2,090 research outputs found
Guidelines for physical weed control research: flame weeding, weed harrowing and intra-row cultivation
A prerequisite for good research is the use of appropriate methodology. In order to aggregate sound research methodology, this paper presents some tentative guidelines for physical weed control research in general, and flame weeding, weed harrowing and intra-row cultivation in particular. Issues include the adjustment and use of mechanical weeders and other equipment, the recording of impact factors that affect weeding performance, methods to assess effectiveness, the layout of treatment plots, and the conceptual models underlying the experimental designs (e.g. factorial comparison, dose response).
First of all, the research aims need to be clearly defined, an appropriate experimental design produced and statistical methods chosen accordingly. Suggestions on how to do this are given. For assessments, quantitative measures would be ideal, but as they require more resources, visual classification may in some cases be more feasible. The timing of assessment affects the results and their interpretation.
When describing the weeds and crops, one should list the crops and the most abundantly present weed species involved, giving their density and growth stages at the time of treatment. The location of the experimental field, soil type, soil moisture and amount of fertilization should be given, as well as weather conditions at the time of treatment.
The researcher should describe the weed control equipment and adjustments accurately, preferably according to the prevailing practice within the discipline. Things to record are e.g. gas pressure, burner properties, burner cover dimensions and LPG consumption in flame weeding; speed, angle of tines, number of passes and direction in weed harrowing.
The authors hope this paper will increase comparability among experiments, help less experienced scientists to prevent mistakes and essential omissions, and foster the advance of knowledge on non-chemical weed management
A generalized theory of semiflexible polymers
DNA bending on length scales shorter than a persistence length plays an
integral role in the translation of genetic information from DNA to cellular
function. Quantitative experimental studies of these biological systems have
led to a renewed interest in the polymer mechanics relevant for describing the
conformational free energy of DNA bending induced by protein-DNA complexes.
Recent experimental results from DNA cyclization studies have cast doubt on the
applicability of the canonical semiflexible polymer theory, the wormlike chain
(WLC) model, to DNA bending on biological length scales. This paper develops a
theory of the chain statistics of a class of generalized semiflexible polymer
models. Our focus is on the theoretical development of these models and the
calculation of experimental observables. To illustrate our methods, we focus on
a specific toy model of DNA bending. We show that the WLC model generically
describes the long-length-scale chain statistics of semiflexible polymers, as
predicted by the Renormalization Group. In particular, we show that either the
WLC or our new model adequate describes force-extension, solution scattering,
and long-contour-length cyclization experiments, regardless of the details of
DNA bend elasticity. In contrast, experiments sensitive to short-length-scale
chain behavior can in principle reveal dramatic departures from the linear
elastic behavior assumed in the WLC model. We demonstrate this explicitly by
showing that our toy model can reproduce the anomalously large
short-contour-length cyclization J factors observed by Cloutier and Widom.
Finally, we discuss the applicability of these models to DNA chain statistics
in the context of future experiments
The critical velocity effect as a cause for the H\alpha emission from the Magellanic stream
Observations show significant H\alpha-emissions in the Galactic halo near the
edges of cold gas clouds of the Magellanic Stream. The source for the
ionization of the cold gas is still a widely open question. In our paper we
discuss the critical velocity effect as a possible explanation for the observed
H\alpha-emission. The critical velocity effect can yield a fast ionization of
cold gas if this neutral gas passes through a magnetized plasma under suitable
conditions. We show that for parameters that are typical for the Magellanic
Stream the critical velocity effect has to be considered as a possible
ionization source of high relevance.Comment: 9 pages, 2 figures. accepted, to appear in The Astrophysical Journa
Testing and Validation of the Dynamic Inertia Measurement Method
The Dynamic Inertia Measurement (DIM) method uses a ground vibration test setup to determine the mass properties of an object using information from frequency response functions. Most conventional mass properties testing involves using spin tables or pendulum-based swing tests, which for large aerospace vehicles becomes increasingly difficult and time-consuming, and therefore expensive, to perform. The DIM method has been validated on small test articles but has not been successfully proven on large aerospace vehicles. In response, the National Aeronautics and Space Administration Armstrong Flight Research Center (Edwards, California) conducted mass properties testing on an "iron bird" test article that is comparable in mass and scale to a fighter-type aircraft. The simple two-I-beam design of the "iron bird" was selected to ensure accurate analytical mass properties. Traditional swing testing was also performed to compare the level of effort, amount of resources, and quality of data with the DIM method. The DIM test showed favorable results for the center of gravity and moments of inertia; however, the products of inertia showed disagreement with analytical predictions
Characterization of the K2-18 multi-planetary system with HARPS: A habitable zone super-Earth and discovery of a second, warm super-Earth on a non-coplanar orbit
The bright M dwarf K2-18 at 34 pc is known to host a transiting
super-Earth-sized planet orbiting within the star's habitable zone; K2-18b.
