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Abstract. Motivated by structured parasite populations in aquaculture we consider a class of
size-structured population models, where individuals may be recruited into the population with
distributed states at birth. The mathematical model which describes the evolution of such a pop-
ulation is a first-order nonlinear partial integro-differential equation of hyperbolic type. First, we
use positive perturbation arguments and utilise results from the spectral theory of semigroups to
establish conditions for the existence of a positive equilibrium solution of our model. Then, we
formulate conditions that guarantee that the linearised system is governed by a positive quasicon-
traction semigroup on the biologically relevant state space. We also show that the governing linear
semigroup is eventually compact, hence growth properties of the semigroup are determined by the
spectrum of its generator. In the case of a separable fertility function, we deduce a characteristic

equation, and investigate the stability of equilibrium solutions in the general case using positive
perturbation arguments.
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1. Introduction

In this paper, we study the following partial integro-differential equation

ot Js
7(0, P(t))p(0,¢) = 0, (1.2)

p(5,0) = pols), P(t) = / " p(s.1) ds. (1.3)

O st + 2 (s, P()p(s, 1)) = —puls, P()p(s, 1) + / " sy POy, 1) dy,  (L1)

Here the functiorp = p(s,t) denotes the density of individuals of size (or other developmental
stage)s at timet with m being the finite maximal size any individual may reach in its lifetime.
Vital ratesy > 0 and~y > 0 denote the mortality and growth rates of individuals, respectively, and
both depend on both sizeand on the total population size(t). It is assumed that individuals
may have different sizes at birth and therefg(e, y, - ) denotes the rate at which individuals of
sizey give rise to individuals of size. The non-local integral term in (1.1) represents reproduction
of the population without external driving of the population through immigration. We make the
following general assumptions on the model ingredients

p e CH[0,m] x [0,00)), B € CY[0,m] x [0,m] x [0,00))
B, >0, ~v€C*[0,m] x[0,00)), 7 >0. (1.4)

Our motivation to investigate model (1.1)-(1.3) is the modelling of structured parasite popu-
lations in aquaculture. In particular we are interested in parasites of farmed and wild salmonid
fish that have particular relevance both industrially and commercially to the UK. These species
are subject to parasitism from a number of copepod (crustacean) parasites of the family Caligi-
dae. These sea louse parasites are well studied with a large literature: below we draw attention to
some recent key review papers. Sea lice cause reduced growth and appetite, wounding, and sus-
ceptibility to secondary infections [5], resulting in significant damage to crops and therefore they
are economically important. For salmon, louse burden in excess of 0.1 lice per gram of fish can
be considered pathogenic [5]. The best studied specisspsophtheirus salmoniprincipally a
parasite of salmonids and frequent parasite on British Atlantic sal®aim salay farms [22]. It
also infects sea trous@lmo truttg and rainbow trout@ncorhynchus mykissThe life history of
the parasite is direct, with no requirement for intermediate hosts. It involves a succession of ten
distinct developmental stages, separated by moults, from egg to adult. maitipliar andcope-
podid stages are free living and planktonic. Following attachment of the infectious copepodid to
a host, the parasite passes through fthalimusstages that are firmly attached to the host, before
entering sexually dimorphipre-adultand adult stages where the parasite can once again move
over the host surface and transfer to new hosts.

The state of the art for population-level modellinglofsalmonisis represented by Reviet
al. [20]. These authors presented a series of delay-differential equations to model different life-
history stages and parameterised the model using data collected at Scottish salmon farms. A similar
compartmental model was proposed by Tuakieal. [21]. The emphasis of these papers was not
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however, in analytical study, but on numerical simulation and parameterisation using field [20] and
laboratory [21] data. An earlier model by Heuch & Mo [13] investigated the infectivity, in term of

L. salmonisegg production, posed by the Norwegian salmon industry, using a simple deterministic
model. Other authors have considered the potential for long-distance dispersal of mobile parasite
stages through sea currents [18], looking at Loch Shieldaig in NW Scotland, a long-term study site
for sea louse research.

In this paper, we focus on the dynamics of individuals at the chalimus to adult stages. Though
individuals pass through a series of discrete growth stages by moulting, this outward punctuated
growth disguises a physiologically more smooth growth process in terms of the accumulation of
energy, and by ‘size’ in this paper we presume accumulation of energy, rather than physical dimen-
sion. Sea lice reproduce sexually; however at the chalimus stage individuals are not yet sexually
differentiated. Fertility rates thus must be considered as applying to the population as a whole,
rather than as is usually the case the female fraction of the population. Individuals entering the
first chalimus stage from the non-feeding planktonic stages are distributed over different sizes,
hence we have the zero influx boundary condition (1.2) and the recruitment term in (1.1). Our
aim here is to present a preliminary step towards the analysis of the more complex problem of
modelling the whole life cycle of sea lice by giving a mathematical treatment of a quite general
scramble competition model with distributed states-at-birth. We use the term scramble competition
to describe the scenario where individuals have equal chance when competing for resources such
as food (see e.g. [6]). Therefore all vital rates, i.e. growth, fertility and mortality depend on the
total population size of competitors. In other populations, such as a tree population or a cannibalis-
tic population, there may be a natural hierarchy among individuals of different sizes, which results
in mathematical models incorporating infinite-dimensional nonlinearities, see e.g. [10, 11]. The
analysis presented in this paper could be extended to these type of models and also to other models
such as those that involve a different type of recruitment term.

