368 research outputs found

    The magnetic field topology associated to two M flares

    Full text link
    On 27 October, 2003, two GOES M-class flares occurred in the lapse of three hours in active region NOAA 10486. The two flares were confined and their associated brightenings appeared at the same location, displaying a very similar shape both at the chromospheric and coronal levels. We focus on the analysis of magnetic field (SOHO/MDI), chromospheric (HASTA, Kanzelhoehe Solar Observatory, TRACE) and coronal (TRACE) observations. By combining our data analysis with a model of the coronal magnetic field, we compute the magnetic field topology associated to the two M flares. We find that both events can be explained in terms of a localized magnetic reconnection process occurring at a coronal magnetic null point. This null point is also present at the same location one day later, on 28 October, 2003. Magnetic energy release at this null point was proposed as the origin of a localized event that occurred independently with a large X17 flare on 28 October, 2003, at 11:01 UT. The three events, those on 27 October and the one on 28 October, are homologous. Our results show that coronal null points can be stable topological structures where energy release via magnetic reconnection can happen, as proposed by classical magnetic reconnection models.Comment: 14 pages, 7 figure

    Electric current in flares ribbons: observations and 3D standard model

    Full text link
    We present for the first time the evolution of the photospheric electric currents during an eruptive X-class flare, accurately predicted by the standard 3D flare model. We analyze this evolution for the February 15, 2011 flare using HMI/SDO magnetic observations and find that localized currents in \J-shaped ribbons increase to double their pre-flare intensity. Our 3D flare model, developed with the OHM code, suggests that these current ribbons, which develop at the location of EUV brightenings seen with AIA imagery, are driven by the collapse of the flare's coronal current layer. These findings of increased currents restricted in localized ribbons are consistent with the overall free energy decrease during a flare, and the shape of these ribbons also give an indication on how much twisted the erupting flux rope is. Finally, this study further enhances the close correspondence obtained between the theoretical predictions of the standard 3D model and flare observations indicating that the main key physical elements are incorporated in the model.Comment: 12 pages, 7 figure

    The origin of net electric currents in solar active regions

    Full text link
    There is a recurring question in solar physics about whether or not electric currents are neutralized in active regions (ARs). This question was recently revisited using three-dimensional (3D) magnetohydrodynamic (MHD) numerical simulations of magnetic flux emergence into the solar atmosphere. Such simulations showed that flux emergence can generate a substantial net current in ARs. Another source of AR currents are photospheric horizontal flows. Our aim is to determine the conditions for the occurrence of net vs. neutralized currents with this second mechanism. Using 3D MHD simulations, we systematically impose line-tied, quasi-static, photospheric twisting and shearing motions to a bipolar potential magnetic field. We find that such flows: (1) produce both {\it direct} and {\it return} currents, (2) induce very weak compression currents - not observed in 2.5D - in the ambient field present in the close vicinity of the current-carrying field, and (3) can generate force-free magnetic fields with a net current. We demonstrate that neutralized currents are in general produced only in the absence of magnetic shear at the photospheric polarity inversion line - a special condition rarely observed. We conclude that, as magnetic flux emergence, photospheric flows can build up net currents in the solar atmosphere, in agreement with recent observations. These results thus provide support for eruption models based on pre-eruption magnetic fields possessing a net coronal current.Comment: 14 pages and 11 figures (Accepted in The Astrophysical Journal

    Numerical Simulation of Current Sheet Formation in a Quasi-Separatrix Layer using Adaptive Mesh Refinement

    Get PDF
    The formation of a thin current sheet in a magnetic quasi-separatrix layer (QSL) is investigated by means of numerical simulation using a simplified ideal, low-β\beta, MHD model. The initial configuration and driving boundary conditions are relevant to phenomena observed in the solar corona and were studied earlier by Aulanier et al., A&A 444, 961 (2005). In extension to that work, we use the technique of adaptive mesh refinement (AMR) to significantly enhance the local spatial resolution of the current sheet during its formation, which enables us to follow the evolution into a later stage. Our simulations are in good agreement with the results of Aulanier et al. up to the calculated time in that work. In a later phase, we observe a basically unarrested collapse of the sheet to length scales that are more than one order of magnitude smaller than those reported earlier. The current density attains correspondingly larger maximum values within the sheet. During this thinning process, which is finally limited by lack of resolution even in the AMR studies, the current sheet moves upward, following a global expansion of the magnetic structure during the quasi-static evolution. The sheet is locally one-dimensional and the plasma flow in its vicinity, when transformed into a co-moving frame, qualitatively resembles a stagnation point flow. In conclusion, our simulations support the idea that extremely high current densities are generated in the vicinities of QSLs as a response to external perturbations, with no sign of saturation.Comment: 6 Figure

