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1. Introduction

In this paper, we study the following partial integro-differential equation

∂

∂t
p(s, t) +

∂

∂s
(γ(s, P (t))p(s, t)) = −µ(s, P (t))p(s, t) +

∫ m

0

β(s, y, P (t))p(y, t) dy, (1.1)

γ(0, P (t))p(0, t) = 0, (1.2)

p(s, 0) = p0(s), P (t) =

∫ m

0

p(s, t) ds. (1.3)

Here the functionp = p(s, t) denotes the density of individuals of size (or other developmental
stage)s at timet with m being the finite maximal size any individual may reach in its lifetime.
Vital ratesµ ≥ 0 andγ ≥ 0 denote the mortality and growth rates of individuals, respectively, and
both depend on both sizes and on the total population sizeP (t). It is assumed that individuals
may have different sizes at birth and thereforeβ(s, y, · ) denotes the rate at which individuals of
sizey give rise to individuals of sizes. The non-local integral term in (1.1) represents reproduction
of the population without external driving of the population through immigration. We make the
following general assumptions on the model ingredients

µ ∈ C1([0, m]× [0,∞)), β ∈ C1([0, m]× [0, m]× [0,∞))

β, µ ≥ 0, γ ∈ C2([0, m]× [0,∞)), γ > 0. (1.4)

Our motivation to investigate model (1.1)-(1.3) is the modelling of structured parasite popu-
lations in aquaculture. In particular we are interested in parasites of farmed and wild salmonid
fish that have particular relevance both industrially and commercially to the UK. These species
are subject to parasitism from a number of copepod (crustacean) parasites of the family Caligi-
dae. These sea louse parasites are well studied with a large literature: below we draw attention to
some recent key review papers. Sea lice cause reduced growth and appetite, wounding, and sus-
ceptibility to secondary infections [5], resulting in significant damage to crops and therefore they
are economically important. For salmon, louse burden in excess of 0.1 lice per gram of fish can
be considered pathogenic [5]. The best studied species isLepeophtheirus salmonis, principally a
parasite of salmonids and frequent parasite on British Atlantic salmon (Salmo salar) farms [22]. It
also infects sea trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss). The life history of
the parasite is direct, with no requirement for intermediate hosts. It involves a succession of ten
distinct developmental stages, separated by moults, from egg to adult. Initialnaupliar andcope-
podid stages are free living and planktonic. Following attachment of the infectious copepodid to
a host, the parasite passes through fourchalimusstages that are firmly attached to the host, before
entering sexually dimorphicpre-adultandadult stages where the parasite can once again move
over the host surface and transfer to new hosts.

The state of the art for population-level modelling ofL. salmonisis represented by Revieet
al. [20]. These authors presented a series of delay-differential equations to model different life-
history stages and parameterised the model using data collected at Scottish salmon farms. A similar
compartmental model was proposed by Tuckeret al. [21]. The emphasis of these papers was not
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however, in analytical study, but on numerical simulation and parameterisation using field [20] and
laboratory [21] data. An earlier model by Heuch & Mo [13] investigated the infectivity, in term of
L. salmonisegg production, posed by the Norwegian salmon industry, using a simple deterministic
model. Other authors have considered the potential for long-distance dispersal of mobile parasite
stages through sea currents [18], looking at Loch Shieldaig in NW Scotland, a long-term study site
for sea louse research.

In this paper, we focus on the dynamics of individuals at the chalimus to adult stages. Though
individuals pass through a series of discrete growth stages by moulting, this outward punctuated
growth disguises a physiologically more smooth growth process in terms of the accumulation of
energy, and by ‘size’ in this paper we presume accumulation of energy, rather than physical dimen-
sion. Sea lice reproduce sexually; however at the chalimus stage individuals are not yet sexually
differentiated. Fertility rates thus must be considered as applying to the population as a whole,
rather than as is usually the case the female fraction of the population. Individuals entering the
first chalimus stage from the non-feeding planktonic stages are distributed over different sizes,
hence we have the zero influx boundary condition (1.2) and the recruitment term in (1.1). Our
aim here is to present a preliminary step towards the analysis of the more complex problem of
modelling the whole life cycle of sea lice by giving a mathematical treatment of a quite general
scramble competition model with distributed states-at-birth. We use the term scramble competition
to describe the scenario where individuals have equal chance when competing for resources such
as food (see e.g. [6]). Therefore all vital rates, i.e. growth, fertility and mortality depend on the
total population size of competitors. In other populations, such as a tree population or a cannibalis-
tic population, there may be a natural hierarchy among individuals of different sizes, which results
in mathematical models incorporating infinite-dimensional nonlinearities, see e.g. [10, 11]. The
analysis presented in this paper could be extended to these type of models and also to other models
such as those that involve a different type of recruitment term.

Here, we consider the asymptotic behaviour of solutions of model (1.1)-(1.3). Our analysis
is based on linearisation around equilibrium solutions (see e.g. [10, 19]) and utilises well-known
results from linear operator theory that can be found for example in the excellent books [1, 4, 9].
We also utilise some novel ideas on positive perturbations of linear operators. For basic concepts
and results from the theory of structured population dynamics we refer the interested reader to
[6, 14, 17, 23].

Traditionally, structured population models have been formulated as partial differential equa-
tions for population densities. However, the recent unified approach of Diekmannet al., making
use of the rich theory of delay and integral equations, has been resulted in significant advances.
The Principle of Linearised Stability has been proven in [7, 8] for a wide class of physiologically
structured population models formulated as delay equations (or abstract integral equations). It is
not clear yet whether the models formulated in [7, 8] as delay equations are equivalent to those
formulated as partial differential equations.

