 

its derivative y' converges uniformly to y' only on compact subsets of [O,R] 

which do not contain the transition pont x 0 . 

In section 7 we discuss in greater detail the behaviour of y' near the 

point x 0 as E + 0. By the standard method of matched asymptotic expansions 

we formally obtain in section 8 an approximation y . In section 9 we prove 
a 

that for each n > 1 

n+~ 
O(s ), y' - y' 

a 
n-~ 

0 ( € ) , as € + 0, 

uniformly on [O,R], where n counts the number of terms included in the ap

proximation. In this part of our treatment of the singular perturbation 

problem we derived much inspiration from reading bits and pieces of van 

Harten's thesis [9]. 

Since the limits s + 0 and R + oo (for € ~ g( 00 )-k) are interchangeable, 

the two separate limits give a complete picture of the limiting behaviour 

with respect to both parameters. 

Finally, in section 10, we consider problem (1.1)-(1.3) under the much 

weaker condition on g: 

H 
g 

1 
g E C ([0,R]); g(O) = O; g{R) 2 k; 

g has only finitely many local extrema on [O,R]. 

Again, the existence and uniqueness of a solution y(x;s) is established and 

it is shown that y' > 0. In addition 

y(x;E) + u(x) as € + 0, 

uniformly on [O,R], where the function u, which is continuous, consists of 
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pieces where u(x) = g(x) and pieces where u(x) is a constant. The arguments 

we employ here are borrowed from the theory of dynamical systems and are 

somewhat unusual in this context. 

Problems like the one treated in this paper have also been considered 

by HALLAM & LOPER [8], HOWES & PARTER [11] (also see HOWES [10]), CLEMENT 

& EMMERTH [4] and CLEMENT & PELETIER [5]. Both of the first two papers deal 

with one particular equation and the second two papers deal with concave 

solutions yE of a ge~eral class of equations. In all of these limE+O yE is 

determined. In this paper we do the same by the method of upper and lower 

solutions, which was also used by HOWES & PARTER, and in addition we give 

precise estimates of the behaviour of y and y' as E + 0. 
E E 

2. PHYSICAL BACKGROUND 

2.1. An electrical discharge 

MARODE et al. [14] consider an ionized gas between two electrodes in 

which the ions and electrons are present with densities n. (r) and n (r) re-
1. e 

spectively, where r = (x1 ,x2 ,x3). The ions are heavy and slow, and the 

density n. (r) may therefore be re~arded as fixed. The electrons are highly 
l. 

mobile and assume a spatial distribution in thermal equilibrium with the 

ions. The problem is then to find n (r) for given n. (r). 
e l. 

A special situation of practical interest is a so-called pre-breakdown 

discharge which spreads out in filamentary form (cf. GALLIMBERTI [7] and 

MARODE [13]). In this situation there is cylindrical symmetry about the 
2 2 ~ 

x 3-axis and the particle densities depend on p := (x1+x2) only. Using 

Coulomb's law and a constitutive equation for the electric current, which 

contains both a diffusion and a conduction term, MARODE et al. [14] derived 

that the electron density n (p) should satisfy the equation 
e 

(2. 1) n. (p) - n (p) , 
l. e 

where E is a combination of physical constants which is proportional to the 

temperature. In addition n has to satisfy the boundary condition 
e 
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(2. 2) 
dn 

e 
dp 

(0) 0 

and the condition 

00 

(2.3) J {n. (p) - n (p) }pdp 
i e 

0 

N > O, 

where N is a measure for the excess of ions. 

In the experiment the ions are concentrated near the center of the 

discharge. Hence we shall take for n. a function which decreases monotonical-
1 

ly to zero as p tends to infinity. In this paper we study the solution n 
e 

of (2.1)-(2.3) and in particular its behaviour as s + 0. 

In order to cast (2.1) in a more convenient form, we make the change 

of variable 

( 2. 4) 
2 

x = p 

and we define the new dependent variable 

(2. 5) y(x) 

~ x 

f ne(s)sds. 

0 

Thus, y(x) represents the number of electrons contained in a cylinder of 

unit height and radius x~. Analogously, we define 

(2.6) 

x l:! 

g(x) = f ni (s)sds. 

0 
~ 

If we now multiply (2.1) by p, integrate from p = 0 top = x and use 

(2.4)-(2.6) we obtain (1.1). The boundary condition (1.2) is implied by 

(2.5) and the boundary condition (1.3), with R = oo, follows from (2.3): 

y(oo) k := g(oo) - N, 

where clearly k E (0,g(oo)). 
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2.2. The two-dimensional Coulomb gas 

Equation (1.1) describes the equilibrium distribution of electrons in

teracting, via the Coulomb potential, with themselves and with a fixed 

positive background in a two-dimensional geometry. Theoretically one can 

generalize Coulomb's law to a space of arbitrary dimension d and then the 

corresponding equation would become 

(2.7) EX 

2 d-1 
d 

y~ + (g(x)-y)y' 0 

in which £ is again a positive constant which is proportional to the tem

perature. 

The behaviour of an assembly of charges depends on the competition be

tween the electrostatic forces, which tend to bind positive and negative 

charges together, and the thermal motion which drives them apart. By physical 

arguments one can show that ford > 2 the thermal motion wins: at no non

zero temperature are the electrons bound to the ions. For d < 2, the elec

trostatic forces win, and whatever the temperature the charges are bound 

together (see CHUI & WEEKS [3]). 

For the model problem consisting of equation (2.7) supplemented with 

the boundary conditions (1.2) and (1.3), with R = ~, we find these matters 

reflected in the fact that for arbitrary positive E, no solution exists 

when d > 2 whereas, on the contrary, a unique solution exists when d < 2. 

One can prove this along the lines indicated in section 5. 

The marginal case d = 2 is of greatest interest. Presumably there is 

a critical value of the temperature at which a transition occurs from bound 

to unbound charges and recently there has been much interest in the precise 

nature of this transition (see KOSTERLITZ & THOULESS [12]). 

In our study of the two-dimensional case we find indeed, in section 5, 

a critical value of E (and hence of the temperature) 

El g(oo) - k = N 

at which the nature of the solution n changes, corresponding to the loss 
e 

(towards infinity) of part of the negative charge. Beyond a still higher 
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value of t:: 

there appears to be no solution, indicating that the negative charge is no 

longer bound to the positive background. 