    Topological Analysis of Emerging Bipole Clusters Producing Violent Solar Events

    Get PDF
    During the rising phase of Solar Cycle 24 tremendous activity occurred on the Sun with fast and compact emergence of magnetic flux leading to bursts of flares (C to M and even X-class). We investigate the violent events occurring in the cluster of two active regions (ARs), NOAA numbers 11121 and 11123, observed in November 2010 with instruments onboard the {\it Solar Dynamics Observatory} and from Earth. Within one day the total magnetic flux increased by 70%70\% with the emergence of new groups of bipoles in AR 11123. From all the events on 11 November, we study, in particular, the ones starting at around 07:16 UT in GOES soft X-ray data and the brightenings preceding them. A magnetic-field topological analysis indicates the presence of null points, associated separatrices and quasi-separatrix layers (QSLs) where magnetic reconnection is prone to occur. The presence of null points is confirmed by a linear and a non-linear force-free magnetic-field model. Their locations and general characteristics are similar in both modelling approaches, which supports their robustness. However, in order to explain the full extension of the analysed event brightenings, which are not restricted to the photospheric traces of the null separatrices, we compute the locations of QSLs. Based on this more complete topological analysis, we propose a scenario to explain the origin of a low-energy event preceding a filament eruption, which is accompanied by a two-ribbon flare, and a consecutive confined flare in AR 11123. The results of our topology computation can also explain the locations of flare ribbons in two other events, one preceding and one following the ones at 07:16 UT. Finally, this study provides further examples where flare-ribbon locations can be explained when compared to QSLs and only, partially, when using separatrices.Comment: 42 pages, 15 figure

    Photospheric flux density of magnetic helicity

    Get PDF
    Copyright © 2005 EDP Sciences. This article appeared in Astronomy & Astrophysics 439 (2005) and may be found at http://www.aanda.org/index.php?option=article&access=doi&doi=10.1051/0004-6361:20052663Several recent studies have developed the measurement of magnetic helicity flux from the time evolution of photospheric magnetograms. The total flux is computed by summing the flux density over the analyzed region. All previous analyses used the density GA (=−2(A•u)Bn) which involves the vector potential A of the magnetic field. In all the studied active regions, the density GA has strong polarities of both signs with comparable magnitude. Unfortunately, the density GA can exhibit spurious signals which do not provide a true helicity flux density. The main objective of this study is to resolve the above problem by defining the flux of magnetic helicity per unit surface. In a first step, we define a new density, Gθ, which reduces the fake polarities by more than an order of magnitude in most cases (using the same photospheric data as GA). In a second step, we show that the coronal linkage needs to be provided in order to define the true helicity flux density. It represents how all the elementary flux tubes move relatively to a given elementary flux tube, and the helicity flux density is defined per elementary flux tube. From this we define a helicity flux per unit surface, GΦ. We show that it is a field-weighted average of Gθ at both photospheric feet of coronal connections. We compare these three densities (GA, Gθ, GΦ) using theoretical examples representing the main cases found in magnetograms (moving magnetic polarities, separating polarities, one polarity rotating around another one and emergence of a twisted flux tube). We conclude that Gθ is a much better proxy of the magnetic helicity flux density than GA because most fake polarities are removed. Indeed Gθ gives results close to GΦ and should be used to monitor the photospheric injection of helicity (when coronal linkages are not well known). These results are applicable to the results of any method determining the photospheric velocities. They can provide separately the flux density coming from shearing and advection motions if plasma motions are known