In the remarkable paper [3], Calsina and Saldaña studied the well-posedness of a very general
size-structured model with distributed states-at-birth. They established the global existence and
uniqueness of solutions utilising results from the theory of nonlinear evolution equations. Model
(1.1)-(1.3) is a special case of the general model treated in [3], however, in [3] qualitative questions
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were not addressed. In contrast to [3], our paper focuses on the existence and local asymptotic
stability of equilibrium solutions of system (1.1)-(1.3) with particular regards to the effects of
distributed states-at-birth compared to more simple models we addressed previously, e.g. in [10].
First, we establish conditions in Theorem 6 that guarantee the existence of equilibrium solutions,
in general. Then, we show in Theorem 8 that a positive quasicontraction semigroup describes
the evolution of solutions of the system linearised at an equilibrium solution. Next, we establish
a further regularity property in Theorem 12 for the governing linear semigroup, which allows
one to investigate the stability of positive equilibrium solutions of (1.1)-(1.3). We use rank-one
perturbations of the general recruitment term to arrive at stability/instability conditions for the
equilibria. Finally we briefly discuss the positivity of the governing linear semigroup.

2. Existence of equilibrium solutions

Model (1.1)-(1.3) admits the trivial solution. If we look for positive time-independent solutions of
(1.1)-(1.3) we arrive at the following integro-differential equation

γ(s, P∗)p
′
∗(s) +

(
γs(s, P∗) + µ(s, P∗)

)
p∗(s) =

∫ m

0

β(s, y, P∗)p∗(y) dy (2.1)

γ(0, P∗)p∗(0) = 0, P∗ =

∫ m

0

p∗(s) ds. (2.2)

2.1. Separable fertility function

In the special case of

β(s, y, P ) = β1(s, P )β2(y), s, y ∈ [0, m], P ∈ (0,∞), (2.3)

where the distribution of offspring sizes is dependent upon the level of competitionP , but the
mature size at which individuals reproduce is not, equation (2.1) reduces to

γ(s, P∗)p
′
∗(s) +

(
γs(s, P∗) + µ(s, P∗)

)
p∗(s) = β1(s, P∗)P ∗, (2.4)

where

P ∗ =

∫ m

0

β2(y)p∗(y) dy.

The solution of (2.4) satisfying the initial condition in (2.2) is readily obtained as

p∗(s) = P ∗F (s, P∗)

∫ s

0

β1(y, P∗)

F (y, P∗)γ(y, P∗)
dy, (2.5)

where

F (s, P∗) = exp

{
−

∫ s

0

γs(y, P∗) + µ(y, P∗)

γ(y, P∗)
dy

}
.

4



J. Z. Farkas et al. Semigroup analysis of structured parasite populations

Multiplying equation (2.5) byβ2 and integrating from0 to m yields the following necessary con-
dition for the existence of a positive equilibrium solution

1 =

∫ m

0

β2(s)F (s, P∗)

∫ s

0

β1(y, P∗)

F (y, P∗)γ(y, P∗)
dy ds. (2.6)

Therefore we define a net reproduction functionR as follows

R(P ) =

∫ m

0

∫ s

0

β1(y, P )β2(s)

γ(s, P )
exp

{
−

∫ s

y

µ(z, P )

γ(z, P )
dz

}
dy ds. (2.7)

It is straightforward to show that for every positive valueP∗ for which R(P∗) = 1 holds, formula
(2.5) yields a unique positive stationary solutionp∗, whereP ∗ may be determined from equation
(2.5) as

P ∗ =
P∗∫ m

0
F (s, P∗)

∫ s

0
β1(y,P∗)
F (y,P∗)

dy ds
.

Then it is straightforward to establish the following result.

Proposition 1. Assume that the fertility functionβ satisfies(2.3)and that the following conditions
hold true

β(s, y, 0) > µ(s, 0), s, y ∈ [0, m], P ∈ (0,∞);

∫ m

0

exp

{
−

∫ s

0

µ(y, 0)

γ(y, 0)
dy

}
ds < m− 1,

(2.8)∫ m

0

β1(s, P ) ds → 0 as P →∞, and 0 < γ∗ ≤ γ(s, P ), s ∈ [0, m], P ∈ (0,∞).

(2.9)

Then model(1.1)-(1.3)admits at least one positive equilibrium solution.

Proof. Condition (2.8) implies

R(0) =

∫ m

0

exp

{
−

∫ s

0

µ(y, 0)

γ(y, 0)
dy

} ∫ s

0

β2(s)β1(y, 0)

γ(y, 0)
exp

{∫ y

0

µ(z, 0)

γ(z, 0)
dz

}
dy ds

>

∫ m

0

exp

{
−

∫ s

0

µ(y, 0)

γ(y, 0)
dy

} ∫ s

0

(
exp

{∫ y

0

µ(z, 0)

γ(z, 0)
dz

})′

dy ds

> 1. (2.10)

Condition (2.9) and the growth behaviour of the functions in (2.7) imply that

lim
P→+∞

R(P ) = 0,

hence the claim holds true on the grounds of the Intermediate Value Theorem. 2
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2.2. The general case

For a fixedP ∈ (0,∞) we define the operatorBP by

BP u =− ∂

∂s
(γ(·, P )u)− µ(·, P )u +

∫ m

0

β(·, y, P )u(y) dy,

Dom(BP ) =
{
u ∈ W 1,1(0, m) |u(0) = 0

}
. (2.11)

Our goal is to show that there exists aP∗ such that the operatorBP∗ has eigenvalue0 with a
corresponding unique positive eigenvector. To this end, first we establish thatBP is the generator of
a positive semigroup. Then we determine conditions that guarantee that it generates an irreducible
semigroup. We also establish that the governing linear semigroup is eventually compact, which
implies that the Spectral Mapping Theorem holds true for the semigroup and its generator, and the
spectrum of the generator may contain only isolated eigenvalues of finite algebraic multiplicity (see
e.g. [9]). It then follows that the spectral bound is a dominant (real) eigenvalueλP of geometric
multiplicity one with a corresponding positive eigenvector [4, Chapter 9]. Finally we need to
establish conditions which imply that there exist aP+ ∈ (0,∞) such that the spectral bound
s(BP+) is negative and therefore the dominant eigenvalueλP+ = s(BP+) is also negative; and a
P− ∈ (0,∞) such that this dominant eigenvalueλP− = s(BP−) is positive. Then it follows from
standard perturbation results on eigenvalues (see e.g. [15]) that there exists a zero eigenvalue. A
similar strategy was employed in [2] to establish the existence and uniqueness of an equilibrium
solution of a cyclin structured cell population model.

