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The formation of a thin current sheet in a magnetic quasiseparatrix layer �QSL� is investigated by
means of numerical simulation using a simplified ideal, low-�, MHD model. The initial
configuration and driving boundary conditions are relevant to phenomena observed in the solar
corona and were studied earlier by Aulanier et al. �Astron. Astrophys. 444, 961 �2005��. In
extension to that work, we use the technique of adaptive mesh refinement �AMR� to significantly
enhance the local spatial resolution of the current sheet during its formation, which enables us to
follow the evolution into a later stage. Our simulations are in good agreement with the results of
Aulanier et al. up to the calculated time in that work. In a later phase, we observe a basically
unarrested collapse of the sheet to length scales that are more than one order of magnitude smaller
than those reported earlier. The current density attains correspondingly larger maximum values
within the sheet. During this thinning process, which is finally limited by lack of resolution even in
the AMR studies, the current sheet moves upward, following a global expansion of the magnetic
structure during the quasistatic evolution. The sheet is locally one-dimensional and the plasma flow
in its vicinity, when transformed into a comoving frame, qualitatively resembles a stagnation point
flow. In conclusion, our simulations support the idea that extremely high current densities are
generated in the vicinities of QSLs as a response to external perturbations, with no sign of
saturation. © 2011 American Institute of Physics. �doi:10.1063/1.3565018�

I. INTRODUCTION

The spontaneous formation of thin current sheets is be-
lieved to play an important role in the dynamics of astro-
physical plasmas like the solar corona and, in particular, for
the onset of magnetic reconnection. In fact, impulsive events
like solar flares and coronal mass ejections are often associ-
ated with magnetic reconnection as a mechanism that effec-
tively releases magnetic energy, which in turn calls for
highly concentrated electrical currents to explain the break-
down of ideal plasma behavior by means of e.g., microinsta-
bilities in the noncollisional coronal plasma.

Recently, the study of magnetic field configurations as
candidates for reconnection has shifted from separatrix sur-
faces toward quasiseparatrix layers �QSLs�.1–3 In contrast to
genuine separatrix configurations, QSL fields do not neces-
sarily contain magnetic null points in 3D, which makes them
relevant in many more situations than strict separatrices.
QSLs describe a magnetic field mapping between two
boundaries that is continuous, but changes rapidly in space.
This change has been quantified in terms of a flux tube
“squashing factor” Q �Ref. 4� and more recently generalized
to remove boundary projection effects.5 In accordance with
the significance of QSLs for magnetic reconnection, the
problem of current sheet formation has been investigated.
Here, Titov et al.6 and Galsgaard et al.7 studied the formation
of current sheets in a straight hyperbolic flux tube �HFT�
configuration both analytically and numerically, and found

exponential growth of the current density as a response to
shearing magnetic footpoint motion. One major conclusion
of that work was that a shear in the applied boundary motion
was important, if not essential, for the formation of thin cur-
rent sheets, and that the creation of a stagnation point flow in
the HFT was the key element in this process. However, this
has been later questioned by Aulanier et al.:8 They argued
that the initial squashing factor Q in the simulations of Gals-
gaard et al., probably together with additional symmetry
properties, was too small to account for highly concentrated
currents, and that the shear boundary motion and stagnation
point flow in Ref. 7 served as to dynamically create thin
QSLs only during the simulation. This argument was under-
pinned in Ref. 8 through extensive comparison between
magneto-hydrodynamic �MHD� simulations of less symmet-
ric potential magnetic field configurations which initially re-
sult from four magnetic point sources submerged below a
photospheric boundary. They contain QSLs with squashing
factors of up to Q�105 and were exposed to different
boundary driver patterns, namely a shear and a translational
motion. Aulanier et al. observed the formation of thin, in-
tense current sheets, almost irrespective of the type of ap-
plied boundary driving, which stresses the relevance of the
initial field geometry and QSL strength, rather than the
boundary motion, for current sheet formation. Later, that
work has been extended by finite resistivity to simulate mag-
netic reconnection at that thin current sheet9 with its strong
temporal change in magnetic connectivity.

A general limitation of these previous numerical studiesa�Electronic mail: juergen.dreher@rub.de.