Given the superlative nature of this system for studying an exoplanetary
atmosphere receiving similar levels of insolation as the Earth, we aim to
characterize the planet's mass which is required to interpret atmospheric
properties and infer the planet's bulk composition. We obtain precision radial
velocity measurements with the HARPS spectrograph and couple those measurements
with the K2 photometry to jointly model the observed radial velocity variation
with planetary signals and a radial velocity jitter model based on Gaussian
process regression. We measure the mass of K2-18b to be
M with a bulk density of g/cm which may correspond
to a predominantly rocky planet with a significant gaseous envelope or an ocean
planet with a water mass fraction %. We also find strong evidence
for a second, warm super-Earth K2-18c at days with a semi-major axis
2.4 times smaller than the transiting K2-18b. After re-analyzing the available
light curves of K2-18 we conclude that K2-18c is not detected in transit and
therefore likely has an orbit that is non-coplanar with K2-18b. A suite of
dynamical integrations with varying simulated orbital eccentricities of the two
planets are used to further constrain each planet's eccentricity posterior from
which we measure and at 99% confidence. The discovery
of the inner planet K2-18c further emphasizes the prevalence of multi-planet
systems around M dwarfs. The characterization of the density of K2-18b reveals
that the planet likely has a thick gaseous envelope which along with its
proximity to the Solar system makes the K2-18 planetary system an interesting
target for the atmospheric study of an exoplanet receiving Earth-like
insolation.Comment: 13 pages, 8 figures including 4 interactive figures best viewed in
Adobe Acrobat. Submitted to Astronomy & Astrophysics. Comments welcom
Absolute cross section for loss of supercoiled topology induced by 10 eV electrons in highly uniform ∕DNA∕1,3-diaminopropane films deposited on highly ordered pyrolitic graphite.
International audience: It was recently shown that the affinity of doubly charged, 1-3 diaminopropane (Dap(2+)) for DNA permits the growth on highly ordered pyrolitic graphite (HOPG) substrates, of plasmid DNA films, of known uniform thickness [O. Boulanouar, A. Khatyr, G. Herlem, F. Palmino, L. Sanche, and M. Fromm, J. Phys. Chem. C 115, 21291-21298 (2011)]. Post-irradiation analysis by electrophoresis of such targets confirms that electron impact at 10 eV produces a maximum in the yield of single strand breaks that can be associated with the formation of a DNA(-) transient anion. Using a well-adapted deterministic survival model for the variation of electron damage with fluence and film thickness, we have determined an absolute cross section for strand-break damage by 10 eV electrons and inelastic scattering attenuation length in DNA-Dap complex films
Experimental Validation of the Dynamic Inertia Measurement Method to Find the Mass Properties of an Iron Bird Test Article
The mass properties of an aerospace vehicle are required by multiple disciplines in the analysis and prediction of flight behavior. Pendulum oscillation methods have been developed and employed for almost a century as a means to measure mass properties. However, these oscillation methods are costly, time consuming, and risky. The NASA Armstrong Flight Research Center has been investigating the Dynamic Inertia Measurement, or DIM method as a possible alternative to oscillation methods. The DIM method uses ground test techniques that are already applied to aerospace vehicles when conducting modal surveys. Ground vibration tests would require minimal additional instrumentation and time to apply the DIM method. The DIM method has been validated on smaller test articles, but has not yet been fully proven on large aerospace vehicles
Multiple sulphur and lead sources recorded in hydrothermal exhalites associated with the Lemarchant volcanogenic massive sulphide deposit, central Newfoundland, Canada