    Expansion of magnetic clouds in the outer heliosphere

    Get PDF
    A large amount of magnetized plasma is frequently ejected from the Sun as coronal mass ejections (CMEs). Some of these ejections are detected in the solar wind as magnetic clouds (MCs) that have flux rope signatures. Magnetic clouds are structures that typically expand in the inner heliosphere. We derive the expansion properties of MCs in the outer heliosphere from one to five astronomical units to compare them with those in the inner heliosphere. We analyze MCs observed by the Ulysses spacecraft using insitu magnetic field and plasma measurements. The MC boundaries are defined in the MC frame after defining the MC axis with a minimum variance method applied only to the flux rope structure. As in the inner heliosphere, a large fraction of the velocity profile within MCs is close to a linear function of time. This is indicative of} a self-similar expansion and a MC size that locally follows a power-law of the solar distance with an exponent called zeta. We derive the value of zeta from the insitu velocity data. We analyze separately the non-perturbed MCs (cases showing a linear velocity profile almost for the full event), and perturbed MCs (cases showing a strongly distorted velocity profile). We find that non-perturbed MCs expand with a similar non-dimensional expansion rate (zeta=1.05+-0.34), i.e. slightly faster than at the solar distance and in the inner heliosphere (zeta=0.91+-0.23). The subset of perturbed MCs expands, as in the inner heliosphere, at a significantly lower rate and with a larger dispersion (zeta=0.28+-0.52) as expected from the temporal evolution found in numerical simulations. This local measure of the expansion also agrees with the distribution with distance of MC size,mean magnetic field, and plasma parameters. The MCs interacting with a strong field region, e.g. another MC, have the most variable expansion rate (ranging from compression to over-expansion)

    Criteria for Flux Rope Eruption: Non Equilibrium versus Torus Instability

    Full text link
    The coronal magnetic configuration of an active region typically evolves quietly during few days before becoming suddenly eruptive and launching a coronal mass ejection (CME). The precise origin of the eruption is still debated. Among several mechanisms, it has been proposed that a loss of equilibrium, or an ideal magneto-hydrodynamic (MHD) instability such as the torus instability, could be responsible for the sudden eruptivity. Distinct approaches have also been formulated for limit cases having circular or translation symmetry. We revisit the previous theoretical approaches, setting them in the same analytical framework. The coronal field results from the contribution of a non-neutralized current channel added to a background magnetic field, which in our model is the potential field generated by two photospheric flux concentrations. The evolution on short Alfvenic time scale is governed by ideal MHD. We show analytically first that the loss of equilibrium and the stability analysis are two different views of the same physical mechanism. Second, we identify that the same physics is involved in the instability of circular and straight current channels. Indeed, they are just two particular limiting case of more general current paths. A global instability of the magnetic configuration is present when the current channel is located at a coronal height, h, large enough so that the decay index of the potential field, (d ln |Bp|) / (d ln h) is larger than a critical value. At the limit of very thin current channels, previous analysis found a critical decay index of 1.5 and 1 for circular and straight current channels, respectively. However, with current channels being deformable and as thick as expected in the corona, we show that this critical index has similar values for circular and straight current channels, typically in the range [1.1,1.3].Comment: 12 pages, 4 figure

    Recurrent Coronal Jets Induced by Repetitively Accumulated Electric Currents

    Full text link
    Three extreme-ultraviolet (EUV) jets recurred in about one hour on 2010 September 17 in the following magnetic polarity of active region 11106. The EUV jets were observed by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). The Helioseismic and Magnetic Imager (HMI) on board SDO measured the vector magnetic field, from which we derive the magnetic flux evolution, the photospheric velocity field, and the vertical electric current evolution. The magnetic configuration before the jets is derived by the nonlinear force-free field (NLFFF) extrapolation. We derive that the jets are above a pair of parasitic magnetic bipoles which are continuously driven by photospheric diverging flows. The interaction drove the build up of electric currents that we indeed observed as elongated patterns at the photospheric level. For the first time, the high temporal cadence of HMI allows to follow the evolution of such small currents. In the jet region, we found that the integrated absolute current peaks repetitively in phase with the 171 A flux evolution. The current build up and its decay are both fast, about 10 minutes each, and the current maximum precedes the 171 A by also about 10 minutes. Then, HMI temporal cadence is marginally fast enough to detect such changes. The photospheric current pattern of the jets is found associated to the quasi-separatrix layers deduced from the magnetic extrapolation. From previous theoretical results, the observed diverging flows are expected to build continuously such currents. We conclude that magnetic reconnection occurs periodically, in the current layer created between the emerging bipoles and the large scale active region field. It induced the observed recurrent coronal jets and the decrease of the vertical electric current magnitude.Comment: 10 pages, 7 figures, accepted for publication in A&
    corecore