2.3. Low temperatures 

We also have studied the equations in the low temperature regime, i.e. 

for s + 0. Physically one then expects all the electrons to gather in the 

region of lowest energy, that is in the center of the ion distribution. In

deed we have found that for s + 0 the solution of equation (2.1) exhibits 

transition behaviour 

lim n (p) 
s+O e 

p < p 
0 

where p0 is determined by the boundary condition (2.3). There appears to be 

a transition layer of width of orders~ which, according to MARODE et al. 

[14], has the form of a Debye shielding length. 

3. A PRIORI ESTIMATES AND THE EXISTENCE OF A SOLUTION 

In this section we consider the problem (1.1)-(1.3) for fixed values 

of the parameters E and R. By a solution we shall mean a function 

y E c2 ([0,R]) which satisfies (1.1)-(1.3). We first derive some a priori 

estimates for a solution and its first two derivatives. Subsequently we 

prove that a solution actually exists by constructing an upper and lower 

solution and by verifying the appropriate Nagumo condition. 

THEOREM 3.1. Let y be a solution, then for all x E (0,R) 

(i) 0 < y (x) < min{g (x) ,k}; 

(ii) 0 < y' (x) < g' (0); 

(g'(0))2 
(iii) - < ytt(x) < O. 

E 



PROOF. Let us first prove that y' (x) > 0 for all x E (0,R). Suppose that 

y' (x1) = 0 for some x 1 > 0, then the standard uniqueness theorem for or

dinary differential equations implies that y(x) = y(x1 ) for all x. Since 

this is not compatible with the two boundary conditions we conclude that 
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y' is sign-definite. Invoking the boundary conditions once more, we see that 

the sign has to be positive. 

The positivity of y' implies that 0 < y(x) < k for x E (0,R). Next we 

shall prove that y(x) < g(x). We begin by observing that this inequality 

holds for x ~ x 0 • Suppose there is an interval [x1,x2 J c [O,x0 J such that 

y - g is strictly positive in the interior of [x1 ,x2 J and y(x1) - g(x1l = 
= y(x2) - g(x2) = 0. Then y' (x2 ) ~ g' (x2l < g' (x1) ~ y' (x1). On the other 

hand the equation (1.1) implies that y" (x) > 0 for x E (x1 ,x2) and hence 

y' (x 2 l = y' (x1 ) + J:~ y"(F,;)dt,; > y' (x1 ). So our assumption must be false 

since it leads to a contradiction. Thus, y(x) ~ g(x). Now, let us suppose 

that y(x1 ) = g(x1 ) for some x 1 > O, then necessarily y' (x1 ) = g' (x1). 

However, because y" (x1) = 0 (by (1. 1) ) and g" (x1) < 0, this would imply 

that y(x) > g(x) in a right-hand neighbourhood of x 1 , which is impossible. 

Hence the inequality is strict for x E (O,R], and this completes the proof 

of (i) • 

From (i), y' (x) > 0 and equation (1.1) we deduce that y" (x) < 0 for 

x E (0,R). Hence y' (x) < y' (0) ~ g' (0) for x E (0,R) which completes the 

proof of (ii) • 

Finally, we note that H implies that g(x) ~ g' (O)x and hence that 
-1 g -1 -1 2 

y"(x) = (e:x) (y(x) - g(x))y' (x) > - (e:x) g(x)g' (0) ~ - e: (g' (0)) • This 

proves property (iii). D 

THEOREM 3.2. There exists a function y E c2 ([0,R]) which satisfies (1.1)-

(1.3). 

PROOF. We define two functions a and S by a(x) := 0 and S(x) := g(x) for 
-1 

x E [O,R]. Moreover, we define a function f by f(x,y,y') := (e:x) (y-g(x))y'. 

Then cx"(x) = 0 ~ 0 = f(x,a(x),a'(x)) and B"(x) = g"(x) < 0 = f(x,B(x),S'(x)} 

for x E (0,R). Hence a and Bare, respectively, a lower and an upper solu

tion of (1.1). The existence of a solution now follows from [l, Theorem 1. 

5.1] if we can show that f satisfies a Nagumo condition with respect to the 
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pair a,6. This amounts to finding a positive continuous function h on (O,oo) 

such that if(x,y,y') I s h(iy' ll for all x E [O,R], a.(x) s y s S(x) and 

y' E lR and, furthermore, such that 

00 

f 
s 

h ( s) ds > S ( R) , 

-1 
R 6 (R) 

cf. [1, Definition 1.4.1]. The function h defined by h(s) 

satisfies all these conditions. 0 

4. A COMPARISON THEOREM 

-1 
:= t:: g' (0) (s+l) 

In order to emphasize that we are going to study the dependence of a 

solution on the parameters t:: and R, we introduce the notation P(t::,R) for 

the problem (1.1)-(1.3). The main result of this section is a comparison 

theorem which is proved by standard maximum principle arguments. As corolla

ries we obtain that the solution is unique and that it depends in a monotone 

fashion on both t:: and R. 

THEOREM 4.1. Let yi. be a solution of P(t::.,R.) for i = 1,2 and suppose that 
l. l. 

R2 ~ R1 > x 0 and t:: 2 ~ t:: 1 • Then y1 (x) ~ y 2 (x) for 0 < x < R1 • Moreover, if 

one of the inequalities for the parameters is strict, then so is the ine

quality for the solutions. 

PROOF. Let the function m be defined by m(x) := y 1 (x) - y 2 (x). Suppose that 

m achieves a nonpositive minimum on (O,R1), i.e. suppose that for some 

x 1 E (O,R1 ), m(x 1 ) s 0, m'(x1 ) = 0 and m"(x1 ) ~ 0. By subtracting the equa

tion for y 2 from the one for y 1 we obtain 

However, all the terms on the left-hand side of this equality are non

negative and if either t:: 2 > t:: 1 or m(x 1) < 0 at least one of them is positive. 