Here, we consider the asymptotic behaviour of solutions of model (1.1)-(1.3). Our analysis
is based on linearisation around equilibrium solutions (see e.g. [10, 19]) and utilises well-known
results from linear operator theory that can be found for example in the excellent books [1, 4, 9].
We also utilise some novel ideas on positive perturbations of linear operators. For basic concepts
and results from the theory of structured population dynamics we refer the interested reader to
[6, 14, 17, 23].

Traditionally, structured population models have been formulated as partial differential equa-
tions for population densities. However, the recent unified approach of Dieketain making
use of the rich theory of delay and integral equations, has been resulted in significant advances.
The Principle of Linearised Stability has been proven in [7, 8] for a wide class of physiologically
structured population models formulated as delay equations (or abstract integral equations). It is
not clear yet whether the models formulated in [7, 8] as delay equations are equivalent to those
formulated as partial differential equations.

In the remarkable paper [3], Calsina and Saklatudied the well-posedness of a very general
size-structured model with distributed states-at-birth. They established the global existence and
uniqueness of solutions utilising results from the theory of nonlinear evolution equations. Model
(1.1)-(1.3) is a special case of the general model treated in [3], however, in [3] qualitative questions
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were not addressed. In contrast to [3], our paper focuses on the existence and local asymptotic
stability of equilibrium solutions of system (1.1)-(1.3) with particular regards to the effects of
distributed states-at-birth compared to more simple models we addressed previously, e.g. in [10].
First, we establish conditions in Theorem 6 that guarantee the existence of equilibrium solutions,
in general. Then, we show in Theorem 8 that a positive quasicontraction semigroup describes
the evolution of solutions of the system linearised at an equilibrium solution. Next, we establish
a further regularity property in Theorem 12 for the governing linear semigroup, which allows
one to investigate the stability of positive equilibrium solutions of (1.1)-(1.3). We use rank-one
perturbations of the general recruitment term to arrive at stability/instability conditions for the
equilibria. Finally we briefly discuss the positivity of the governing linear semigroup.

2. Existence of equilibrium solutions

Model (1.1)-(1.3) admits the trivial solution. If we look for positive time-independent solutions of
(1.1)-(1.3) we arrive at the following integro-differential equation

25, PORL(s) + (a5, P.) + u(s, P)p / B(s. . P.)p.(y) dy (2.1)

20, P)p.(0) =0, P, = / mp*<s> ds. (2.2)

2.1. Separable fertility function

In the special case of

ﬁ(s,y, P) = B1(3>P)52(y)7 S,y € [O>m]7 P e (0, OO), (2.3)

where the distribution of offspring sizes is dependent upon the level of compefitidiut the
mature size at which individuals reproduce is not, equation (2.1) reduces to

’7(37 P*)pik(s) + ('75(57 P*) + M(Sv P*))p*(s) = ﬁl(sv P*)F*a (2.4)

where .
P, = / Bo(y)pa(y) dy.
0

The solution of (2.4) satisfying the initial condition in (2.2) is readily obtained as

pls) = Por(s. ) | s F(f P(yw ](Dj o o (2.5)
where oy P 4 iy, P
. Vs\Y, L MY, Ly
F(s, P.) = exp {—/0 S0P dy} )
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Multiplying equation (2.5) by3, and integrating front) to m yields the following necessary con-
dition for the existence of a positive equilibrium solution

" ° ﬁl (ya P*)
1= s)F (s, P, dy ds. 2.6
[ o) [ DS 26)
Therefore we define a net reproduction functi®mas follows
(% By, P)Ba(s) { S u(z, P)
P :/ / ——————=exp —/ ——=dz ; dyds. 2.7
) o Jo v(s, P) , (2, P) y (2.7)

It is straightforward to show that for every positive valtiefor which R(P.) = 1 holds, formula
(2.5) yields a unique positive stationary solutiann where P, may be determined from equation

(2.5) as
_ P,

P, =
J3 F(s, Py) Sﬁ””P* dyds

0 F(y

Then it is straightforward to establish the following result.