PHYSICS OF PLASMAS 18, 032902 �2011�

1070-664X/2011/18�3�/032902/6/$30.00 © 2011 American Institute of Physics18, 032902-1

Downloaded 16 May 2013 to 134.94.122.141. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pop.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.3565018
http://dx.doi.org/10.1063/1.3565018
http://dx.doi.org/10.1063/1.3565018


was the lack of reasonable numerical grid resolution at the
sites of current sheet formation:9 during the formation pro-
cess, the currents get more and more concentrated locally so
that the sheet scales quickly reach the numerical grid spac-
ing. This left open the question whether the current concen-
tration would continue to length scales small enough to ac-
count for the onset of microinstabilities, or if this process
would get arrested at some larger length scale. In order to
address this question, but also get more insight into the local
dynamics in the immediate vicinities of the current sheets,
we have carried out numerical simulations in the spirit of
Ref. 8, using one of their initial configurations and boundary
drivers. However, we used the technique of adaptive mesh
refinement �AMR�, implemented in the code racoon,10 in
order to obtain a much higher grid resolution in the current
sheet vicinity than was reported earlier. This allowed us to
obtain insight into the formation process that reaches beyond
the previous results.

In the next section, we will briefly describe the model
that we employed in our studies, while results that comple-
ment the work of Ref. 8 are given in Sec. III, followed by a
summary and conclusion in the last section.

II. BASIC EQUATIONS AND NUMERICAL MODEL

Our simulations are based on a reduced subset of the
MHD equations, appropriate for the quasistatic, low-� re-
gime, where � is the ratio of thermal to magnetic pressure. In
normalized quantities, it reads

�tv = − v · �v +
1

�
j � B + ��v �1a�

�tB = � � �v � B� + ��B − �� �1b�

j = � � B �1c�

�t� = − ch
2 � · B + cl�� . �1d�

Pressure terms are omitted from the momentum Eq. �1a� be-
cause of the low-� approximation. As we are interested in a
quasistationary evolution of the system, i.e., the limit of high
wave speeds, we replace the continuity equation by a direct
prescription of a relaxation mass density, namely �ªB2.
This approach results in an homogeneous Alfvén velocity
cAª �B� /��=1 and fast communication of unbalanced forces
throughout the system, which shortens relaxation times and
has been successfully used in other studies.11 Constant kine-
matic viscosity �=5·10−4 and resistivity �=5·10−6 are in-
cluded only to guarantee numerical stability on the grid scale
and have little effect on the overall evolution. The artificial
scalar function � and its dynamic Eq. �1d� serve as a con-
venient means to constrain any finite � ·B, resulting from
discretization errors, to negligible values:12 combining
�t� ·Eq. �1b� and �Eq. �1d� results in the mixed equation

�tt � · B = ch
2� � · B + �� + cl���t � · B − cl��2 � · B

for � ·B. The crucial term on the right side is the first
Laplacian, which describes a hyperbolic transport of � ·B
with velocity ch and leads to radiative distribution of � ·B

throughout the computational domain, while it gets dissi-
pated by phase mixing and diffusion according to the other
two terms. Note that there is freedom in a specific choice for
the �-Eq. �1d� as it is of the order of the discretization error
anyway. For instance, while Dedner et al.12 discuss the term
−�ch

2 /cp
2�� �see their Eq. �19� resp. Eq. �24e�� to arrive at a

telegraph equation for � and � ·B in the continuous case, we
found this unnecessary, although possible, for our computa-
tions. The main reason for this seems to be that in our case,
the sources of � ·B-errors are highly localized regions in
space, namely the regions of intense currents, so that the
hyperbolic transport is the dominating cleaning effect. On
the other hand, we added the term cl�� in Eq. �1d�, which is
not discussed in this specific form in Ref. 12. Its motivation
is, however, not so much a change in the � ·B-cleaning prop-
erty itself, but the observation that the purely hyperbolic
choice, i.e., Eq. �1d� with cl=0, tends to introduce odd-even-
decoupling on the centered finite difference grid that we
used. This decoupling, which was not an issue in Ref. 12
since they employed finite volume schemes in finite element
discretizations, could be healed satisfactorily through the ad-
ditional Laplacian term which couples �-values on neigh-
boring grid points with each other. We finally found overall
good � ·B-cleaning properties when choosing the numerical
parameter values to cl=5·10−4 and ch

2=5 ·10−2.
The equations are discretized in a domain of �x ,y ,z�

� �−0.7,0.7�� �−0.5,0.5�� �0,0.5�, where we identify the
plane z=0 with the solar photosphere. Integration is per-
formed with a strongly stable third-order Runge–Kutta
scheme,13 spatial differentiation is realized with standard
second-order finite differences. In order to resolve the ex-
pected small-scale features, we employed the block-
structured AMR framework racoon.10 Here, we used the
norm of the magnetic field gradient, �B, to derive a local
length scale for B that serves as an indicator criterion for
local mesh refinement. Effective local grid resolutions ob-
tained with this technique were 40963 in the present work.