If t:: 1 = t:: 2 and m(x1 ) = 0 then the uniqueness theorem for ordinary differen

tial equations implies that m(x) = O for all x E [O,R1 ], which cannot be 

true if R2 > R1 • So we see that m cannot achieve a negative minimum and 

that m cannot become zero on (O,R1 ) if one of the inequalities for the 

parameters is strict. Since m(O) = 0 and m(R1 ) ~ O this proves the theorem. 0 



COROLLARY 4.2. The problem P(s,R) has one and only one solution. 

PROOF. We know that at least one solution exists (Theorem 3.2). Let both 

y 1 and y 2 satisfy P(s,R), then Theorem 4.1 implies that y 1 (x) 2 y 2 (x) but 

likewise that y 2 (x) 2 y 1 (x). Hence, y 1 (x) = y 2 (x) for x E [0,R]. D 

COROLLARY 4.3. Let y = y(x;s,R) be the solution of P(s,R). Then y is a 

monotone decreasing function of s for each R > x 0 and each x E (0,R), and 
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y is a monotone decreasing function of R for each s > 0 and each x E (0,R). 

5. THE LIMITING BEHAVIOUR AS R ~ oo 

In this section we study the limiting behaviour as R ~ 00 of the solu

tion y = y(x;s,R) of the problem P(s,R). Since y is a bounded and monotone 

function of R, the definition y(x;s) := lim y(x;s,R) makes sense for all 
R~ 

x,s > 0. This definition implies at once that y(O;s) = 0 and that y is a 

nondecreasing function of x and a nonincreasing function of s. 

From the estimates in Theorem 3.1 we obtain, via the Arzela-Ascoli 

theorem, that both y(•;s,R) and y' (•;s,R) converge uniformly on compact 

subsets. Invoking equation (1.1) we see that the same must be true for 

y" ( ·; s, R) • It follows that y (o; E:) belongs to c2 ( JR ) and satisfies equation 
+ 

(1.1). Now it remains to determine y(oo;s). We will estimate y( 00 ;s) from be-

low by constructing a more subtle lower solution for y. But first we prove 

a result which can be used to estimate y( 00 ;s) from above. 

2 
LEMMA 5.1. Let z E c (JR+) satisfy equation (1.1) and z(O) = O. Suppose 

that z (oo) := lim z(x) exists and satisfies 0 < z(oo) < oo. Then z(oo) ~ 
x~ 

~ g(oo) - S. 

PROOF. Both z and z' are positive on (O,oo) (cf. the proof of Theorem 3.1). 

For the purpose of contradiction, let us suppose that z( 00 ) > g( 00 ) - s. Let 
-1 

x 1 be such that S := s (z(x1 ) - g(oo)) > -1. Then z(x) - g(x) 2 z(x1 ) - g(00 ) 

= sS for all x ~ x 1 . Integrating equation (1.1) twice from x 1 to x we ob

tain 

z(x) 
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Thus, for x 2': x 1 , 

x 

z(x) ~ z' (x1) I 
xl 

Since S + 1 > O this would imply that z(x) + 00 as x + 00 Hence the assump-

tion that z(oo) > g(oo) - E must be false. 0 

We define a function s = s(x;>.,x1 ,v) by 

( 5. 1) s (x;>.,x 1 ,v) := 1.(1 ( x \-\)\ 
- \-J J 

\ xl. . 

and we investigate which conditions for the parameters A, x 1 and v guarantee 
-1 

that s" 2': f(x,s,s') for x 2': x1 (recall that f(x,y,y') =(Ex) (y-g(x))y'). A 

simple computation shows that this inequality holds indeed for all x ~ x 
-1 1 

if and only if g(x1) - A - r::v - E 2': 0, or equivalently, v $ E (g(x1)-A) - 1. 

The latter inequality can be satisfied for some positive value of v if and 

only if A < g(x1) - E. In its turn this inequality can be satisfied for suf

ficiently large x1 and some positive value of A if and only if g( 00 )-E > 0. 

We now have all the ingredients at hand to prove the following theorem. 

THEOREM 5.2. 

(i) If E $ g(oo) - k then y( 00 ;E) k and lim sup0 < < I y (x; E, R) -y (x; E) I = 
R~ -X-R 

= O; 

(ii) if g(oo) - k < E < g(oo) then y(oo;r::) = g(oo) - E; 

(iii) if E 2': g( 00 ) then y(x;s) = 0 for all x 2': 0. 

PROOF. (i) For any A < k we can choose x 1 such that A < g(x 1) - E and sub-
-1 

sequently v such that 0 < v $ E (g(x1)-A) - 1. For these values of the 

parameters, sis a lower solution on the interval [x1 ,R]. The function t 

defined by t(x) := k is an upper solution and f satisfies a Nagumo condi

tion with respect to the pair s,t and the interval [x1 ,RJ. It follows that 

the inequality 

s(x;>.,x1 ,v) $ y(x;s,R) $ k, 

which holds for x x 1 and for x R, actually is satisfied for all 



x E [x 1 ,RJ. By taking first the limit R ~ 00 and then the limit x ~ oo we 

obtain 

>. s y(oo;i::) s k. 
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Since this inequality holds for >. < k, necessarily y(oo;i::) = k. This result 

and the monotonicity of y with respect to x together imply that the conver

gence of y toy is in fact uniform in x (we refer to [6, Lemma 2.4] for the 

proof of this statement) . 

(ii) If g( 00 ) - k < E < g(00 ), we can makes into a lower solution by a 

suitable choice of x 1 and v if and only if>. < g(oo) - e. The argu.~ent we 

used in the proof of (i) now shows that y(oo;i::) ~ g(oo) - E. On the other 

hand, Lemma 5.1 implies that y(oo;i::) s g(oo) - E. So y(oo;i::) = g(oo) - E. 

(iii) From Lemma 5.1 we deduce that no solution of (1.1) with a positive 

limit at infinity can exist if E ~ g(oo). Hence y(oo;i::) = 0 and consequently 

y(x;E) = 0 for all x ~ O. D 

The results of this section are at the same time results concerning 

the existence and non-existence of a solution of the problem P(s,oo) defined 

by (1.1), (1.2) and lim y(x) = k. By exactly the same arguments which we 
x-+<x> 

used before one can derive the bounds of Theorem 3.1 and one can show that 

there exists at most one solution of P(s, 00 ). For convenience we formulate 

this result in the following theorem. 