Proposition 1. Assume that the fertility function satisfieq2.3) and that the following conditions
hold true

B(s,y,0) > u(s,0), s,y €[0,m], Pe(0,00); /Omexp {—/OS 1y, 0) dy} ds <m —1,

7(y,0)
(2.8)
/mﬁl(s,P)ds —0 as P—oo, and 0<~v" <~v(s,P), se€[0,m], Pe(0,00).
' (2.9)
Then mode(1.1)(1.3)admits at least one positive equilibrium solution.
Proof. Condition (2.8) implies
m Yu(z
N R i e et e S
m y /
ol [ [ (28
> 1. (2.10)
Condition (2.9) and the growth behaviour of the functions in (2.7) imply that
A RPN =0
hence the claim holds true on the grounds of the Intermediate Value Theorem. O
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2.2. The general case

For a fixedP € (0, co) we define the operatdp by

0} 2.11)

Dom(Bp) {uEWll(Om |u(0) =

Our goal is to show that there existsFa such that the operatdfp, has eigenvalu® with a
corresponding unique positive eigenvector. To this end, first we establigbtisthe generator of

a positive semigroup. Then we determine conditions that guarantee that it generates an irreducible
semigroup. We also establish that the governing linear semigroup is eventually compact, which
implies that the Spectral Mapping Theorem holds true for the semigroup and its generator, and the
spectrum of the generator may contain only isolated eigenvalues of finite algebraic multiplicity (see
e.g. [9]). It then follows that the spectral bound is a dominant (real) eigenvalud geometric
multiplicity one with a corresponding positive eigenvector [4, Chapter 9]. Finally we need to
establish conditions which imply that there exisPa € (0,00) such that the spectral bound
s(Bp+) is negative and therefore the dominant eigenvalpe = s(Bp+) is also negative; and a

P~ € (0, 00) such that this dominant eigenvalig- = s(Bp-) is positive. Then it follows from
standard perturbation results on eigenvalues (see e.g. [15]) that there exists a zero eigenvalue. A
similar strategy was employed in [2] to establish the existence and uniqueness of an equilibrium
solution of a cyclin structured cell population model.

Lemma 2. For everyP € (0, c0) the semigrouf¥ (¢) generated by the operatdty is positive.

Proof. We rewrite (2.11) as3pr = Ap + Cp, Where

Apu == 2 (5 Phu) — (-, PJu

Dom(.Ap) {uEW“(Om ) [u(0) =0},
CP Uu _/ ﬁ y7 ) dy7
Dom(Cp) = L*(0,m). (2.12)

For0 < f € L'(0,m) the solution of the resolvent equation

()\I — AP)U - f7
is
- Sex [ A+%(0,P) + p(o, P.) - f(y)
u(s) = /0 P{ /y (o, P,) ‘ } (. P W

This shows that the resolvent operafof)\, Ap) is a positive bounded operator, hendg gene-
rates a positive semigroup. Sin€g is a positive and bounded operator, the statement follaws.
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Lemma 3. The linear semigrouf (¢) generated by the operatdi is eventually compact.

Proof. We note thatdp, generates a nilpotent semigroup, while it is easily shown @hais a
compact operator if conditions (1.4) hold true. (For more details see also Theorem 12.) O

Lemma 4. Assume that for ever§ € (0, co) there exists am, > 0 such that for all) < ¢ < g

/E /m B(s,y, P)dyds > 0. (2.13)
0

Then the linear semigroup (¢) generated by the operatdiy is irreducible.

Proof. We only need to show that under condition (2.13) for eygrg L’ (0, m) there exists &,
such that

supp T(tﬂ)po = [O’ m]’
forall t > ty,. Sincey > 0, there exists, such that
supp T (t)po N supp B(s, -) # 0

for everyt, < t and everys € (0,¢]. By assumption (2.13)7 (t)po(s) > 0 for t, < ¢ and
s € (0, g]. After this, eventually the support of the solutiBrit,)p, will cover the entire size space
0, m]. O

Lemma 5. Assume that there existsia (s, y, P) = 51 (s, P)f5 (y) and aP~ € (0, o0) such that

By (s, P7)By (y) < B(s,y, P7), s,y €[0,m], (2.14)
and
R
and ag*(s,y, P) = B{ (s, P)35 (y) and aP* € (0, 00) such that
Bs,y, PT) < By (s, P7)B5 (y), (2.16)
and

61 7P+ 62 s SZ,P+ + 7P-&-
/ / yy,P+ = Xp{_/y = V(LPljgz )dZ} dyds < 1. (2.17)

