219 research outputs found
Whole lifespan microscopic observation of budding yeast aging through a microfluidic dissection platform
Important insights into aging have been generated with the genetically tractable and short-lived budding yeast. However, it is still impossible today to continuously track cells by high-resolution microscopic imaging (e.g., fluorescent imaging) throughout their entire lifespan. Instead, the field still needs to rely on a 50-y-old laborious and time-consuming method to assess the lifespan of yeast cells and to isolate differentially aged cells for microscopic snapshots via manual dissection of daughter cells from the larger mother cell. Here, we are unique in achieving continuous and high-resolution microscopic imaging of the entire replicative lifespan of single yeast cells. Our microfluidic dissection platform features an optically prealigned single focal plane and an integrated array of soft elastomer-based micropads, used together to allow for trapping of mother cells, removal of daughter cells, monitoring gradual changes in aging, and unprecedented microscopic imaging of the whole aging process. Using the platform, we found remarkable age-associated changes in phenotypes (e.g., that cells can show strikingly differential cell and vacuole morphologies at the moment of their deaths), indicating substantial heterogeneity in cell aging and death. We envision the microfluidic dissection platform to become a major tool in aging research.
Background discrimination capabilities of a heat and ionization germanium cryogenic detector
The discrimination capabilities of a 70 g heat and ionization Ge bolometer
are studied. This first prototype has been used by the EDELWEISS Dark Matter
experiment, installed in the Laboratoire Souterrain de Modane, for direct
detection of WIMPs. Gamma and neutron calibrations demonstrate that this type
of detector is able to reject more than 99.6% of the background while retaining
95% of the signal, provided that the background events distribution is not
biased towards the surface of the Ge crystal. However, the 1.17 kg.day of data
taken in a relatively important radioactive environment show an extra
population slightly overlapping the signal. This background is likely due to
interactions of low energy photons or electrons near the surface of the
crystal, and is somewhat reduced by applying a higher charge-collecting inverse
bias voltage (-6 V instead of -2 V) to the Ge diode. Despite this
contamination, more than 98% of the background can be rejected while retaining
50% of the signal. This yields a conservative upper limit of 0.7
event.day^{-1}.kg^{-1}.keV^{-1}_{recoil} at 90% confidence level in the 15-45
keV recoil energy interval; the present sensitivity appears to be limited by
the fast ambient neutrons. Upgrades in progress on the installation are
summarized.Comment: Submitted to Astroparticle Physics, 14 page
Mechanical response of plectonemic DNA: an analytical solution
We consider an elastic rod model for twisted DNA in the plectonemic regime.
The molecule is treated as an impenetrable tube with an effective, adjustable
radius. The model is solved analytically and we derive formulas for the contact
pressure, twisting moment and geometrical parameters of the supercoiled region.
We apply our model to magnetic tweezer experiments of a DNA molecule subjected
to a tensile force and a torque, and extract mechanical and geometrical
quantities from the linear part of the experimental response curve. These
reconstructed values are derived in a self-contained manner, and are found to
be consistent with those available in the literature.Comment: 14 pages, 4 figure
The EDELWEISS Experiment : Status and Outlook
The EDELWEISS Dark Matter search uses low-temperature Ge detectors with heat
and ionisation read- out to identify nuclear recoils induced by elastic
collisions with WIMPs from the galactic halo. Results from the operation of 70
g and 320 g Ge detectors in the low-background environment of the Modane
Underground Laboratory (LSM) are presented.Comment: International Conference on Dark Matter in Astro and Particle Physics
(Dark 2000), Heidelberg, Germany, 10-16 Jul 2000, v3 minor revision
Polarimetric Properties of Flux-Ropes and Sheared Arcades in Coronal Prominence Cavities
The coronal magnetic field is the primary driver of solar dynamic events.
Linear and circular polarization signals of certain infrared coronal emission
lines contain information about the magnetic field, and to access this
information, either a forward or an inversion method must be used. We study
three coronal magnetic configurations that are applicable to polar-crown
filament cavities by doing forward calculations to produce synthetic
polarization data. We analyze these forward data to determine the
distinguishing characteristics of each model. We conclude that it is possible
to distinguish between cylindrical flux ropes, spheromak flux ropes, and
sheared arcades using coronal polarization measurements. If one of these models
is found to be consistent with observational measurements, it will mean
positive identification of the magnetic morphology that surrounds certain
quiescent filaments, which will lead to a greater understanding of how they
form and why they erupt.Comment: 22 pages, 8 figures, Solar Physics topical issue: Coronal Magnetis
First Results of the EDELWEISS WIMP Search using a 320 g Heat-and-Ionization Ge Detector
The EDELWEISS collaboration has performed a direct search for WIMP dark
matter using a 320 g heat-and-ionization cryogenic Ge detector operated in a
low-background environment in the Laboratoire Souterrain de Modane. No nuclear
recoils are observed in the fiducial volume in the 30-200 keV energy range
during an effective exposure of 4.53 kg.days. Limits for the cross-section for
the spin-independent interaction of WIMPs and nucleons are set in the framework
of the Minimal Supersymmetric Standard Model (MSSM). The central value of the
signal reported by the experiment DAMA is excluded at 90% CL.Comment: 14 pages, Latex, 4 figures. Submitted to Phys. Lett.