Lemma 2. For everyP ∈ (0,∞) the semigroupT (t) generated by the operatorBP is positive.

Proof. We rewrite (2.11) as,BP = AP + CP , where

AP u =− ∂

∂s
(γ(·, P )u)− µ(·, P )u

Dom(AP ) =
{
u ∈ W 1,1(0, m) |u(0) = 0

}
,

CP u =

∫ m

0

β(·, y, P )u(y) dy,

Dom(CP ) = L1(0, m). (2.12)

For0 ≤ f ∈ L1(0, m) the solution of the resolvent equation

(λI − AP )u = f,

is

u(s) =

∫ s

0

exp

{
−

∫ s

y

λ + γs(σ, P∗) + µ(σ, P∗)

γ(σ, P∗)
dσ

}
f(y)

γ(y, P∗)
dy.

This shows that the resolvent operatorR(λ,AP ) is a positive bounded operator, henceAP gene-
rates a positive semigroup. SinceCP is a positive and bounded operator, the statement follows.2
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Lemma 3. The linear semigroupT (t) generated by the operatorBP is eventually compact.

Proof. We note thatAP generates a nilpotent semigroup, while it is easily shown thatCP is a
compact operator if conditions (1.4) hold true. (For more details see also Theorem 12.) 2

Lemma 4. Assume that for everyP ∈ (0,∞) there exists anε0 > 0 such that for all0 < ε ≤ ε0∫ ε

0

∫ m

m−ε

β(s, y, P ) dy ds > 0. (2.13)

Then the linear semigroupT (t) generated by the operatorBP is irreducible.

Proof. We only need to show that under condition (2.13) for everyp0 ∈ L1
+(0, m) there exists at0

such that
supp T (t0)p0 = [0, m],

for all t ≥ t0. Sinceγ > 0, there existst∗ such that

supp T (t)p0 ∩ supp β(s, · ) 6= ∅

for every t∗ ≤ t and everys ∈ (0, ε]. By assumption (2.13),T (t)p0(s) > 0 for t∗ ≤ t and
s ∈ (0, ε]. After this, eventually the support of the solutionT (t0)p0 will cover the entire size space
[0, m]. 2

Lemma 5. Assume that there exists aβ−(s, y, P ) = β−1 (s, P )β−2 (y) and aP− ∈ (0,∞) such that

β−1 (s, P−)β−2 (y) ≤ β(s, y, P−), s, y ∈ [0, m], (2.14)

and ∫ m

0

∫ s

0

β−1 (y, P−)β−2 (s)

γ(y, P−)
exp

{
−

∫ s

y

γs(z, P
−) + µ(z, P−)

γ(z, P−)
dz

}
dy ds > 1, (2.15)

and aβ+(s, y, P ) = β+
1 (s, P )β+

2 (y) and aP+ ∈ (0,∞) such that

β(s, y, P+) ≤ β+
1 (s, P+)β+

2 (y), (2.16)

and ∫ m

0

∫ s

0

β+
1 (y, P+)β−2 (s)

γ(y, P+)
exp

{
−

∫ s

y

γs(z, P
+) + µ(z, P+)

γ(z, P+)
dz

}
dy ds < 1. (2.17)

Then the operatorBP− has a dominant real eigenvalueλP− > 0 and the operatorBP+ has a
dominant real eigenvalueλP+ < 0, with corresponding positive eigenvectors.
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Proof. First assume that there exists aβ−(s, y, P ) = β−1 (s, P )β−2 (y) and aP− such that conditions
(2.14) and (2.15) hold true. LetB−P− denote the operator that corresponds to the fertilityβ− and
the constantP−. The solution of the eigenvalue problem

B−P−u = λu, u(0) = 0 (2.18)

is

u(s) =

∫ m

0

β−2 (s)u(s) ds

∫ s

0

β−1 (y, P−)

γ(y, P−)
exp

{
−

∫ s

y

λ + γs(z, P
−) + µ(z, P−)

γ(z, P−)
dz

}
dy.

(2.19)
We multiply equation (2.19) byβ−2 and integrate from0 to m to arrive at the characteristic equation

1 =

∫ m

0

β−2 (s)

∫ s

0

β−1 (y, P−)

γ(y, P−)
exp

{
−

∫ s

y

λ + γs(z, P
−) + µ(z, P−)

γ(z, P−)
dz

}
dy ds. (2.20)

Equation (2.20) admits a unique dominant real solutionλ−P− > 0 if condition (2.15) holds true.
SinceB−P− is a generator of a positive semigroup and(BP− − B−P−) is a positive (and bounded)
operator by condition (2.14), it follows thatBP− has a dominant real eigenvalueλP− ≥ λ−P− > 0,
see e.g. [9, Corollary VI.1.11].

