1,451 research outputs found
Glutathione increase by the n-butanoyl glutathione derivative (GSH-C4) inhibits viral replication and induces a predominant Th1 immune profile in old mice infected with influenza virus
During aging, glutathione (GSH) content declines and the immune system undergoes a
deficiency in the induction of Th1 response. Reduced secretion of Th1 cytokines, which is
associated with GSH depletion, could weaken the host defenses against viral infections.
We first evaluated the concentration of GSH and cysteine in organs of old mice; then, the
effect of the administration of the N-butanoyl GSH derivative (GSH-C4) on the response of
aged mice infected with influenza A PR8/H1N1 virus was studied through the determination
of GSH concentration in organs, lung viral titer, IgA and IgG1/IgG2a production and
Th1/Th2 cytokine profile.
Old mice had lower GSH than young mice in organs. Also the gene expression of
endoplasmic reticulum (ER) stress markers involved in GSH metabolism and folding of
proteins, i.e. Nrf2 and PDI, was reduced. Following infection, GSH content remained low
and neither infection nor GSH-C4 treatment affected Nrf2 expression. In contrast, PDI
expression was upregulated during infection and appeared counterbalanced by GSH-C4.
Moreover, the treatment with GSH-C4 increased GSH content in organs, reduced viral
replication and induced a predominant Th1 response.
In conclusion, GSH-C4 treatment could be used in the elderly to contrast influenza virus
infection by inducing immune response, in particular the Th1 profile
Atmospheric Newtonian noise modeling for third-generation gravitational wave detectors
The sensitivity and the frequency bandwidth of third-generation gravitational-wave detectors are such that the Newtonian noise (NN) signals produced by atmospheric turbulence could become relevant. We build models for atmospheric NN that take into account finite correlation times and inhomogeneity along the vertical direction, and are therefore accurate enough to represent a reliable reference tool for evaluating this kind of noise. We compute the NN spectral density from our models and compare it with the expected sensitivity curve of the Einstein Telescope (ET) with the xylophone design. The noise signal decays exponentially for small values of the frequency and the detector's depth, followed by a power law for large values of the parameters. We find that, when the detector is built at the Earth's surface, the NN contribution in the low-frequency band is above the ET sensitivity curve for strong wind. Building the detector underground is sufficient to push the noise signal under the ET sensitivity curve, but the decrement is close to marginal for strong wind. In light of the slow decay with depth of the NN, building the detector underground could be only partially effective as passive noise mitigation
Transnational strategy on the sustainable management and responsible use of non-native trees in the Alpine Space
Abstract Non-native tree species – defined as those species intentionally or unintentionally introduced by humans – have long been a part of the Alpine Space, providing numerous benefits, but also posing a potential threat to native biodiversity and related ecosystem services. Compared to the urban space where non-native trees comprise most tree species, the number of non-native trees in forests and plantations is relatively low. To evaluate potential risks and benefits of non-native trees in the Alpine Space, a transnational strategy for the responsible use and management of non-native trees is needed. The goals of the strategy are to tailor management practices for a sustainable and responsible use or admixture of non-native trees, to reduce the risks connected with the invasive potential of some non-native tree species, to help forests and urban areas to adapt to climate change, and to improve coordination and cooperation regarding best practices between different regions of the Alpine Space. A proposal was developed in a four-step process including expert-based assessment, stakeholder mapping, an extensive data review, and a public consultation. For implementing the strategy fully, strong collaboration among diverse stakeholders is anticipated and robust governance and an adequate long-term and fair funding scheme is needed
10 ps timing with highly irradiated 3D trench silicon pixel sensors
In this paper the results of a beam test characterization campaign of 3D
trench silicon pixel sensors are presented. A time resolution in the order of
10 ps was measured both for non-irradiated and irradiated sensors up to a
fluence of . This feature and a
detection efficiency close to make this sensors one of the best
candidates for 4D tracking detectors in High-Energy-Physics experiments.Comment: Prepared for submission to JINST, IWORID 202
Measurement of the front-end dead-time of the LHCb muon detector and evaluation of its contribution to the muon detection inefficiency
A method is described which allows to deduce the dead-time of the front-end
electronics of the LHCb muon detector from a series of measurements performed
at different luminosities at a bunch-crossing rate of 20 MHz. The measured
values of the dead-time range from 70 ns to 100 ns. These results allow to
estimate the performance of the muon detector at the future bunch-crossing rate
of 40 MHz and at higher luminosity
Observation of an Excited Bc+ State
Using pp collision data corresponding to an integrated luminosity of 8.5 fb-1 recorded by the LHCb experiment at center-of-mass energies of s=7, 8, and 13 TeV, the observation of an excited Bc+ state in the Bc+π+π- invariant-mass spectrum is reported. The observed peak has a mass of 6841.2±0.6(stat)±0.1(syst)±0.8(Bc+) MeV/c2, where the last uncertainty is due to the limited knowledge of the Bc+ mass. It is consistent with expectations of the Bc∗(2S31)+ state reconstructed without the low-energy photon from the Bc∗(1S31)+→Bc+γ decay following Bc∗(2S31)+→Bc∗(1S31)+π+π-. A second state is seen with a global (local) statistical significance of 2.2σ (3.2σ) and a mass of 6872.1±1.3(stat)±0.1(syst)±0.8(Bc+) MeV/c2, and is consistent with the Bc(2S10)+ state. These mass measurements are the most precise to date
Bose-Einstein correlations of same-sign charged pions in the forward region in pp collisions at √s=7 TeV
Bose-Einstein correlations of same-sign charged pions, produced in protonproton collisions at a 7 TeV centre-of-mass energy, are studied using a data sample collected
by the LHCb experiment. The signature for Bose-Einstein correlations is observed in the
form of an enhancement of pairs of like-sign charged pions with small four-momentum
difference squared. The charged-particle multiplicity dependence of the Bose-Einstein correlation parameters describing the correlation strength and the size of the emitting source
is investigated, determining both the correlation radius and the chaoticity parameter. The
measured correlation radius is found to increase as a function of increasing charged-particle
multiplicity, while the chaoticity parameter is seen to decreas
Measurement of the inelastic pp cross-section at a centre-of-mass energy of 13TeV
The cross-section for inelastic proton-proton collisions at a centre-of-mass energy of 13TeV is measured with the LHCb detector. The fiducial cross-section for inelastic interactions producing at least one prompt long-lived charged particle with momentum p > 2 GeV/c in the pseudorapidity range 2 < η < 5 is determined to be ϭ acc = 62:2 ± 0:2 ± 2:5mb. The first uncertainty is the intrinsic systematic uncertainty of the measurement, the second is due to the uncertainty on the integrated luminosity. The statistical uncertainty is negligible. Extrapolation to full phase space yields the total inelastic proton-proton cross-section ϭ inel = 75:4 ± 3:0 ± 4:5mb, where the first uncertainty is experimental and the second due to the extrapolation. An updated value of the inelastic cross-section at a centre-of-mass energy of 7TeV is also reported
- …