THEOREM 5.3. There exists a function y E c2 (JR ) which satisfies (1.1), 
+ 

(1.2) and the condition lim y(x) =kif and only if E s g( 00 ) - k. If it x-+<>o 
exists, it is unique and it satisfies the inequalities given in Theorem 3.1. 

6. THE LIMITING BEHAVIOUR AS E + 0 

Throughout this section R > x 0 will be fixed and we will suppress the 

dependence on R in the notation, because it is inessential. The solution y 

of (1.1) - (1.3) is a bounded and monotone function of E and we define 

y(x) ·= lim y(x;E). From Theorem 3.l(i) and (ii) and the Arzela-Ascoli s+O 
theorem we deduce that y is continuous and that in fact 
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lims+O sup0~x$R ly(x)-y(x;s) I = 0. 

THEOREM 6.1. y(x) = min{g(x),k}. 

PROOF. From Theorem 3.1(i) we know that y(x) $ min{g(x) ,k}. Take any x < x 0 , 

then y(x) < k. we claim that this implies that lim,inf y' (x;s) > 0. Indeed, 
EY0 

suppose that the sequence {s.} is such that E. 
l l 

+ 0 and y' (x;s.) + 0 as 
l 

i ~ oo, then by taking the limit i ~ 00 in the relation 

R 

k = y(R;s.) = y(x;s.) + f y'(i;;s.)di; $ y(x;s.) + (R-x)y'(x;s.), 
l l l l l 

x 

we arrive at the conclusion that y(x) 2 k, which is impossible. 

Integrating equation (1.1) from 0 to x we obtain 

x 

( 6 .1) E ( y 1 ( X i E ) -y 1 ( 0 i E ) ) I y ( !; ; € ~ -g ( i;) y I (!;;€)di;. 

0 

Suppose that x < x0 and max0$1;$x jy(i;)-g(i;) I > 0 then, since 

g'(O) > y' (i;;s) 2 y' (x;s) for 0 < !; $ x and lim,inf y' (x;s) > O, the right
EYO 

hand side of (6.1) is bounded away from zero as s + 0. However, this is im-

possible since the left-hand side tends to zero as s + 0. So y(x) = g(x) 

for all x < x0 , and by continuity y(x0 ) = k. The function y, being the limit 

of monotone functions, is monotone nondecreasing. Hence y(x) ~ k for x > x 0 

and consequently y(x) = k for x > x0 . D 

By taking s 0 in (1.1) we obtain the reduced equation 

( 6. 2) (g(x)-y)y' 0. 

The limiting function y satisfies the boundary conditions (1.2) and (1.3) 

and the equation (6.2) except at the point x = x 0 , where y' is not defined. 

Motivated in part by the physical application (cf. section 2) we shall now 

investigate the limiting behaviour of y' (x; s) as s + 0. It will then become 

even more apparent that x = x is an exceptional point. The following lemma 
0 

is needed in the proof of Theorem 6.3, but it is of some interest in itself. 

LEMMA 6.2. Let o > 0 be arbitrary. For any s 0 > O there exists an M > 0 
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such that 0 < g(x) - y(x;e:) < Me:x for all x E [O,x0-oJ and all e: E (O,e: 0). 

PROOF. Let 8 > 0 and e: 0 > 0 arbitrary. We define 

m(e:) := min {g(x)-y(x;e:)}. 
xo-o~x~xo-~o 

Then there exist positive constants Ci, i = 1,2,3, such that for e: E (O,e: 0 ) 

xo-o/2 

m(e:) ~ c1 J <g<s>-Y<s;e:))ds 

x -o 
0 

xo-o/2 

~ c2 I g ( t;) -r s ; e:) y' <s ;e:)ds :s; C3e: 

x -8 
0 

(see the proof of Theorem 6.1 and in particular formula (6.1)). Let the 

function v = v(x;e:) be defined by v(x;e:) := g(x)-y(x;e:) Me:x, where the 

constant M > 0 is still at our disposal. Then v satisfies the equation 

e:xv" - y' (x; e:) v e:x(g" (x) + My' (x;e:)) 

d l " 0 ~f M > yµ- 1 (0 ) d (0 L.t>J an consequent y e:xv - µv > _,_ , e: E ,e: 0 an x E ,x0 --iu , 

where the positive numbers y and µ are defined by 

y := inf g" (x) 
O<x:s:x0-!.:io 

and 

8 
µ := inf y' (x0- 2 ;e:). 

O<e:<e:O 

So if M > 
-1 yµ and e: E (O,e:0), then v cannot assume a nonnegative maximum 

on (O,x0-~o). Let x(e:) be such that g(x) - y(x;e:) achieves its minimum on 

the set [x0-o,x0-i,o] in the point x x(e:). Then v(x(e:) ;e:) m(e:)-Me:x(e:) < O 

if M > (x0-o)-l c 3 • Since v(O;e:) O, this implies that for 
-1 -1 M > max{yµ , (x0-o) c3 i v(x;e:) < O for x E (0,x(e:)) and a fortiori for 

x E co,x0-o). D 
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THEOREM 6.3. Let o > 0 be arbitrary. Then 

(i) lim sup lg' (x)-y' (x;e:) I = O; 
e: .j-Q o~x:s;x0-o 

(ii) lim sup ly' <x;e:) I = 0. 
e:i-0 x0+o:s;x~R 

PROOF. (i) From the equation (1.1), Theorem 3.l(ii) and Lenuna 6.2 we de

duce that -g' (O)M < y"{x;e:) < 0 for x E [O,x0-oJ and e: E (O,e: 0). By the 

Arzela-Ascoli theore~ this implies that the limit set of {y' (•;e:) I e: > O} 

as e: + 0 is nonempty in C([O,x0-o]). The result now follows from the fact 

that y tends to g on [O,x0-oJ as e: + o. 

(ii) Integrating equation (1.1) from x0 + ~o to x we obtain 

x 

e:(y' (x;e:) - y' (x0+~o;e:)) = f _y _( t;~;_E:_) -~g~(_t;_) Y I ( t; i €: ) d t; • 
t; 

-1 0 
For x E [x0+o,R] the right-hand side is smaller than ~oR (k-g(x0+2))y' (x;e:). 

