121 research outputs found

    Development of an estimative model for the optimal tack coat dosage based on aggregate gradation of hot mix asphalt pavements

    Get PDF
    In this work the performance of tack coats on asphalt pavement layers is analysed. Adjustment models based on experimental measurements were implemented, relating surface layer macro-texture and aggregate content larger than 8 mm. The best fits were obtained with a Gompertz model, which follows the expected physical macro-texture changes outside the test range. Shear strength was analysed, through prediction curves of each evaluated tack coat dosage, with an optimum tack coat performance for aggregate contents larger than 8 mm between 45% and 50%, and no relevant influence of the tack coat dosage used.The authors would like to acknowledge the support provided by the Technologic Research Construction Group (GITECO) and the Group of Roads of Santander at Cantabria University for the development of tests and samples. We would also like to thank the company Emilio Bolado S.L. and the Society for the Development of Cantabria Region (SODERCAN) for the material provided, and the DID Research Department from the Austral University of Chile for the support

    Indentation Hardness Measurements at Macro-, Micro-, and Nanoscale: A Critical Overview

    Get PDF
    The Brinell, Vickers, Meyer, Rockwell, Shore, IHRD, Knoop, Buchholz, and nanoindentation methods used to measure the indentation hardness of materials at different scales are compared, and main issues and misconceptions in the understanding of these methods are comprehensively reviewed and discussed. Basic equations and parameters employed to calculate hardness are clearly explained, and the different international standards for each method are summarized. The limits for each scale are explored, and the different forms to calculate hardness in each method are compared and established. The influence of elasticity and plasticity of the material in each measurement method is reviewed, and the impact of the surface deformation around the indenter on hardness values is examined. The difficulties for practical conversions of hardness values measured by different methods are explained. Finally, main issues in the hardness interpretation at different scales are carefully discussed, like the influence of grain size in polycrystalline materials, indentation size effects at micro-and nanoscale, and the effect of the substrate when calculating thin films hardness. The paper improves the understanding of what hardness means and what hardness measurements imply at different scales.Funding Agencies|Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University ((Faculty Grant SFO Mat LiU) [2009 00971]</p

    Analysis of notch effect on the fracture behaviour of granite and limestone: An approach from the Theory of Critical Distances

    Get PDF
    This paper presents the analysis of the notch effect on granite and limestone fracture specimens. The research is based on the results obtained in an experimental programme composed of 84 fracture specimens, combining the two materials and 7 different notch radii varying from 0.15 mm up to 10 mm. The notch effect is analysed through the evolution of the apparent fracture toughness and the application of the Theory of the Critical Distances. The results reveal a significant notch effect in the limestone, whereas the notch effect in the granite is negligible for the range of notch radii analysed. Both observations are justified by the corresponding critical distance of the material

    Use of laser interferometry for measuring concrete substrate roughness in patch repairs

    Get PDF
    The overall success and long-term durability of a patch repair is significantly influenced by the bond developed at the interface between the concrete substrate and the repair material. In turn, the bond strength is influenced by the topography (roughness) of the substrate surface after removal of the defective concrete. However, different removal methods of defective concrete produce substrate surfaces with different topographies. Hence, the ability to measure and characterise the topography of substrate surfaces is of great importance for evaluating the effectiveness of different removal methods. In this paper, the effect of two removal methods: electric chipping hammers and Remote Robotic Hydro-erosion (RRH) on the surface roughness is investigated through the use of a prototype non-contact (optical) laser interferometry measuring device. Laboratory results show that the above equipment can be used to characterise substrate roughness and confirm the ability of RRH to create rougher surfaces as opposed to chipping hammers