This research is funded by the Canadian Mining Research Organization (CAMIRO) and an NSERC CRD grant. Research is also funded by the NSERC-Altius Industrial Research Chair in Mineral Deposits, funded by NSERC, Altius Resources Inc. and the Development Corporation of Newfoundland and Labrador.Metalliferous sedimentary rocks (mudstones, exhalites) associated with the Cambrian precious metal-bearing Lemarchant Zn-Pb-Cu-Au-Ag-Ba volcanogenic massive sulphide (VMS) deposit, Tally Pond volcanic belt, precipitated both before and after VMS mineralization. Sulphur and Pb isotopic studies of sulphides within the Lemarchant exhalites provide insight into the sources of S and Pb in the exhalites as a function of paragenesis and evolution of the deposit and subsequent post-depositional modification. In situ S isotope microanalyses of polymetallic sulphides (euhedral and framboidal pyrite, anhedral chalcopyrite, pyrrhotite, galena and euhedral arsenopyrite) by secondary ion mass spectrometry (SIMS) yielded δ34S values ranging from −38.8 to +14.4 ‰, with an average of ∼ −12.8 ‰. The δ34S systematics indicate sulphur was predominantly biogenically derived via microbial/biogenic sulphate reduction of seawater sulphate, microbial sulphide oxidation and microbial disproportionation of intermediate S compounds. These biogenic processes are coupled and occur within layers of microbial mats consisting of different bacterial/archaeal species, i.e., sulphate reducers, sulphide oxidizers and those that disproportionate sulphur compounds. Inorganic processes or sources (i.e., thermochemical sulphate reduction of seawater sulphate, leached or direct igneous sulphur) also contributed to the S budget in the hydrothermal exhalites and are more pronounced in exhalites that are immediately associated with massive sulphides. Galena Pb isotopic compositions by SIMS microanalysis suggest derivation of Pb from underlying crustal basement (felsic volcanic rocks of Sandy Brook Group), whereas less radiogenic Pb derived from juvenile sources leached from mafic volcanic rocks of the Sandy Brook Group and/or Tally Pond group. This requires that the hydrothermal fluids interacted with juvenile and evolved crust during hydrothermal circulation, which is consistent with the existing tectonic model that suggests a formation of the Tally Pond belt volcanic rocks and associated VMS deposits in a rifted arc environment upon crustal basement of the Ediacaran age Sandy Brook Group and Crippleback Intrusive Suite. Combined S and Pb isotope data illustrate that sulphides within the deposit that are proximal to the vent contain a higher proportion of sulphur derived from thermochemical sulphate reduction (TSR), because hydrothermal fluids are enriched in H2S derived from TSR. They also have lower radiogenic Pb contributions, than sulphides occurring distal from mineralization. Hence, the TSR S and non-radiogenic Pb composition may provide an exploration vector in exhalites associated with similar VMS environments.PostprintPeer reviewe
GJ 1252 b: A 1.2 R\u3csub\u3e⊕\u3c/sub\u3e Planet Transiting An M3 Dwarf At 20.4 pc
We report the discovery of GJ 1252 b, a planet with a radius of 1.193 ± 0.074 R⊕ and an orbital period of 0.52 days around an M3-type star (0.381 ± 0.019 M⊕, 0.391 ± 0.020 R⊕) located 20.385 ± 0.019 pc away. We use Transiting Exoplanet Survey Satellite (TESS) data, ground-based photometry and spectroscopy, Gaia astrometry, and high angular resolution imaging to show that the transit signal seen in the TESS data must originate from a transiting planet. We do so by ruling out all false-positive scenarios that attempt to explain the transit signal as originating from an eclipsing stellar binary. Precise Doppler monitoring also leads to a tentative mass measurement of 2.09 ± 0.56 M⊕. The host star proximity, brightness (V = 12.19 mag, K = 7.92 mag), low stellar activity, and the system\u27s short orbital period make this planet an attractive target for detailed characterization, including precise mass measurement, looking for other objects in the system, and planet atmosphere characterization
Classical Fields Near Thermal Equilibrium
We discuss the classical limit for the long-distance (``soft'') modes of a
quantum field when the hard modes of the field are in thermal equilibrium. We
address the question of the correct semiclassical dynamics when a momentum
cut-off is introduced. Higher order contributions leads to a stochastic
interpretation for the effective action in analogy to Quantum Brownian Motion,
resulting in dissipation and decoherence for the evolution of the soft modes.
Particular emphasis is put on the understanding of dissipation. Our discussion
focuses mostly on scalar fields, but we make some remarks on the extension to
gauge theories.Comment: REVTeX, 6 figure
- …