Then the operatol3,- has a dominant real eigenvalue-- > 0 and the operato3p+ has a
dominant real eigenvalugp+ < 0, with corresponding positive eigenvectors.
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Proof. First assume that there existsa(s, y, P) = 3 (s, P)3;5 (y) and aP~ such that conditions
(2.14) and (2.15) hold true. Léd,_ denote the operator that corresponds to the fertilityand
the constanf’~. The solution of the eigenvalue problem

Bo_u= \u, u(0) =0 (2.18)
" s osrds [P [PAE (P oz P
Sy_é @()<)dté 1y, P~) p{ A (2, P7) (i}délm

We multiply equation (2.19) by, and integrate from tom to arrive at the characteristic equation

Equation (2.20) admits a unique dominant real solutign > 0 if condition (2.15) holds true.
Since3,_ is a generator of a positive semigroup aih- — B,_) is a positive (and bounded)
operator by condition (2.14), it follows th&,- has a dominant real eigenvaldg- > A\, > 0,
see e.g. [9, Corollary VI.1.11].

In a similar way, let us assume that there exists és, y, P) = 3, (s, P)3; (y) and aP* such
that condition (2.16) and (2.17) hold true. L8f, denote the operator which corresponds to the
fertility 5+ and the constan®®™. The solution of the eigenvalue problem

Biiu= Ay, u(0) =0 (2.21)
IS now
[ ﬁl X+ vs(z, PT) + p(z, PT)
= [ stomoas [ R e {‘/ P d: do
(2.22)

We multiply equation (2.22) by, and integrate from to m to arrive at the characteristic equation

P S A4 (2, P Pt
[ [ e [P e e

Equation (2.23) admits a unique dominant real solutign < 0 if condition (2.17) holds true.
Since Bp- is a generator of a positive semigroup afi8l,, — Bp+) is a positive operator by
condition (2.16), it follows thaf3,+ has a dominant real eigenvalig+ < A}, < 0.

In both cases, the positivity of the corresponding eigenvector follows from the irreducibility of
the semigrouf (t), see [4, Theorem 9.11]. O

Theorem 6. Assume that condition&.13), (2.14)(2.17) are satisfied. Then systefh.1)(1.3)
admits at least one positive equilibrium solution.

Proof. Let P, > 0 be such that(5p,) = 0. Then, since the spectrum consists only of isolated
eigenvalues we havep, = s(Bp,) = 0 and there exists a corresponding positive eigenvegtor
Thenwfﬁp* is the desired equilibrium solution with total population se O
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3. The linearised semigroup and its regularity

Here, when we use the term ‘linearised semigroup’, we refer to the linear semigroup governing
the linearised system. However, since it was proved in [3] that model (1.1)-(1.3) is well-posed,
there exists a semigroup of nonlinear operatofs),~, defined viax(t)p(s,0) = p(s,t). It was
proven in [8] that if the nonlinearities are smooth enough (namely, the vital rates are differentiable)
then this nonlinear semigroup(¢) is Frecleét differentiable and the Freehderivative around an
equilibrium solutionp, defines a semigroup of bounded linear operators. In this section we will
establish the existence of this semigroup and at the same time arrive at a condition which guarantees
that it is positive.

Given a positive stationary solutign. of system (1.1)-(1.3), we introduce the perturbation
u = u(s, t) of p by making the ansatz = u + p.. A Taylor series expansion of the vital rates gives
the linearised problem (see e.g. [10])

ut(37t> = _7<3>P*) US(Sat) o (78(37 P*) + :U(S? P*)) u<37t)
= (vsp(8, Po) pi(s) + p1p (3, Po) pa(s) + e (s, Po) pi/(5)) U(F)

+ /Omu(y,t) (6(s,y, P,) + /Om Bp (s, z, P)p«(2) dz) dy, (3.1)

~(0, P)u(0,t) =0 (3.2)
where we have set .
U(t) = / u(s, 1) ds. (3.3)
Egs. (3.1)—(3.2) are accompanied by the in?tial condition
u(s,0) = ug(s). (3.4)

Ouir first objective is to establish conditions which guarantee that the linearised system is governed
by a positive semigroup. To this end, we cast the linearised system (3.1)-(3.4) in the form of an
abstract Cauchy problem on the state sp#ce L'(0,m) as follows

%uz(A—l—BjLC—I—D)u, u(0) = uy, (3.5)

where
Au = —v(-,P)us withdomain DontA) = {u € W"'(0,m)|u(0) =0}, (3.6)
Bu = —(vs(-, P.) + p(-, P)) u onXx, (3.7)

Cu = — (vsp( P) ps + pp (-, Po) po + vp(-, Po) pl) /OmU(S) ds
:—p*(-)/o u(s)ds onX, (3.8)
Du :/0 u(y) (ﬁ(-,y, P,) —I—/D Bp (-, 2z, P)p.(2) dZ) dy ond&, (3.9)

9
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wherep, is defined via equation (3.8). Our aimis to establish that the linear opetatoB + C + D
is a generator of a quasicontraction semigroup. To this end first we recall (see e.g. [1, 4, 9]) some
basic concepts from the theory of linear operators acting on Banach space®. deet linear
operator defined on the real Banach spgceith norm||.||. O is called dissipative if for every
A > 0andz € Dom(O),

I(Z = AO)z[| = ||=|]

Furthermore, a functiorf : ) — R is called sublinear if

fle+y) < fla)+ fly), zyel
fAz) =Af(z), A>0, ze).