Initial conditions are adapted from Ref. 8, where we ad-
dress the magnetic field configuration resulting from two
pairs of opposite polarity photospheric flux patches whose
respective connecting axes intersect at an angle of 150°. Spe-
cifically, the initial magnetic field stems from four virtual
magnetic point sources, indexed by i, below the photosphere

B�r� = 	
i=1

4

Fi
r − ri

�r − ri�3
�2�

with respective source strengths F1=−F2=1 and F3=−F4

=0.4 and locations r1,2= �	�1 /2� ,0 ,−�1 /5�� and r3,4

= �
��3 /20� , 	 �1 /20� ,−�1 /10��, respectively. This field ge-
ometry is known to contain two symmetric dome-shaped
QSLs with squashing factors of Q�105, intersecting in a
hyperbolic flux tube �see Ref. 8 for details�.

In the course of the simulation, the field is exposed to a
horizontal photospheric vortex flow around the magnetic
source i=3 in Eq. �2�, realized by prescribing the boundary
condition for v at z=0. The maximum flow velocity is
max��vBnd.���2·10−2 and it gets ramped up in time accord-
ing to �1 /2
tanh��5 /2��t−1��+1�.
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The detailed treatment of the lower boundary is as fol-
lows: as all quantities are discretized as cell-centered vari-
ables, boundary conditions have to provide values for v, B
and � at z1/2ª�z /2 in a way that is consistent with the
evolution equations and the overall second order accuracy in
the grid spacing �z. Denoting the boundary values of indi-
vidual quantities at z=0 with a hat, the velocity v̂=vBnd. is
explicitly given from the prescribed horizontal vortex flow,
and in particular, v̂z=0. All components of v at z1/2 can now
simply be interpolated in z- direction with second order ac-
curacy between z=0 and the interior grid points above z1/2.
Using this direct forcing, there is no need to compute j or the
Lorentz force at z1/2 at all, hence we do not need the hori-

zontal components of B̂ at this stage. Now, to integrate B, we
note that the convective part of the Bz-equation becomes au-
tonomous in the boundary plane, involving no other undeter-
mined quantities nor any derivatives normal to the boundary:
Writing the convective electric field as Eª−v�B gives

Êx=−v̂yB̂z and Êy = v̂xB̂z so that �tB̂z=−�h · �v̂hB̂z� where the
index h indicates horizontal vector projections, e.g., the pre-
scribed v̂h= �v̂x , v̂y�, and �hª ��x ,�y�. In other words, when
ignoring the numerically motivated resistive diffusion and

��-terms, we are able to integrate the “proper” B̂z com-
pletely for its own, which in turn allows us again to interpo-
late Bz at z1/2 up to O��z

2�, similar to v above. Now, this

proper B̂z-equation also determines Êh, which allows to up-
date Bh at z1/2. At this point, the magnetic diffusion and
� ·B-cleaning terms are taken into account as usual, where
the former requires an extrapolation of Bh across z=0. Fi-
nally, the right side of Eq. �1d� is easily evaluated at z1/2,

using B̂z from above and the Dirichlet condition �̂=0.
While the upper and lateral boundaries can in principle

be handled in the same fashion, using the no-slip and no-
penetration condition v=0, we used a simpler approach
there: Setting v to zero ahead of the boundaries, keeping the

tangential components of B fixed in ghost cells and applying
solenoidal and homogeneous Dirichlet conditions to the nor-
mal components of B and �, respectively, proved to be suf-
ficient for those passive boundaries. Note, in particular, that
no artificial Lorentz forces act there either.

The boundary treatment described above presumes a ho-
mogeneous numerical grid. It has been applied in the same
spirit to the AMR simulations that we present here, where
additional complications occur at the interfaces between
neighboring grid blocks of different mesh resolution that
abut the physical boundaries. Without going into details, we
only mention that additional coarse-fine and fine-coarse in-

terpolations are needed for the computation of B̂z and Ê at
those junctions, but that they do not pose any fundamental
new challenge apart from the programming complexity.

III. RESULTS

After applying the photospheric boundary driving in v,
dynamic shear modes travel into the domain and mix there.
On the scale of a few Alfvén transit times, the magnitude of
the current density grows significantly and a quasistationary
current system as shown in Fig. 1 builds up. It consists partly
of relatively weak currents which are distributed on a large
scale in a dome-like structure that is predetermined by mag-
netic field lines connecting the driver region with the oppo-
site polarity regions of the photosphere. On top of this, a
highly localized thin current sheet can be identified in the
vicinity of �x ,z���0,0.18� in Fig. 1. This thin current sheet
actually lies inside the preexisting QSL of the initial mag-
netic field. We interpret the striation patterns at x�−0.4 in
Fig. 1 as signatures of MHD waves on field lines which
connect the strong photospheric field region with the current
sheet during the evolution.