    Bond between microwave cured repair and concrete substrate

    Get PDF
    The bond strength between a concrete substrate and repair patch is critical to its durability. This paper investigates the effect of microwave curing the freshly applied repair, for 45 min at 132 Watts, on the 28 day bond strength between substrate concrete and different commercial repair materials. The repairs were applied at different ambient temperatures of 20, 10, 2 and −5 °C. Tensile split tests on repaired cube specimens were performed to determine the interfacial bond strength. The ability of microwave curing to prevent the detrimental effects of freezing at early age on the bond and compressive strength of repair patches is investigated. Experimental results show that microwave curing prevents loss of long term (28 day) repair/substrate bond strength of repair materials applied at freezing temperatures (−5 °C), relative to the repairs applied at higher temperatures (2–20 °C), except one lightweight repair formulation. In comparison, the control samples (non-microwave cured) of repairs applied at −5 °C suffered severe loss of bond strength and compressive strength due to early age freezing. In addition, no adverse effects on the bond strength and a small reduction of 6.75% in the 28 day compressive strength are observed in the early age microwave cured repairs applied at ambient temperatures of 2–20 °C. The repair/substrate bond strength is independent of the compressive strength of the repair material at all temperatures of repair application. Microwave curing can accelerate the concrete repair process and facilitate construction activity in cold weather

    Influence of slag composition on the stability of steel in alkali-activated cementitious materials

    Get PDF
    Among the minor elements found in metallurgical slags, sulfur and manganese can potentially influence the corrosion process of steel embedded in alkali-activated slag cements, as both are redox-sensitive. Particularly, it is possible that these could significantly influence the corrosion process of the steel. Two types of alkali-activated slag mortars were prepared in this study: 100% blast furnace slag and a modified slag blend (90% blast furnace slag? 10% silicomanganese slag), both activated with sodium silicate. These mortars were designed with the aim of determining the influence of varying the redox potential on the stability of steel passivation under exposure to alkaline and alkaline chloride-rich solutions. Both types of mortars presented highly negative corrosion potentials and high current density values in the presence of chloride. The steel bars extracted from mortar samples after exposure do not show evident pits or corrosion product layers, indicating that the presence of sulfides reduces the redox potential of the pore solution of slag mortars, but enables the steel to remain in an apparently passive state. The presence of a high amount of MnO in the slag does not significantly affect the corrosion process of steel under the conditions tested. Mass transport through the mortar to the metal is impeded with increasing exposure time; this is associated with refinement of the pore network as the slag continued to react while the samples were immersed

    Assessment of the physical characteristics and stormwater effluent quality of permeable pavement systems containing recycled materials

    Get PDF
    This paper evaluates the physical characteristics of two recycled materials and the pollutant removal efficiencies of four 0.2 m2 tanked permeable pavement rigs in the laboratory, that contained either natural aggregates or these recycled materials in the sub-base. The selected recycled materials were Crushed Concrete Aggregates (CCA) and Cement-bounded Expanded Polystyrene beads (C-EPS) whilst the natural aggregates were basalt and quartzite. Natural stormwater runoff was used as influent. Effluent was collected for analysis after 7–10 mins of discharge. Influent and effluent were analysed for pH, Chemical Oxygen Demand (COD), Dissolved Oxygen (DO), Electroconductivity (EC), turbidity, Total Suspended Solids (TSS), Total Dissolved Solids (TDS), Nitrate-Nitrogen (NO3-N), reactive phosphorous (PO43-) and sulphates (SO42-). Both CCA and C-EPS had suitable physical properties for use as sub-base materials in PPS. However, C-EPS is recommended for use in pavements with light to no traffic because of its relatively low compressive strength. In terms of pollutant removal efficiencies, significant differences (p 0.05) were found with respect to TSS, turbidity, COD and NO3-N. Effluent from rigs containing CCA and C-EPS saw significant increases in pH, EC and TDS measurements whilst improvements in DO, TSS, turbidity, COD, PO43- and SO42- were observed. All mean values except pH were, however, within the Maximum Permissible Levels (MPLs) of water pollutants discharged into the environment according to the Trinidad and Tobago Environmental Management Authority (EMA) or the United States Environmental Protection Agency (US EPA). In this regard, the CCA and C-EPS performed satisfactorily as sub-base materials in the permeable pavement rigs. It is noted, however, that further analysis is recommended through leaching tests on the recycled materials
    • …
    corecore