If also f(z) + f(—z) > 0 holds true forz # 0 then f is called a half-norm o). The linear
operatorQ is called f-dissipative if

f(z) < f(x —AOzxz), A>0, ze€DomO).

An operatorO which isp-dissipative with respect to the half norm

plx) = [lz"]],

is called dispersive, whete" = z v 0 (andz~ = (—x)"). Finally aC, semigroup{7 (¢)},., is
called quasicontractive if -
IT@I < e, t>0,

for somew € R, and it is called contractive it < 0. We recall the following characterization
theorem from [4].

Theorem 7. Let) be a Banach lattice and |&9 : Dom(O) — ) be a linear operator. Then, the
following statements are equivalent.

(i) O s the generator of a positive contraction semigroup.
(i) O is densely defined, RYZ — O) = Y for some\ > 0, andO is dispersive.

We also recall tha® is dispersive if for every: € Dom(Q) there exists) € Y* with 0 < ¢,
l|o|| < 1and(z,¢) = ||z*]|| such that Oz, ¢) < 0, where(-,-) is the natural pairing between
elements ofy and its dualy*.

Theorem 8. The operatotd + B + C + D generates a positive strongly continuod for short)
quasicontraction semigrou{t (¢) },~o of bounded linear operators ofi if the following condition
holds true

p«(s) < B(s,y, Ps) +/O Bp(s,y, Pp«(y)dy, s,y €[0,m], (3.10)

wherep, is defined via equatio(8.8).

10
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Proof. Our aim is to apply the previous characterization theorem for the perturbed operator
A+ B+C+ D — wIZ, for somew € R. To this end, for every, € Dom(A+ B +C + D — wI)
we definep, € X* by

s € [0,m], wu(s)#O0, (3.11)

if u(s) = 0then letp,(s) =0. Then
|¢ulloo <1,
and clearly

(0.6 = [ u()ouls)ds = [l
0
Making use of condition (3.10) we obtain the following estimate.
(A+B+C+D—wl)u,o,)

— [ 10 (s Pyt a5 - |
# [T [Tt (8P4 [ ez P ds (o)) ays

<= [ 1) (s Puts) ds = wllatfl — it s, P2) [
0 s€l0,m

m

1,+(s) p(s, Pu(s)ds — /Om 1,+(s)wu(s)ds

it || sup (ms,y,aw /0 mﬁp<s,z,P*>p*(z>dz—p*<s>)

y€[0,m]

< —w||ut |l = (y(m, Pu(m)) Ly (m)

+ |[u*|]1 || sup (B(s,y, P.)+ /Om Bp(s, z, Po)ps«(z) dz — p*(s)>

y€[0,m]
<0, (3.12)

for somew € R large enough, hence the operatb# B + C + D—wZ is dispersive. The operator
A+ B+ C+ D — wTis clearly densely defined. We observe that the equation

M —-A)u=nh (3.13)
for h € X and\ > 0 sufficiently large has a unique solutiane Dom(.A), given by

o=l [} [eol [ ) 619

The fact that: € Dom(.A) is well defined by (3.14) follows from

vl '7&%%) i v(s,AP*) /om o {_ /y v(z,AP*) dz} 7|(};<,gg) W
< ' hls) + M,
v(s, Ps)

11
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for X large enough for som&/), < oo, thatisu € W'1(0,m). SinceB + C + D —wZ is bounded,
the range condition is satisfied. Theorem 7 givesthat B + C + D —wZ is a generator of a pos-
itive contraction semigroup. Since the operaidris positive (clearly if the dispersivity estimate
holds true with aw < 0 then it holds true with any other* > w) a well-known perturbation result
(see e.g. [9]) yields thatl + B + C + D is a generator of a positive quasicontraction semigrbup
which obeys

T < et t>0.

Remark 9. The proof of Theorem 7 shows that if

inf p(s, P.) >

s€[0,m]

sup <B(8> v, P.) + /Om Bp(s, 2z, Pop.(z) dz — p*(5)> H

y€[0,m]

holds, then the growth bound, of the semigroup is negative, hence the semigrptigt)}:>o
is uniformly exponentially stable (see e.g. [9]), i.e. the equilibripims locally asymptotically
stable.