-l tS -1 
Consequently 0 < y'(x;e:) < 2g' (O)e:Ro (g{x0+2J-k) . D 

In the next section we shall concentrate on a formal approximation for 

y and y' in the neighbourhood of x = x0 • 

In section 5 it was shown that the problem P(e:,oo) has a unique solution 

for e: sufficiently small. The analysis of this section can be repeated, 

mutatis mutandis, to derive the analogous results concerning the limiting 

behaviour of this solution as e: + 0. In particular this implies that the 

limits e: + 0 and R + 00 are interchangeable. 

7. THE TRANSITION LAYER 

In Theorem 6.3 we have shown that y' converges nonuniformly on the in

terval [O,R] as e: + O. This feature is typical for a singular perturbation 

problem. In this section we use the standard method of the stretching of a 

variable to obtain more information about the behaviour of y' near the 

transition point x = x0 • 

By the stretching of the variable x near x0 we mean the introduction 

of a local coordinate ~ according to x = x0 + e:at;. At the same time we 
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introduce a local dependent variable n according to 

If we make these substitutions in the equation, and subsequently only retain 

the terms of lowest order in £, it depends on the values of a and B what 

the resulting equation will be. One easily verifies that the choice 

a = B = ~ leads to a significant equation, namely to 

(7 .1) x n" + (~g' (x )-n ln' 
0 1 0 1 1 

O, 

where we have introduced the subscript 1 to indicate that we consider in 

fact a first approximation. To this equation we add the condition that its 

solution should match the limits of y to the left and to the right of x 0 , 

respectively, up to the appropriate order in ~- This amounts to the con

ditions 

g' (x0 )~ + o(1), as ~ -+ - 00 

(7.2) 

0 (1) ' as ~ -+ + 00 • 

A straightforward application of the maximum principle (see Theorem 4.1) 

shows that the problem (7.1)-(7.2)' which we shall denote by rrl, admits at 

most one solution. 

The problem rr 1 is nonautonomous. However, if we set nl = z 1, divide 

the equation by z 1 and then diffe~entiate it, we formally obtain an autono

mous problem, which we denote by rr1 : 

(7.3) x - 1 + g' (x ) - z = 0 (z')' 
o,zl 0 1 

g' Cx0 ) + o(l), as ~ -+ - 00 , 

(7. 4) 

0 ( 1) ' as ~ -+ + 00 
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One should note that, at least formally up to first order in /E, z 1 describes 

the shape of y' in the neighbourhood of x0 • In the remainder of this section 

we shall discuss the existence of a family of solutions of problem rr 1, and 

we shall show how this family can be used to obtain the solution of problem 

One way to handle problem TI1 is to write (7.3) as a two-dimensional 

first order system and analyze the trajectories in the phase plane. It turns 

out that the singular point (z 1 ,zi) = (g' (x0 ),0) is a saddle point and that 

one branch of the unstable manifold lies in the half-plane zi < 0 and enters 
,..., 

the (singular) singular point (0,0). Hence TI1 has a one-parameter family 

of strictly decreasing solutions, where the parameter describes simply the 

translation of one particular solution. 

However, it so happens that rr 1 can be solved explicitly for ~ in terms 

of z 1 . To this end we put 

and 

Then v = v(~') has to satisfy 

{
2v" + 

v(-00 ) = 0 

= 0 

v(+co) = - 00 

and we obtain, after multiplication by v' and one integration, 

2 v 
(v') + v - e = - 1 

and finally 

c 
(7. 5) ~· = f dw 

v 

where the parameter C corresponds to the free translation parameter. From 

this expression we easily obtain the asymptotic behaviour of the solutions: 

~ (~-C) x 
zl(~) - g'(~o) + e O ' ~ + - oo, 



As candidates for a solution 

I; 

~(l;,C) = f ;l (T+C)dT = 
00 

(l;-C) 2 

of rrl we take the functions 

l;+C 

f z 1 (T)dT, 

00 

where z 1 is the particular solution of rr 1 which satisfies z 1 (0) = ~g' (x0) 

(or, in other words, which corresponds with C = ~g' (x0 ) in (7.5)). Using 

equation (7.3) we obtain after some manipulation 

where primes denote differentiation with respect to !; and where we have 

suppressed the dependence on C in the notation. Hence 

Furthermore, we deduce from rr1 that 

~(l;;C) 

Since~"/~' tends to zero as I;-+ - 00 it follows that K2 = - K1 • 

Of course the constants K1 and K2 depend on C and it remains to show 

that we can choose C in such a way that they both become zero. We observe 

that 

Kl (C) XO 
~" (O;C) - ~(O;C) 
~'(O;C) 

zi (C) 
c 

f z 1 (T)dT. XO z1 (C) 
00 

From the known asymptotic behaviour of z 1 we deduce that K1 tends to ± 00 

as C tends to + 00 • Moreover 

"' 
dKl 
dC (C) 

z' I 

xo(,..,10 ( c) 
zli 

17 
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Thus, Kl is a strictly decreasing function with range (-00 ,co) and we conclude 

that there exists a unique value of c, c 1 say, such that K1 {C) = 0. Con

sequently n1 =: ~(·;C 1 ) is the solution of problem rr 1 . Furthermore, the 

properties of z 1 imply that (i) n1 is negative, strictly increasing and 

concave, (ii) n1 (~) + 0 faster than exponentially as ~ + + co, (iii) the 

function n1 (~) - g' Cx0 )~, as well as all its derivatives, converge exponen

tially to zero as ~ + - co. 

The idea of singular perturbation theory is that z1 (•+c1 ) describes 

the transition of y' near x = x0 for small values of E, and that one can 

approximate y' uniformly on [O,R] by using the building-stones z 1 (•+C1) and 

y'. In the following sections we shall elaborate this idea and we shall 

prove its correctness. It turns out that this will require the construction 

of at least five terms in a uniform asymptotic expansion. Since for us, as 

for many mathematicians, five is almost equal to infinity we shall first 

discuss the construction of a complete asymptotic expansion. 