In a similar way, let us assume that there exists aβ+(s, y, P ) = β+
1 (s, P )β+

2 (y) and aP+ such
that condition (2.16) and (2.17) hold true. LetB+

P+ denote the operator which corresponds to the
fertility β+ and the constantP+. The solution of the eigenvalue problem

B+
P+u = λu, u(0) = 0 (2.21)

is now

u(s) =

∫ m

0

β+
2 (s)u(s) ds

∫ s

0

β+
1 (y, P+)

γ(y, P+)
exp

{
−

∫ s

y

λ + γs(z, P
+) + µ(z, P+)

γ(z, P+)
dz

}
dy.

(2.22)
We multiply equation (2.22) byβ+

2 and integrate from0 to m to arrive at the characteristic equation

1 =

∫ m

0

β+
2 (s)

∫ s

0

β+
1 (y, P+)

γ(y, P+)
exp

{
−

∫ s

y

λ + γs(z, P
+) + µ(z, P+)

γ(z, P+)
dz

}
dy ds. (2.23)

Equation (2.23) admits a unique dominant real solutionλ+
P+ < 0 if condition (2.17) holds true.

SinceBP+ is a generator of a positive semigroup and(B+
P+ − BP+) is a positive operator by

condition (2.16), it follows thatBP+ has a dominant real eigenvalueλP+ ≤ λ+
P+ < 0.

In both cases, the positivity of the corresponding eigenvector follows from the irreducibility of
the semigroupT (t), see [4, Theorem 9.11]. 2

Theorem 6. Assume that conditions(2.13), (2.14)-(2.17) are satisfied. Then system(1.1)-(1.3)
admits at least one positive equilibrium solution.

Proof. Let P∗ > 0 be such thats(BP∗) = 0. Then, since the spectrum consists only of isolated
eigenvalues we haveλP∗ = s(BP∗) = 0 and there exists a corresponding positive eigenvectorp∗.
Then P∗

||p∗||1 p∗ is the desired equilibrium solution with total population sizeP∗. 2
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3. The linearised semigroup and its regularity

Here, when we use the term ‘linearised semigroup’, we refer to the linear semigroup governing
the linearised system. However, since it was proved in [3] that model (1.1)-(1.3) is well-posed,
there exists a semigroup of nonlinear operatorsΣ(t)t≥0 defined viaΣ(t)p(s, 0) = p(s, t). It was
proven in [8] that if the nonlinearities are smooth enough (namely, the vital rates are differentiable)
then this nonlinear semigroupΣ(t) is Frech́et differentiable and the Frechét derivative around an
equilibrium solutionp∗ defines a semigroup of bounded linear operators. In this section we will
establish the existence of this semigroup and at the same time arrive at a condition which guarantees
that it is positive.

Given a positive stationary solutionp∗ of system (1.1)-(1.3), we introduce the perturbation
u = u(s, t) of p by making the ansatzp = u+p∗. A Taylor series expansion of the vital rates gives
the linearised problem (see e.g. [10])

ut(s, t) = −γ(s, P∗) us(s, t)− (γs(s, P∗) + µ(s, P∗)) u(s, t)

− (γsP (s, P∗) p∗(s) + µP (s, P∗) p∗(s) + γP (s, P∗) p∗
′(s)) U(t)

+

∫ m

0

u(y, t)

(
β(s, y, P∗) +

∫ m

0

βP (s, z, P∗)p∗(z) dz

)
dy, (3.1)

γ(0, P∗)u(0, t) = 0 (3.2)

where we have set

U(t) =

∫ m

0

u(s, t) ds. (3.3)

Eqs. (3.1)–(3.2) are accompanied by the initial condition

u(s, 0) = u0(s). (3.4)

Our first objective is to establish conditions which guarantee that the linearised system is governed
by a positive semigroup. To this end, we cast the linearised system (3.1)-(3.4) in the form of an
abstract Cauchy problem on the state spaceX = L1(0, m) as follows

d

dt
u = (A+ B + C +D) u, u(0) = u0, (3.5)

where

Au = −γ(·, P∗) us with domain Dom(A) =
{
u ∈ W 1,1(0, m) |u(0) = 0

}
, (3.6)

Bu = − (γs(·, P∗) + µ(·, P∗)) u onX , (3.7)

Cu = − (γsP (·, P∗) p∗ + µP (·, P∗) p∗ + γP (·, P∗) p′∗)

∫ m

0

u(s) ds

= −ρ∗(·)
∫ m

0

u(s) ds onX , (3.8)

Du =

∫ m

0

u(y)

(
β(·, y, P∗) +

∫ m

0

βP (·, z, P∗)p∗(z) dz

)
dy onX , (3.9)

9
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whereρ∗ is defined via equation (3.8). Our aim is to establish that the linear operatorA+ B + C +D
is a generator of a quasicontraction semigroup. To this end first we recall (see e.g. [1, 4, 9]) some
basic concepts from the theory of linear operators acting on Banach spaces. LetO be a linear
operator defined on the real Banach spaceY with norm ||.||. O is called dissipative if for every
λ > 0 andx ∈ Dom(O),

||(I − λO)x|| ≥ ||x||.

Furthermore, a functionf : Y → R is called sublinear if

f(x + y) ≤ f(x) + f(y), x, y ∈ Y
f(λx) = λf(x), λ ≥ 0, x ∈ Y .

If also f(x) + f(−x) > 0 holds true forx 6= 0 thenf is called a half-norm onY. The linear
operatorO is calledf -dissipative if

f(x) ≤ f(x− λOx), λ ≥ 0, x ∈ Dom(O).

An operatorO which isp-dissipative with respect to the half norm

p(x) = ||x+||,

is called dispersive, wherex+ = x ∨ 0 (andx− = (−x)+). Finally aC0 semigroup{T (t)}t≥0 is
called quasicontractive if

||T (t)|| ≤ eωt, t ≥ 0,

for someω ∈ R, and it is called contractive ifω ≤ 0. We recall the following characterization
theorem from [4].