Event categories in the EDELWEISS WIMP search experiment
Four categories of events have been identified in the EDELWEISS-I dark matter
experiment using germanium cryogenic detectors measuring simultaneously charge
and heat signals. These categories of events are interpreted as electron and
nuclear interactions occurring in the volume of the detector, and electron and
nuclear interactions occurring close to the surface of the detectors(10-20 mu-m
of the surface). We discuss the hypothesis that low energy surface nuclear
recoils,which seem to have been unnoticed by previous WIMP searches, may
provide an interpretation of the anomalous events recorded by the UKDMC and
Saclay NaI experiments. The present analysis points to the necessity of taking
into account surface nuclear and electron recoil interactions for a reliable
estimate of background rejection factors.Comment: 11 pages, submitted to Phys. Lett.
Single-molecule experiments in biological physics: methods and applications
I review single-molecule experiments (SME) in biological physics. Recent
technological developments have provided the tools to design and build
scientific instruments of high enough sensitivity and precision to manipulate
and visualize individual molecules and measure microscopic forces. Using SME it
is possible to: manipulate molecules one at a time and measure distributions
describing molecular properties; characterize the kinetics of biomolecular
reactions and; detect molecular intermediates. SME provide the additional
information about thermodynamics and kinetics of biomolecular processes. This
complements information obtained in traditional bulk assays. In SME it is also
possible to measure small energies and detect large Brownian deviations in
biomolecular reactions, thereby offering new methods and systems to scrutinize
the basic foundations of statistical mechanics. This review is written at a
very introductory level emphasizing the importance of SME to scientists
interested in knowing the common playground of ideas and the interdisciplinary
topics accessible by these techniques. The review discusses SME from an
experimental perspective, first exposing the most common experimental
methodologies and later presenting various molecular systems where such
techniques have been applied. I briefly discuss experimental techniques such as
atomic-force microscopy (AFM), laser optical tweezers (LOT), magnetic tweezers
(MT), biomembrane force probe (BFP) and single-molecule fluorescence (SMF). I
then present several applications of SME to the study of nucleic acids (DNA,
RNA and DNA condensation), proteins (protein-protein interactions, protein
folding and molecular motors). Finally, I discuss applications of SME to the
study of the nonequilibrium thermodynamics of small systems and the
experimental verification of fluctuation theorems. I conclude with a discussion
of open questions and future perspectives.Comment: Latex, 60 pages, 12 figures, Topical Review for J. Phys. C (Cond.
Matt
Cell-Cycle Dependence of Transcription Dominates Noise in Gene Expression
The large variability in mRNA and protein levels found from both static and dynamic measurements in single cells has been largely attributed to random periods of transcription, often occurring in bursts. The cell cycle has a pronounced global role in affecting transcriptional and translational output, but how this influences transcriptional statistics from noisy promoters is unknown and generally ignored by current stochastic models. Here we show that variable transcription from the synthetic tetO promoter in S. cerevisiae is dominated by its dependence on the cell cycle. Real-time measurements of fluorescent protein at high expression levels indicate tetO promoters increase transcription rate ~2-fold in S/G2/M similar to constitutive genes. At low expression levels, where tetO promoters are thought to generate infrequent bursts of transcription, we observe random pulses of expression restricted to S/G2/M, which are correlated between homologous promoters present in the same cell. The analysis of static, single-cell mRNA measurements at different points along the cell cycle corroborates these findings. Our results demonstrate that highly variable mRNA distributions in yeast are not solely the result of randomly switching between periods of active and inactive gene expression, but instead largely driven by differences in transcriptional activity between G1 and S/G2/M.GM095733BBBE 103316MIT Startup Fun
Force spectroscopy in studying infection
Biophysical force spectroscopy tools - for example optical tweezers, magnetic
tweezers, atomic force microscopy, - have been used to study elastic,
mechanical, conformational and dynamic properties of single biological
specimens from single proteins to whole cells to reveal information not
accessible by ensemble average methods such as X-ray crystallography, mass
spectroscopy, gel electrophoresis and so on. Here we review the application of
these tools on a range of infection-related questions from antibody-inhibited
protein processivity to virus-cell adhesion. In each case we focus on how the
instrumental design tailored to the biological system in question translates
into the functionality suitable for that particular study. The unique insights
that force spectroscopy has gained to complement knowledge learned through
population averaging techniques in interrogating biomolecular details prove to
be instrumental in therapeutic innovations such as those in structure-based
drug design
- …