8. MATCHED ASYMPTOTIC EXPANSIONS 

form 

(8. 1) 

Throughout this and the next section we shall assume that g E Cco([O,R]). 

On the interval [O,x0-oJ we look for an asymptotic expansion of the 

00 

y(x) l 
n=O 

n 
E y (x) • 

n 

We find that y0 (x) = g(x) and that yn is defined recursively by 

(8. ~) y (x) 
n 

n ~ 1. 

In order to calculate the matching conditions for the transition layer 

expansion, we expand each y in a Taylor series 
n 

(k) 
k Yn (xo) k 

y (x) = l (/2) k! E; 
n k=O 

00 

x-xo 
where, as before, ~ = ~ . If we substitute this in the expansion for y 

and rearrange the resulting expression by collecting terms with like powers 



of /€, we obtain 

00 

(8.3) Y (x) l 
m=O 

where, by definition, 

(8 .4) u (0 = 
m 

[~] 
2 

l 
n=O 

(m-2n) ( ) 
Yn xo 

(m-2n) ! 
m-2n 

E; • 

On the interval [x0+o,R] one can also introduce a series expansion in 

powers of E, but it will quickly turn out that all the terms, except the 

one of zero'th order which is k, are zero. 

Next we introduce the transition layer expansion 

(8. 5) y (x) I 
n=O 

(/€) n n (s) 
n 

where no(s) = g(xo) and nl is the solution of the problem ITl discussed in 

section 7. Substitution in the equation yields an equation for each n • 
n 

Together with the matching condition which is obtained by formal identifi-

cation of (8.5), as E; + - oo, with (8.3), this yields for n ~ 2 a linear 

problem IT defined recursively by 
n 

( 8. 6) 

where 

( 8. 7) 

= u (!=;) + o(l), 
n 

as s + - 00 , 

nn(s) = o(l), as s + + 00 , 

:= -

(n) ( ) 
g xO E;n ' 

n! nl 

(k) 
n-1 (g (x0 ) k \ 

- sn~_ 1 - I n~+l-k k! · s -nk1· 
k=2 ' 

As before the maximum principle implies that problem IT can have at most 
n 

one solution. In order to discuss the existence of a solution we first re-

write the equation by making use of the equation (7.1) for n1 : 

19 



20 

x (n~)' -n 
O n' n 

1 

-1 
Introducing z 1 := ni, sn := (z1 l n~ and hn 

differentiation 

(8 .8) x s" - z s 0 n 1 n 
h . 

n 

At this point it is important to observe that we know a particular solution 

of the homogeneous equation x0cp 11 - z1<t> = O, namely 

(8.9) 

(one can verify this by differentiation of equation (7.3)). 

Hence we can construct solutions of (8.8) through the method of variation 

of constants, and we find 

(8.10) s (t;;C) 
n 

<j>(o)h (o)dodT + C<j>(t;) 
n 

(note that we do not consider the general solution of the homogeneous 

equation since only <P has the right asymptotic behaviour as s + - 00 ) • For 

any C, the function defined in (8.10) is of polynomial growth as s + + 00 

and behaves like g'(x0)u~ ass+ - 00 • The last statement can be verified 

by working out the consistency relations between q and u which follow 
n n 

from the identity 

x u" - g' (x )u 
0 n 0 n 

(n) ( ) 
g XO 

n! 

and by making use of the known asymptotic behaviour of <j>. 

Finally, we define 

c; 

(8. 11) nn(t;;C) = J z 1 Cclsn(T;C)dT = nnCt;;O) + cni(sl. 
00 

Then nn(t;;C) = un(s) + Bn + g' (x0)c + o(1) ,t; + - 00 , where Bn is some number, 

which does not depend on C. It follows that there exists a unique constant, 



say C , for which the matching condition is satisfied and consequently 
n 
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n (~;C ) is the unique solution of the problem IT • This completes the con-
n n n 

struction of the transition layer expansion. 

To conclude this section we construct a uniform approximation of formal 

order 2n+1 in /£. We introduce two C00 -functions H and J defined on JR (so

called cut-off functions) with the following properties 

{: if lx-x0 ! ;:::: 01 

H(x) = 
if lx-x0 1 ~ 

01 

2 

r if lxl ~ 02 

J (x) 

if lxl 2". 262 

where o1 and o2 are suitable constants which do not depend on E. Then the 

formal approximation y (x) is defined by 
a 

(8.12) y (x) 
a 

Apart from the cut-off functions this formula is the usual one, expressing 

a uniform approximation as the sum of approximations in the different 

regions minus the matching terms, which are contained in two approximations 

and hence should be subtracted in order to avoid double counting. The cut

off functions are used to achieve two ends: the approximation should satis

fy the boundary conditions and it should be smooth at x = x 0 . Moreover, the 

cut-off functions are harmless in the sense that they are multiplied by 

factors which are small (if E is small) in regions where the cut-off func

tions are different from one. In the next section we shall prove that y 
a 
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and 
n+~ 

y' are indeed uniform approximations of y and y' up to the order e 
a+3/2 

and En , respectively. 

9. A PROOF OF THE VALIDITY OF THE FORMAL CONSTRUCTION 

(9 .1) 

We begin by deriving an estimate for the difference 

z(x) := y (x) - y (x) • 
a 

It follows from the equation for y and from the construction of y that z 
a 

satisfies 

(9. 2) {

E X z" 

z(O) = 0, z (R) = 0 

+ (g-y)z' - y'z + zz' = r 

where the remainder term r, defined by 

(9. 3) 

can be shown, after an elaborate computation, to satisfy 

(9.4) r(x) 
n 

= 0 (XE ) as e -1- O and/or x .j.. 0. 

If we multiply the equation for z and integrate from 0 to R we obtain after 

some integrations by parts and an application of the Cauchy-Schwarz in

equality 

2 
x ( z' (x) ) dx + ~ 

R 

f (g' (x) +y' (x)) z 2 (x) dx :;; 

0 

II zll II rll, 

where II· II denotes the L2-norm. Since g' (x) + y' (x) ~ g' (R) this implies, 

first of all, that 

2 llzll:;; llrll 
g' (R) 
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and hence that 

x(z' (x)) 2dx + g' (R) llzll 2 s 2 llr11 2 . 
2 g' (R) 

Now, fix o E (O,x0). The estimate above is easily translated into an esti-
1 1 

mate for the H (o,R)-norm of z, where H denotes the usual Sobolev space of 

L2-functions which have a generalized derivative belonging to L2 . Thus, by 

the continuous imbedding of H1 into the space of continuous functions we ob

tain 

where C depends on 8. Having established this estimate on the interval 

[o,R], we can extend it to the interval [O,R] by means of the maximum prin

ciple in exactly the same way as we proved Lemma 6.2. 