Remark 10. We note that the operatot + 5 + C + D is in general a generator of &, quasicon-
traction (but not positive) semigroup. The proof of this would utilise the Lumer-Phillips Theorem
(see e.g. [1, 4, 9]) and goes along similar lines, obtaining a dissipativity estimate in terms of
rather thanu™, see e.g. [11]. This implies that the linearised problg@m)(3.2)is well-posed.

Remark 11. Note that if3 = (s, y), p = u(s), v = v(s), i.e. mode(1.1)}(1.3)is a linear one,
then the biologically relevant conditiops 3 > 0 and~ > 0 imply that it is governed by a positive
guasicontraction semigroup.

Theorem 12. The semigroud 7 (¢) }+>o generated by the operatot + B + C + D is eventually
compact.

Proof. C is a rank-one operator. Hence it is compact®dr= L'(0,m). D is linear and bounded.
Hence in view of the Frchet-Kolmogorov compactness criterion/ihwe need to show that

m

111% |Du(t + s) — Du(s)| ds =0, uniformly in u,
—Jo

foru € B, whereB is the unit sphere af! (0, m). But this follows from the regularity assumptions
we made orp based on the following estimate

[Du(s1) — Du(sz)| < [Jullx

6(Slay>P*>+/0 6p(81,Z,P*)p*(Z)dZ—ﬁ(SQ,y,P*)—/0 6P(527Z7P*)p*(2)dz

X

o0

12
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Therefore, it suffices to investigate the operatbr- B. To this end, we note that the abstract
differential equation

%u:(A—i-B)u (3.15)

corresponds to the partial differential equation
Ut(S, t) + 7(87 P*) U’S(57 t) + (78(87 P*) + M(S, P*)) U(S, t) = 07 (316)

subject to the boundary condition (3.2). We solve easily equation (3.16) using the method of
characteristics. Far> I'(m) we arrive at

u(s,t) = u(0,t —T'(s)) exp {— /08 s (Y, i*()y—i_Pl:)(y’ i) dy} =0, (3.17)

where

s o1
N$:K:%%Rfm

This means that the semigrodpt) generated byA + B is nilpotent. In particular it is compact
fort > I'(m) and the claim follows. O

Remark 13. Theorem 12 implies that the Spectral Mapping Theorem holds true for the semigroup
{7 (t)},>, with generatortA + B + C + D and that the spectrum(A + B + C + D) contains only
isolated eigenvalues of finite multiplicity (see e.qg. [9]).

4. (In) Stability

Here, we consider the stability of positive equilibrium solutions by studying the point spectrum of
the linearised operatod + B + C + D. The main difficulty is that the eigenvalue equation

(A+B+C+D-T)A=0,

cannot be solved explicitly, since in general, the oper@tdras infinite rank. We encountered

this problem previously with hierarchical size-structured population models [11, 12]. In [11] and
[12] we used the dissipativity approach, presented in the previous section, to establish conditions
which guarantee that the spectral bound of the linearised semigroup is negative. However, as we
can see from Remark 9 this approach gives a rather restrictive stability condition. Therefore, here
we devise a different approach, which uses positive perturbation arguments.

Theorem 14. Assume that there exists an> 0 such that

B(s,y, P.) — pu(s) — e —|—/0 Bp(s,y, P)p«(y) dy >0, s,y € [0,m], (4.1)

13
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and

Y 3:(@P)+uo.P) g~

" ° P, P, s OXp T AleP)
5/ exp{—/ Yo(0, Po) + 1l >d0}/ { ° Vo r) }dyds >1. (4.2)
0 0 0

v(o, Ps) v(y, P.)

Then the stationary solution.(s) of model(1.1)(1.3)is linearly unstable.

Proof. Lete > 0, and define the operatd. on X as
Fou = 5/ u(s)ds = eu.
0
We first find the solution of the eigenvalue equation

(A+ B+ F)u= u

as

) =ewexp { - [ AEHT AN IO g |

S S Y X\ 4 ,(0, P,) + (o, P,) U}
X/o Yy, P p{/o v(o, P.) dog v (*3)

Next we integrate the solution (4.3) oVjerm] to obtain

e

| N Y X+ vs(o, P) + (o, Py) a} }
X/o NN e p{/O Yo B do p dy| ds. (4.4)

We note that, ifu = 0 then equation (4.3) shows thafs) = 0, hence we have a non-trivial
eigenvector if and only ifi ## 0 and\ satisfies the following characteristic equation

s [ fo [t

5 1 < y)\—i-’ys(U,P*)‘i‘M(UaP*) } :|
/ . P p{/ Ao, P.) dog v 89

It is easily shown that

therefore it follows from condition (4.2), on the grounds of the Intermediate Value Theorem, that
equation (4.5) has a positive (real) solution. Hence we have

0<s(A+B+F).