Theorem 7. LetY be a Banach lattice and letO : Dom(O) → Y be a linear operator. Then, the
following statements are equivalent.

(i) O is the generator of a positive contraction semigroup.

(ii) O is densely defined, Rg(λI − O) = Y for someλ > 0, andO is dispersive.

We also recall thatO is dispersive if for everyx ∈ Dom(O) there existsφ ∈ Y∗ with 0 ≤ φ,
||φ|| ≤ 1 and(x, φ) = ||x+|| such that(Ox, φ) ≤ 0, where(· , ·) is the natural pairing between
elements ofY and its dualY∗.

Theorem 8. The operatorA+ B + C +D generates a positive strongly continuous (C0 for short)
quasicontraction semigroup{T (t)}t≥0 of bounded linear operators onX if the following condition
holds true

ρ∗(s) ≤ β(s, y, P∗) +

∫ m

0

βP (s, y, P∗)p∗(y) dy, s, y ∈ [0, m], (3.10)

whereρ∗ is defined via equation(3.8).

10
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Proof. Our aim is to apply the previous characterization theorem for the perturbed operator
A+ B + C +D − ωI, for someω ∈ R. To this end, for everyu ∈ Dom(A+ B + C +D − ωI)
we defineφu ∈ X ∗ by

φu(s) =
u+(s)

|u(s)|
, s ∈ [0, m], u(s) 6= 0, (3.11)

if u(s) = 0 then letφu(s) = 0. Then
||φu||∞ ≤ 1,

and clearly

(u, φu) =

∫ m

0

u(s)φu(s) ds = ||u+||1.

Making use of condition (3.10) we obtain the following estimate.

((A+ B + C +D − ωI)u, φu)

= −
∫ m

0

1u+(s)
(
γ(s, P∗)u(s)

)
s
ds−

∫ m

0

1u+(s) µ(s, P∗)u(s) ds−
∫ m

0

1u+(s) ω u(s) ds

+

∫ m

0

1u+(s)

∫ m

0

u(y)

(
β(s, y, P∗) +

∫ m

0

βP (s, z, P∗)p∗(z) dz − ρ∗(s)

)
dy ds

≤ −
∫ m

0

1u+(s)
(
γ(s, P∗)u(s)

)
s
ds− ω||u+||1 − inf

s∈[0,m]
µ(s, P∗) ||u+||1

+ ||u+||1

∣∣∣∣∣
∣∣∣∣∣ sup
y∈[0,m]

(
β(s, y, P∗) +

∫ m

0

βP (s, z, P∗)p∗(z) dz − ρ∗(s)

)∣∣∣∣∣
∣∣∣∣∣
∞

≤ −ω||u+||1 − (γ(m, P∗)u(m))1u+(m)

+ ||u+||1

∣∣∣∣∣
∣∣∣∣∣ sup
y∈[0,m]

(
β(s, y, P∗) +

∫ m

0

βP (s, z, P∗)p∗(z) dz − ρ∗(s)

)∣∣∣∣∣
∣∣∣∣∣
∞

≤ 0, (3.12)

for someω ∈ R large enough, hence the operatorA+ B + C +D−ωI is dispersive. The operator
A+ B + C +D − ωI is clearly densely defined. We observe that the equation

(λI −A) u = h (3.13)

for h ∈ X andλ > 0 sufficiently large has a unique solutionu ∈ Dom(A), given by

u(s) = exp

{
−

∫ s

0

λ

γ(y, P∗)
dy

} ∫ s

0

exp

{∫ y

0

λ

γ(z, P∗)
dz

}
h(y)

γ(y, P∗)
dy. (3.14)

The fact thatu ∈ Dom(A) is well defined by (3.14) follows from

|u′(s)| ≤
∣∣∣∣ h(s)

γ(s, P∗)

∣∣∣∣ +
λ

γ(s, P∗)

∫ m

0

exp

{
−

∫ s

y

λ

γ(z, P∗)
dz

}
|h(y)|

γ(y, P∗)
dy

≤
∣∣∣∣ h(s)

γ(s, P∗)

∣∣∣∣ + Mλ,

11
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for λ large enough for someMλ < ∞, that isu ∈ W 1,1(0, m). SinceB + C +D−ωI is bounded,
the range condition is satisfied. Theorem 7 gives thatA+ B + C +D−ωI is a generator of a pos-
itive contraction semigroup. Since the operatorωI is positive (clearly if the dispersivity estimate
holds true with anω < 0 then it holds true with any otherω∗ > ω) a well-known perturbation result
(see e.g. [9]) yields thatA+ B + C +D is a generator of a positive quasicontraction semigroupT
which obeys

‖T (t)‖ ≤ eωt, t ≥ 0.

2

Remark 9. The proof of Theorem 7 shows that if

inf
s∈[0,m]

µ(s, P∗) >

∣∣∣∣∣
∣∣∣∣∣ sup
y∈[0,m]

(
β(s, y, P∗) +

∫ m

0

βP (s, z, P∗)p∗(z) dz − ρ∗(s)

)∣∣∣∣∣
∣∣∣∣∣
∞

holds, then the growth boundω0 of the semigroup is negative, hence the semigroup{T (t)}t≥0

is uniformly exponentially stable (see e.g. [9]), i.e. the equilibriump∗ is locally asymptotically
stable.

Remark 10. We note that the operatorA+ B + C +D is in general a generator of aC0 quasicon-
traction (but not positive) semigroup. The proof of this would utilise the Lumer-Phillips Theorem
(see e.g. [1, 4, 9]) and goes along similar lines, obtaining a dissipativity estimate in terms ofu
rather thanu+, see e.g. [11]. This implies that the linearised problem(3.1)-(3.2) is well-posed.