Next, it is advantageous to take explicitly into account the dependence 

on the parameter n, which counts the number of terms included in the ap-

proximation. So putting z = z we write the estimate obtained so far as 
n 

I z ex> I n 
n-~ 

S CXE: , 

Then, observing that 

0 S :x: SR, 

n+l I z (x) - z (x) I :S: CxE: 
n+l n 

we deduce the sharper estimate 

n E JN. 

I z Cx> I 
n 

n+~ 
:S: I z (x) -z 1 (x) I + I z 1 (x) I :S: CxE • 

n n+ n+ 

(This is the familiar "throwing away" of terms which are needed in the proof, 

but do not contribute to the result.) We state this as a theorem. 

THEOREM 9.1. There exist constants E:O > 0 and C > 0 such that 

n+~ 
ly(x)-y (x) I S CxE: 

a 
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for O < £ < £ 0 and 0 s x s R. 

our next objective is to show that the derivative of y is a good ap-a 
proximation for the derivative of y (recall that ya is more or less con-

structed through the integration of its derivative, and that in our appli

cation the derivative is the function which has a direct physical meaning). 

Our proof will be based on the following interpolation inequality. 

LEMMA 9.2. There exi$t constants µ 0 > 0 and D > 0 such that for any 
2 

~ E c ([0,R]) and each µ E (0,µ 0 ) 

sup!~' (x) I s D{µ supl~"(x) I + µ- 1 sup!~(x) !}, 

where the suprema are taken over the interval [O,R]. 

PROOF. See BESJES [2]. The proof is based on a result to be found in 

MIRANDA [15, 33,III,p.149]. 0 

THEOREM 9.3. There exist constants £ 0 > 0 and C > 0 such that 

n-~ !y'(x)-y'(x)! SC£ a 

for 0 < £ < e0 and 0 s x s R. 

PROOF. From the equation for z (see (9.2)) we deduce that 

where 

sup 
Osx:>:R 

g(x)-y(x) 
x c2 := sup 

Osx~rn 

ly'(x)!. 
a 

-1 Next we apply Lemma 9.2 withµ= e(2c1D) to obtain 

-1 lr(x) I 2 -1 I lz(x) I} sup I z" (x) I s 2e {sup -x- + 2 cc 1 D) e: sup I z (x) +c 2 sup -x- • 



By Theorem 9.1 and the estimate (9.4) this implies that 

n-3/2 
sup I z" {x) I = O(E: ) . 

Then a second application of Lemma 9.2, this time with µ 

desired result. D 
E:, leads to the 

10. SOME REMARKS ABOUT THE CASE WHERE g IS NEITHER EVERYWHERE INCREASING 

NOR EVERYWHERE CONCAVE 

In this section we shall discuss some extensions of our results to 
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equations in which the conditions on the function g are considerably relax

ed. In fact we shall merely assume that g satisfies the following hypotheses 

H 
g 

1 
g E C ([0,R]); g(O) = 0, g ( R) ?: k; 

g has only finitely many local extrema or [0,R]. 

Thus, in particular the sign conditions on g' and g" are dropped. 

First of all we observe that the existence of a solution of (1.1)-(1.3) 

can be proved as in Theorem 3.2 by using zero as a lower solution and Gas 

an upper solution, where G is any increasing, concave and smooth function 

such that G(O) = 0 and G(x) ?: g(x) or [0,R]. 

As before we find that if y = y(x;E:) is a solution then y' > 0 and 

hence sign y" = sign (y-g); subsequently, reasoning along the lines indicated 

in the proofs of Theorem 3.1 one can show that for any E > 0 

(10.1) 0 < y ' ( x ; E:) :::;; sup g ' (I:) • 
O~i;;::;;R 

This in turn enables one to prove by means of the maximum principle that 

(1.1)-(1.3) can have at most one solution, and that the mapping E: I-+ y(•;E) 

is continuous from JR+ into C = C ([0 ,R]). 

By (10.1) the set {y(•;E:) I E > O} is a precompact subset of C. Let X 

denote its limit set, as E + O, in C. Taking into account the continuity 

with respect to E:, we conclude that X is a nonempty, compact and connected 
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subset of C (see SELL [16,p.20]). 

Any element u of X is a nondecreasing function with u(O) = O and 

u(R) = k. Our first objective is to give further characteristics of the 

elements of X. 

LEMMA 10.1. Let u Ex. Then there exist a nonempty, open set A and a closed 

set B such that 

(i) u(x) = g(x) if x E A, 

(ii) u is constant on each connected component of B, 

(iii) A n B = 0, A u B = [O ,R]. 

PROOF. Since u E X, there exists a sequence {s } such that as n + oo, s + O 
--- n 1 nl 
and y(•;s ) + u strongly in C. By (10.1) {y(•;s )} is bounded in H = H (0,R) 

n n 

and hence it is possible to pick a subsequence, again denoted by {s }, such 
n 

that as n + oo, y(•;s ) + u weakly in H1 
n 1 

Next, we multiply equation (1.1) by an arbitrary function~ E H , in-

tegrate from 0 to R, integrate the first term by parts and let n tend to 

infinity. This yields the identity 

whence 

(10.2) 

R 

f ( g ( X) -U ( X) ) U I ( X) cp ( X) dx = 0 I 

0 

(g (x) -u (x)) u' (x) 0 a.e. on [O,R]. 

Define the sets A and B by 

A {x E [O ,R] I u gin a neighbourhood of x}, B [O,R]\A, 

then clearly u' (x) = 0 a.e. on B. In view of the continuity of g and u the 

sets A and B have all .the properties listed in the lemma. 0 

LEMMA 10.2. Let u E X and let I be a connected component of B such that 

I c ( 0 , R) • Then 



(10.3) J u(x):g(x) dx = 0. 