14
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Next, for a fixedd < f € &X', we obtain the solution of the resolvent equation
(M - (A+B+F.))u=f,

as
B A+ vs(o, P.) + p(o, Py)
u(s) =exp {_/0 (o, Py) dU}
Yo d [P AT (0 P + pfo, Pr) U} cu+ f(y)
></o p{/o (o, P,) W) Y o

We integrate equation (4.6) frofnto m to obtain

m $ A5 (0, Py )+u(o,Py) Y A5 (0, Pe)+p(0,Py) f(y)
o Joexp {_ 0 T SEP) da} Jo exp{ REiC:A) da} TP O 4.7)
u = A5 (0, Px)+p(o, Px) '
s A7ys(0,P)+u(o,Py) s exp{ | ya—d"}
1—e [ exp{ ETry dg} 0 TP

It follows from the growth behaviour of the exponential function and from assumptions (1.4), that
u is well-defined and non-negative for afy< f € X and\ large enough. Hence the resolvent
operator
RMNA+B+F)=N—(A+B+F))™

is positive, for\ large enough, which implies that + B + F. generates a positive semigroup (see
e.g. [9]).

Finally, we note that condition (4.1) guarantees that the opefatoD — F. is positive, hence
we have for the spectral bound (see e.g. Corollary VI.1.11 in [9])

0<s(A+B+F.)<s(A+B+F.+C+D—-F.)=s(A+B+C+D),

and the result follows. O
Next we show that for a separable fertility function we can indeed explicitly characterize the
point spectrum of the linearised operator.

Theorem 15. Assume that(s,y, P) = fi(s, P)B2(y), s,y € [0,m], P € (0,00). Then for any
A € C,we have\ € o(A+ B+ C + D) if and only if A satisfies the equation

R P as

where

m

gy
F(\ s, P,) /—d ds,
0 F()‘7y7P*) Y

" s ﬁl(y7 )
A dyd
F SP/ov(y, P)F(\y, P 0

=)
=)
=, RO [y s
=

" B 51(97 P*)
Ba(s )\,s,P)/O G PIFO g P) dy ds, (4.9)

15
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and

By (5, P.) / " Bay)pe(y) dy — puls)

g9(s) 205 P) , s €0,m],
F(\, s, P,) = exp {—/0 At %(yf;(i)Pj)u(y, P.) dy} , s€l0,m].

Proof. To characterize the point spectrumAf+- B + C + D we consider the eigenvalue problem
(A+B+C+D—-XT)U=0, U(0)=0. (4.10)
The solution of (4.10) is found to be

_ S - S 1 ’P*
Uls) :UF(/\,S,P*)/O %derUF(/\,s,P*)/U e g*;lﬁ(A >y 73 dy,  (4.11)

where

U= [Tveas U= [ meueas

We integrate equation (4.11) from zerortoand mulitply equation (4.11) by, (s) and then inte-
grate from zero ton to obtain

U(l + al(/\)) + ﬁag(/\)

0, (4.12)
TUas(\) 4+ U(1 + as(N)) = 0.

(4.13)

If A\ € o(A+ B+ C + D) then the eigenvalue equation (4.10) admits a non-trivial solution
hence there exists a non-zero vectbt, /) which solves equations (4.12)-(4.13). However, if
(U, (7) is a non-zero solution of equations (4.12)-(4.13) for some C then (4.11) yields a
non-trivial solutionU. This is because the only scenario idto vanish would yield

UF(),s) /08 Fg(g\?{)y) dy = —UF(),s) /05 V(y,ﬁggjﬁj’j(*;,y) dy, se€[0,m)].

This however, together with equations (4.12)-(4.13) would iniply= U = 0, a contradiction,
hence the proof is completed. O

Theorem 16. Assume that conditio(8.10) holds true for some stationary solutign. Moreover,
assume that there exists a functi(s, y, P) = 51 (s, P)G2(y) such that5(s, y, P.) < 5(s,y, P:)
for s,y € [0,m] and the characteristic equatioi’; (A\) = 0 does not have a solution with non-
negative real part. Then the equilibrium solutipnis linearly asymptotically stable.