Remark 11. Note that ifβ = β(s, y), µ = µ(s), γ = γ(s), i.e. model(1.1)-(1.3) is a linear one,
then the biologically relevant conditionsµ, β ≥ 0 andγ > 0 imply that it is governed by a positive
quasicontraction semigroup.

Theorem 12. The semigroup{T (t)}t≥0 generated by the operatorA + B + C + D is eventually
compact.

Proof. C is a rank-one operator. Hence it is compact onX = L1(0, m). D is linear and bounded.
Hence in view of the Fŕechet-Kolmogorov compactness criterion inLp we need to show that

lim
t→0

∫ m

0

|Du(t + s)−Du(s)| ds = 0, uniformly in u,

for u ∈ B, whereB is the unit sphere ofL1(0, m). But this follows from the regularity assumptions
we made onβ based on the following estimate

|Du(s1)−Du(s2)| ≤ ||u||1

×
∣∣∣∣∣∣∣∣β(s1, y, P∗) +

∫ m

0

βP (s1, z, P∗)p∗(z) dz − β(s2, y, P∗)−
∫ m

0

βP (s2, z, P∗)p∗(z) dz

∣∣∣∣∣∣∣∣
∞

.

12
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Therefore, it suffices to investigate the operatorA + B. To this end, we note that the abstract
differential equation

d

dt
u = (A+ B) u (3.15)

corresponds to the partial differential equation

ut(s, t) + γ(s, P∗) us(s, t) + (γs(s, P∗) + µ(s, P∗)) u(s, t) = 0, (3.16)

subject to the boundary condition (3.2). We solve easily equation (3.16) using the method of
characteristics. Fort > Γ(m) we arrive at

u(s, t) = u(0, t− Γ(s)) exp

{
−

∫ s

0

γs(y, P∗) + µ(y, P∗)

γ(y, P∗)
dy

}
= 0, (3.17)

where

Γ(s) =

∫ s

0

1

γ(y, P∗)
dy.

This means that the semigroupT (t) generated byA+ B is nilpotent. In particular it is compact
for t > Γ(m) and the claim follows. 2

Remark 13. Theorem 12 implies that the Spectral Mapping Theorem holds true for the semigroup
{T (t)}t≥0 with generatorA+ B + C +D and that the spectrumσ(A+ B + C +D) contains only
isolated eigenvalues of finite multiplicity (see e.g. [9]).

4. (In) Stability

Here, we consider the stability of positive equilibrium solutions by studying the point spectrum of
the linearised operatorA+ B + C +D. The main difficulty is that the eigenvalue equation

(A+ B + C +D − I)λ = 0,

cannot be solved explicitly, since in general, the operatorD has infinite rank. We encountered
this problem previously with hierarchical size-structured population models [11, 12]. In [11] and
[12] we used the dissipativity approach, presented in the previous section, to establish conditions
which guarantee that the spectral bound of the linearised semigroup is negative. However, as we
can see from Remark 9 this approach gives a rather restrictive stability condition. Therefore, here
we devise a different approach, which uses positive perturbation arguments.

Theorem 14. Assume that there exists anε > 0 such that

β(s, y, P∗)− ρ∗(s)− ε +

∫ m

0

βP (s, y, P∗)p∗(y) dy ≥ 0, s, y ∈ [0, m], (4.1)

13
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and

ε

∫ m

0

exp

{
−

∫ s

0

γs(σ, P∗) + µ(σ, P∗)

γ(σ, P∗)
dσ

} ∫ s

0

exp
{∫ y

0
γs(σ,P∗)+µ(σ,P∗)

γ(σ,P∗)
dσ

}
γ(y, P∗)

dy ds > 1. (4.2)

Then the stationary solutionp∗(s) of model(1.1)-(1.3) is linearly unstable.

Proof. Let ε > 0, and define the operatorFε onX as

Fεu = ε

∫ m

0

u(s) ds = εū.

We first find the solution of the eigenvalue equation

(A+ B + Fε)u = λu

as

u(s) = ε ū exp

{
−

∫ s

0

λ + γs(σ, P∗) + µ(σ, P∗)

γ(σ, P∗)
dσ

}
×

∫ s

0

1

γ(y, P∗)
exp

{∫ y

0

λ + γs(σ, P∗) + µ(σ, P∗)

γ(σ, P∗)
dσ

}
dy. (4.3)

Next we integrate the solution (4.3) over[0, m] to obtain

ū = ε ū

∫ m

0

[
exp

{
−

∫ s

0

λ + γs(σ, P∗) + µ(σ, P∗)

γ(σ, P∗)
dσ

}
×

∫ s

0

1

γ(y, P∗)
exp

{∫ y

0

λ + γs(σ, P∗) + µ(σ, P∗)

γ(σ, P∗)
dσ

}
dy

]
ds. (4.4)

We note that, ifū = 0 then equation (4.3) shows thatu(s) ≡ 0, hence we have a non-trivial
eigenvector if and only if̄u 6= 0 andλ satisfies the following characteristic equation

1 = K(λ)
def
= ε

∫ m

0

[
exp

{
−

∫ s

0

λ + γs(σ, P∗) + µ(σ, P∗)

γ(σ, P∗)
dσ

}
×

∫ s

0

1

γ(y, P∗)
exp

{∫ y

0

λ + γs(σ, P∗) + µ(σ, P∗)

γ(σ, P∗)
dσ

}
dy

]
ds. (4.5)

It is easily shown that
lim

λ→+∞
K(λ) = 0,

therefore it follows from condition (4.2), on the grounds of the Intermediate Value Theorem, that
equation (4.5) has a positive (real) solution. Hence we have

0 < s(A+ B + Fε).