I 

Before proving this lemma, we prove an auxiliary result. 
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LEMMA 10.3. Suppose that, as n + oo, 

[a,b] c [O,R]. Then 

E + 0 and y(x;E ) + g(x) uniformly on 
n n 

E log y' (x;E ) + O 
n n 

as n + oo 

uniformly on [a,b]. 

PROOF. Choose a subinterval [c,d] of [a,b] and a positive constant o > O 

such that g' (x) ~ o on [c,d]. Define for each n ~ 1, a point ~n E [c,d] 

such that 

y'(~ ;E) 
n n 

max { y' ( x ; E ) I c ::; x ::; d} . 
n 

Then it follows that there exists an N1 ~ 1 such that 

Y 1 (~ i E ) ;:_:: l.:io 
n n 

If we divide equation (1.1) by xy' and integrate from ~n to x we obtain 

E ln y' (x; E ) 
n n 

x 

E £.n y 1 ( ~ ; E ) + r 
n n n J 

y ( T ; E ) -g ( T ) 

~~~n~~~- dT. 
T 

~n 
Since the right-hand side tends to zero as n + 00 , the same must be true for 

the left-hand side and the result follows. 0 

PROOF OF LEMMA 10.2. Let I = (e,f), where, by assumption, 0 < e < f < R. 

Manipulating as above we obtain 

E £.n 
n 

y' (e;E ) - E ln 
n n 

y'(f·E) 
I n 

f 

= I 
e 

y ( T , E ) -g ( T) 

~~~n~~~- dT. 
T 

Applying Lemma 10.3 to a left-hand neighbourhood of e and to a right-hand 

neighbourhood of f, we deduce that the left-hand side of this identity tends 

to zero as n + oo. So taking the limit n + 00 leads to the desired result. D 
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We now collect the information we have obtained about an arbitrary 

element u of X: u is a continuous, nondecreasing function with u(O) = O 

and u(R) = k, which is composed out of pieces where u(x) = g(x) and pieces 

where u(x) is constant. Moreover, if I is a maximal interval on which u is 

constant, and I does not contain 0 or R, then (10.3) has to be satisfied. 

For convenience of formulation we shall call the set of functions having 

all these characteristics Y. 

Our next objective is to show that Y is finite. First we shall illus-_ 

trate our approach by discussing one example in full detail. 

Consider a function g satisfying H and such that g' vanishes at only 
g 

two points b and c, b being a local maximum and c a local minimum. Assume 
-1 

that 0 < b < c < Rand 0 < g(c) < g(b) < k. Let g 1 denote the inverse of g 

on [O,b] and 

tg 

k 

a b c d R -+ x 

Figure 1 

-1 
g 2 the inverse of g on [c,R]. Define two points a and d by 

-1 
a = g 1 (g (c)), d 

-1 
g 2 (g (b)) • 

Then g ([a,b]) = g ([c,d]). (See Figure 1.) 

On [a,b] we 

F(x) 

define a mapping F by 
-1 

g2 (J(x}) 
g(x)-g(T) 
-"-"'----""-- d T • 

x 



Then on (a,b) 

F' (x) g' (x) 

-1 
g2 (g(x)) 

f 
x 

dT Q -> 
T 

and F(a) < 0, F(b) > 0. Consequently F has a unique zero on [a,b]. 

Let w be an arbitrary element of Y. Then w has to coincide with g on 
-1 -1 

[O,a] and [d,g2 (k)] and it has to be equal to k on [g2 (k) ,R]. Since w is 
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nondecreasing the inverse function of w must "jump" from a point on [a,b] 

to a point on [c,d]. In view of (10.3) this jump can only take place at the 

unique zero of F. Thus Y consists of one and only one element. 

Returning to a general function g satisfying H we define E to be the 
g 

set of local maxima and minima of g and D to be the closure of the set 

{x I g is increasing in a neighbourhood of x}. Let D be one of the finite-
-1 c 

ly many connected components of D. The set g (E) n D is finite. Take two 
c 

successive points ao and Bo in this set. To rao,Bo] there correspond finitely 

many disjunct intervals [a.,B.J c D such that a. > a 0 and g([a0 ,s0 J) 
-1 1 1 1 

= g([a. ,B.]). Define g. on [g(a0 ) ,g(S0 )J as the inverse of g with range in 
1 1 1 

[a. ,S.J. On [a0 ,s0 J we define mappings F. by 
1 1 -1 1 

g. (g(x)) 

1 f g(x)-,g(T) 
F. (x) dT. 

1 

x 

Since F. is monotone, it has at most one zero. 
1 

As already noted above the condition (10.3) implies that a point where 

the inverse function of an element of Y makes a jump should be a zero of 

some Fi for some connected component Dc of D and some pair of points a 0 ,s0 . 

Hence the set of possible "jump" points is finite and likewise the set Y is 

finite. 

Thus X, being a subset of Y, must be discrete. Because it is also con

nected it can only consist of a single element. Consequently y(•;s) converges 

in C to this function as s + 0. We summarize the results in the following 

theorem. 

THEOREM 10.4. There exists a function u E Y such that 

lim y(x;s} 
dO 

u (x) , uniformly on [O,R]. 
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In some cases the conditions determine the limit uniquely. For instance, 

this happens in the example we discussed at length and, more generally if 

the local extrema are ordered in such a way that with each connected com

ponent of D there corresponds precisely one possible "jump" point. In other 

cases our analysis is not constructive in the sense that, although we have 

shown that convergence occurs as E ~ O, we are not able to describe the 

limit completely. (See Figure 2.) We intend to investigate whether this 

ambiguity can be resolved by using variational principles 

tg 

a a b c d +x 

Figure 2 

Two possible configurations: separate jumps (a-b,c-d) or a two-in-one jump 

(a-8) • 

In conclusion we remark that the hypothesis g(R) ~ k was made in order 

to obtain the uniform convergence on [0,R]. If g(R) < k the solution will 

exhibit boundary layer behaviour near the right endpoint. However, outside 

a small neighbourhood of this endpoint, the solution will behave in exactly 

the same way as we have shown for the case g(R) > k. 
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