16
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Proof. We need to establish that the spectral bound of the linearised opgtatds + C + D is
negative. To this end, we rewrite the operafbas a sum of two operators, namély= G + Hg,
where

Qu—/o U(y)dy/O Bp(- 2z, P)p«(2)dz, on X,

M= [ )bt P)dy, on &,
0

Condition (3.10) guarantees that+- B + C + G+H is a generator of a positive semigroup, while
the eventual compactness of the linearised semigroup assures that the spegtranBof C + G+
H contains only eigenvalues and that the Spectral Mapping Theorem holds trueZSire@(;

is a positive and bounded operator we have

S(A+B+C+G+Hp) <s(A+B+C+G+Hz+Hz—Hp) =s(A+B+C+G+H;z) <0,
(4.14)
and the proof is completed. O

Example 17. As we can see from equatiof#8)-(4.9) the characteristic functiok ;(\) is rather
complicated, in general. Therefore, here we only present a special case when it is straightforward
to establish that the point spectrum of the linear operatot 5 + C + G + H; does not contain

any element with non-negative real part. In particular, we make the following specific assumption

Ba(:) = fa.

In this case we can cast the characteristic equa{®)in the simple form

/Om /0 . {_/y A+%(7;5t)g)u(h P,) d'r’} (g(y)v(y,sz;jtp*ﬁ)l(ya P*W?) dyds — 1.
(4.15)

We note that, if
gy, P) + Bi(y, Py) B2 > 0, y € [0,m],

which is equivalent to the positivity conditidqB.10) then equation(4.15) admits a dominant
unique (real) solution. On the other hand, it is easily shown that this dominant eigenvalue is
negative if

/Om /0 o {_/y 7s(r, S‘();Pf)(r’ P) dr} <9(y)7(y, i’?)yjrp*ﬁ)l(yv P*w?) dyds < 1.
(4.16)

It is easy to see, making use of equatfary), that(4.16)is satisfied if

[ s [ [ 220 s

17
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holds true. In this case, we obtain for the growth bound of the semigogup
wo :3(A+B+C+Q+H5) <0,

see e.g. Theorem 1.15 in Chapter VI of [9], which implies that the equilibrium solution is linearly
stable.

5. Concluding remarks

In this paper, we analysed the asymptotic behaviour of a size-structured scramble competition
model using linear semigroup methods. We are motivated by the modelling of structured macro-
parasites in aquaculture, specifically the population dynamics of sea lice on Atlantic salmon pop-
ulations. First we studied existence of equilibrium solutions of our model. In the case when
the fertility function is separable, we easily established monotonicity conditions on the vital rates
which guarantee the existence of a steady state (Proposition 1). In the general case we used posi-
tive perturbation arguments to establish criteria that guarantee the existence of at least one positive
equilibrium solution. Next, we established conditions for the existence of a positive quasicontrac-
tion semigroup which governs the linearised problem. Then we established a further regularity
property of the governing linear semigroup which in principle allows to study stability of equilib-
ria via the point spectrum of its generator. In the special case of separable fertility function we
explicitly deduced a characteristic function in equation (4.8) whose roots are the eigenvalues of
the linearised operator. Then we formulated stability/instability results, where we used once more
finite rank lower/upper bound estimates of the very general recruitment term. It would be also
straightforward to formulate conditions which guarantee that the governing linear semigroup ex-
hibits asynchronous exponential growth. However, this is not very interesting from the application
point of view, since the linearised system is not necessarily a population equation anymore.

Characterization of positivity using dispersivity resulted in much more relaxed conditions than
those obtained in [10] for a more simple size-structured model with a single state at birth by
characterizing positivity via the resolvent of the semigroup generator. This is probably due to the
different recruitment terms in the two model equations. Positivity is often crucial for our stability
studies, as was demonstrated in Section 3. Indeed, more relaxed positivity conditions result in the
much wider applicability (i.e. for a larger set of vital rates) of our analytical stability results.

Due to the fact that the positive coneof has an empty interior, characterizations of positivity
such as the positive minimum principle (see e.g. [1]) do not apply. However, there is an alternative
method, namely the generalized Kato inequality (see e.g. [1]). In our setting the abstract Kato-
inequality reads

Se(A+B+C+Du<(A+B+C+D)|ul, (5.1)

for u € Dom(A + B + C + D), whereS,, is the signum operator, that is

18
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Inequality (5.1) requires
Sum .y, P m,,P**d—* d
[t (sts.np+ [ stsm P10 =)

< /Om\U(y)!(ﬁ(s,y,P*H /Omms,z,mp*(z)dz—p*<s>) dy, selm], (52)

which holds true for every € Dom(A + B + C + D) indeed when condition (3.10) is satisfied.

As we have seen previously in Section 3., since the linearised system is not a population model
anymore, the governing semigroup is not positive unless some additional condition is satisfied.
However, it was proven in [16] that every quasicontraction semigroup @n apace has a minimal
dominating positive semigroup, called the modulus semigroup, which itself is quasicontractive.
Hence, in principle, one can prove stability results even in the case of a non-positive governing
semigroup, by perturbing the semigroup generator with a positive operator such that the perturbed
generator does indeed generate a positive semigroup.
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