14
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Next, for a fixed0 ≤ f ∈ X , we obtain the solution of the resolvent equation

(λI − (A+ B + Fε)) u = f,

as

u(s) = exp

{
−

∫ s

0

λ + γs(σ, P∗) + µ(σ, P∗)

γ(σ, P∗)
dσ

}
×

∫ s

0

exp

{∫ y

0

λ + γs(σ, P∗) + µ(σ, P∗)

γ(σ, P∗)
dσ

}
εū + f(y)

γ(y, P∗)
dy. (4.6)

We integrate equation (4.6) from0 to m to obtain

ū =

∫ m

0
exp

{
−

∫ s

0
λ+γs(σ,P∗)+µ(σ,P∗)

γ(σ,P∗)
dσ

}∫ s

0
exp

{∫ y

0
λ+γs(σ,P∗)+µ(σ,P∗)

γ(σ,P∗)
dσ

}
f(y)

γ(y,P∗)
dy

1− ε
∫ m

0
exp

{
−

∫ s

0
λ+γs(σ,P∗)+µ(σ,P∗)

γ(σ,P∗)
dσ

}∫ s

0

exp{∫ y
0

λ+γs(σ,P∗)+µ(σ,P∗)
γ(σ,P∗)

dσ}
γ(y,P∗)

dy

(4.7)

It follows from the growth behaviour of the exponential function and from assumptions (1.4), that
ū is well-defined and non-negative for any0 ≤ f ∈ X andλ large enough. Hence the resolvent
operator

R(λ,A+ B + Fε) = (λ− (A+ B + Fε))
−1

is positive, forλ large enough, which implies thatA+ B + Fε generates a positive semigroup (see
e.g. [9]).

Finally, we note that condition (4.1) guarantees that the operatorC +D −Fε is positive, hence
we have for the spectral bound (see e.g. Corollary VI.1.11 in [9])

0 < s(A+ B + Fε) ≤ s(A+ B + Fε + C +D −Fε) = s(A+ B + C +D),

and the result follows. 2

Next we show that for a separable fertility function we can indeed explicitly characterize the
point spectrum of the linearised operator.

Theorem 15. Assume thatβ(s, y, P ) = β1(s, P )β2(y), s, y ∈ [0, m], P ∈ (0,∞). Then for any
λ ∈ C, we haveλ ∈ σ(A+ B + C +D) if and only ifλ satisfies the equation

Kβ (λ) = det

(
1 + a1(λ) a2(λ)
a3(λ) 1 + a4(λ)

)
= 0, (4.8)

where

a1(λ) = −
∫ m

0

F (λ, s, P∗)

∫ s

0

g(y)

F (λ, y, P∗)
dy ds,

a2(λ) = −
∫ m

0

F (λ, s, P∗)

∫ s

0

β1(y, P∗)

γ(y, P∗)F (λ, y, P∗)
dy ds,

a3(λ) = −
∫ m

0

β2(s)F (λ, s, P∗)

∫ s

0

g(y)

F (λ, y, P∗)
dy ds,

a4(λ) = −
∫ m

0

β2(s)F (λ, s, P∗)

∫ s

0

β1(y, P∗)

γ(y, P∗)F (λ, y, P∗)
dy ds, (4.9)
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and

g(s) =

β1P
(s, P∗)

∫ m

0

β2(y)p∗(y) dy − ρ∗(s)

γ(s, P∗)
, s ∈ [0, m],

F (λ, s, P∗) = exp

{
−

∫ s

0

λ + γs(y, P∗) + µ(y, P∗)

γ(y, P∗)
dy

}
, s ∈ [0, m].

Proof. To characterize the point spectrum ofA+ B + C +D we consider the eigenvalue problem

(A+ B + C +D − λI)U = 0, U(0) = 0. (4.10)

The solution of (4.10) is found to be

U(s) =UF (λ, s, P∗)

∫ s

0

g(y)

F (λ, y, P∗)
dy + ŨF (λ, s, P∗)

∫ s

0

β1(y, P∗)

γ(y, P∗)F (λ, y, P∗)
dy, (4.11)

where

U =

∫ m

0

U(s) ds, Ũ =

∫ m

0

β2(s)U(s) ds.

We integrate equation (4.11) from zero tom and mulitply equation (4.11) byβ2(s) and then inte-
grate from zero tom to obtain

U(1 + a1(λ)) + Ũa2(λ) = 0, (4.12)

Ua3(λ) + Ũ(1 + a4(λ)) = 0. (4.13)

If λ ∈ σ(A+ B + C +D) then the eigenvalue equation (4.10) admits a non-trivial solutionU

hence there exists a non-zero vector(U, Ũ) which solves equations (4.12)-(4.13). However, if
(U, Ũ) is a non-zero solution of equations (4.12)-(4.13) for someλ ∈ C then (4.11) yields a
non-trivial solutionU . This is because the only scenario forU to vanish would yield

UF (λ, s)

∫ s

0

g(y)

F (λ, y)
dy = −ŨF (λ, s)

∫ s

0

β1(y, P∗)

γ(y, P∗)F (λ, y)
dy, s ∈ [0, m].

This however, together with equations (4.12)-(4.13) would implyU = Ũ = 0, a contradiction,
hence the proof is completed. 2

Theorem 16. Assume that condition(3.10)holds true for some stationary solutionp∗. Moreover,
assume that there exists a functionβ̃(s, y, P ) = β1(s, P )β2(y) such thatβ(s, y, P∗) ≤ β̃(s, y, P∗)
for s, y ∈ [0, m] and the characteristic equationKβ̃ (λ) = 0 does not have a solution with non-
negative real part. Then the equilibrium solutionp∗ is linearly asymptotically stable.
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Proof. We need to establish that the spectral bound of the linearised operatorA+ B + C +D is
negative. To this end, we rewrite the operatorD as a sum of two operators, namelyD = G +Hβ,
where

Gu =

∫ m

0

u(y) dy

∫ m

0

βP (·, z, P∗)p∗(z) dz, on X ,

Hβu =

∫ m

0

u(y)β(·, y, P∗) dy, on X .

Condition (3.10) guarantees thatA+ B + C + G+Hβ is a generator of a positive semigroup, while
the eventual compactness of the linearised semigroup assures that the spectrum ofA+ B + C + G+
Hβ̃ contains only eigenvalues and that the Spectral Mapping Theorem holds true. SinceHβ̃ −Hβ

is a positive and bounded operator we have

s(A+ B + C + G+Hβ) ≤ s(A+ B + C + G+Hβ +Hβ̃−Hβ) = s(A+ B + C + G+Hβ̃) < 0,
(4.14)

and the proof is completed. 2

Example 17. As we can see from equations(4.8)-(4.9) the characteristic functionKβ̃(λ) is rather
complicated, in general. Therefore, here we only present a special case when it is straightforward
to establish that the point spectrum of the linear operatorA+ B + C + G +Hβ̃ does not contain
any element with non-negative real part. In particular, we make the following specific assumption

β2(·) ≡ β2.

In this case we can cast the characteristic equation(4.8) in the simple form∫ m

0

∫ s

0

exp

{
−

∫ s

y

λ + γs(r, P∗) + µ(r, P∗)

γ(r, P∗)
dr

} (
g(y)γ(y, P∗) + β1(y, P∗)β2

γ(y, P∗)

)
dy ds = 1.

(4.15)
We note that, if

g(y)γ(y, P∗) + β1(y, P∗)β2 ≥ 0, y ∈ [0, m],

which is equivalent to the positivity condition(3.10), then equation(4.15) admits a dominant
unique (real) solution. On the other hand, it is easily shown that this dominant eigenvalue is
negative if∫ m

0

∫ s

0

exp

{
−

∫ s

y

γs(r, P∗) + µ(r, P∗)

γ(r, P∗)
dr

} (
g(y)γ(y, P∗) + β1(y, P∗)β2

γ(y, P∗)

)
dy ds < 1.

(4.16)
It is easy to see, making use of equation(2.7), that (4.16)is satisfied if∫ m

0

1

γ(s, P∗)

∫ s

0

exp

{
−

∫ s

y

µ(z, P∗)

γ(z, P∗)
dz

}
g(y) dy ds < 0,
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holds true. In this case, we obtain for the growth bound of the semigroupω0

ω0 = s(A+ B + C + G +Hβ̃) < 0,

see e.g. Theorem 1.15 in Chapter VI of [9], which implies that the equilibrium solution is linearly
stable.

5. Concluding remarks

In this paper, we analysed the asymptotic behaviour of a size-structured scramble competition
model using linear semigroup methods. We are motivated by the modelling of structured macro-
parasites in aquaculture, specifically the population dynamics of sea lice on Atlantic salmon pop-
ulations. First we studied existence of equilibrium solutions of our model. In the case when
the fertility function is separable, we easily established monotonicity conditions on the vital rates
which guarantee the existence of a steady state (Proposition 1). In the general case we used posi-
tive perturbation arguments to establish criteria that guarantee the existence of at least one positive
equilibrium solution. Next, we established conditions for the existence of a positive quasicontrac-
tion semigroup which governs the linearised problem. Then we established a further regularity
property of the governing linear semigroup which in principle allows to study stability of equilib-
ria via the point spectrum of its generator. In the special case of separable fertility function we
explicitly deduced a characteristic function in equation (4.8) whose roots are the eigenvalues of
the linearised operator. Then we formulated stability/instability results, where we used once more
finite rank lower/upper bound estimates of the very general recruitment term. It would be also
straightforward to formulate conditions which guarantee that the governing linear semigroup ex-
hibits asynchronous exponential growth. However, this is not very interesting from the application
point of view, since the linearised system is not necessarily a population equation anymore.

Characterization of positivity using dispersivity resulted in much more relaxed conditions than
those obtained in [10] for a more simple size-structured model with a single state at birth by
characterizing positivity via the resolvent of the semigroup generator. This is probably due to the
different recruitment terms in the two model equations. Positivity is often crucial for our stability
studies, as was demonstrated in Section 3. Indeed, more relaxed positivity conditions result in the
much wider applicability (i.e. for a larger set of vital rates) of our analytical stability results.

Due to the fact that the positive cone ofL1 has an empty interior, characterizations of positivity
such as the positive minimum principle (see e.g. [1]) do not apply. However, there is an alternative
method, namely the generalized Kato inequality (see e.g. [1]). In our setting the abstract Kato-
inequality reads

Su (A+ B + C +D)u ≤ (A+ B + C +D)|u|, (5.1)

for u ∈ Dom(A+ B + C +D), whereSu is the signum operator, that is

Su =
u

|u|
.
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Inequality (5.1) requires

Su

∫ m

0

u(y)

(
β(s, y, P∗) +

∫ m

0

β(s, z, P∗)p∗(z) dz − ρ∗(s)

)
dy

≤
∫ m

0

|u(y)|
(

β(s, y, P∗) +

∫ m

0

β(s, z, P∗)p∗(z) dz − ρ∗(s)

)
dy, s ∈ [0, m], (5.2)

which holds true for everyu ∈ Dom(A+ B + C +D) indeed when condition (3.10) is satisfied.
As we have seen previously in Section 3., since the linearised system is not a population model

anymore, the governing semigroup is not positive unless some additional condition is satisfied.
However, it was proven in [16] that every quasicontraction semigroup on anL1 space has a minimal
dominating positive semigroup, called the modulus semigroup, which itself is quasicontractive.
Hence, in principle, one can prove stability results even in the case of a non-positive governing
semigroup, by perturbing the semigroup generator with a positive operator such that the perturbed
generator does indeed generate a positive semigroup.
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