These results are basically in good agreement with those
published earlier by Aulanier et al.8 However, the sheet

FIG. 1. �Color online� Color coded �j� in the plane y=0 at t=5.0. Extended
current systems match those reported by Ref. 8. The thin current sheet of
interest formed inside of the red rectangle and is hardly visible on these
scales. Maximum values of �j� are �400 near the photospheric boundary,
and �1000 in the marked region. Block lines indicate the layout of the
recursively refined grid blocks, each containing 163 cells. The two finest
block levels are omitted for clarity.
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FIG. 2. Plot of �j� vs z at x=y=0 taken at times t=4.2,4.7,5.0,5.4,5.8.
The inset expands the relevant current sheet height range. Maximum values
of �j� are �300, 600, 960, 1700, and 2900, respectively, increasing
monotonically in time. The current sheet moves upwards and thins
with respective full width at half maximum �FWHM� values of
�4.2·10−3 ,1.9·10−3 ,1.2·10−3 ,7.2·10−4 and 4.8·10−4.
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thickness at the stage shown in Fig. 1 is already on the nu-
merical grid scale of Ref. 8, so that their studies were unable
to investigate into the further evolution or features on smaller
scales.

The temporal evolution of the sheet is displayed in Fig. 2
which shows the vertical profiles of �j� at x=y=0 for four
different times. It is evident that the sheet thickness de-
creases with time while the value of maximum current den-

sity increases accordingly to reach values of �3·103 in the
latest stage. At the same time, the sheet moves upwards, as
indicated by the inset graphs. In fact, we find that the entire
magnetic structure expands gradually as a response to the
boundary driving, and the current sheet as a substructure is
embedded in this motion. An other detail that emerges from
Fig. 2 is the fact that up to t�4.4, the most intense currents
are not yet found in the thin current sheet itself, but in the
large-scale system at z�0.02, i.e., close to the photospheric
driver �see also Fig. 1�. It is only at later times, that the thin
sheet dominates in the current intensity.

This phenomenon is also visible in the temporal evolu-
tion of max��j��, which is plotted logarithmically against time
in Fig. 3: the early phase, with rather fast growth of max��j��,
corresponds to the ramp-up of the boundary driver, which
essentially reaches its maximum magnitude around t�1.7.
This is followed by a slower growth rate of the current maxi-
mum up to t�4.7. During this stage, the maximum values
stem from the extended currents close to the photosphere
�compare with Fig. 2�, which eventually get overtaken by the
faster growth of the thin embedded current sheet. Further
intensification continues, with amplification of max��j�� by
roughly a factor of 5, until the growth slows down at
t�5.5. At this time, the sheet thickness is only a few times
the numerical grid scale and thereby poorly resolved with
artificial diffusion effects becoming competitive.

Figure 4 shows details of the sheet in the cut plane
y=0 for three different times. Again, the overall upward
motion and the thinning and intensification of the sheet are
well visible. In addition, we have plotted the plasma velocity

FIG. 3. Growth of the maximum of �j�, taken over the entire domain, against
time.

FIG. 4. �Color online� Color coded �j� and velocity components �vx ,vz� as arrows in the plane y=0 at times t=4.2, 5.0, and 5.8 �left to right�. Arrows in the
upper row show the plasma velocity in the fixed reference frame, while v has been transformed into the comoving frames of the current sheet for the
lower figures. The transformation velocities are �Vx ,Vz�= �−3,6� ·10−3 , �−10,8� ·10−3 and �−7,7� ·10−3, respectively with the transformed ��vx ,vz��
attaining maximum values of 1.6·10−2 ,2.3·10−2 and 3.0·10−2 �left to right�. Note also that the x- and z-coordinates on the axes are relative to the point
�x0 ,z0�= �−2.5,18� ·10−2.
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as arrows, projected into the displayed plane, to give an im-
pression of the flow in the vicinity of the current sheet. While
the upper row shows the velocity relative to the fixed simu-
lation frame, the plots in the lower row show the flow trans-
formed to a frame which is co-moving with the expansion
velocity of the structure. To this end, we identified the loca-
tions of maximum current density in the plane y=0 from
plots of successive data output sets, and computed a pattern
velocity from their difference. This velocity was then sub-
tracted from the plasma flow velocity in the lower plots of
Fig. 4. There have been controversial discussions as to
whether the current sheet formation at the hyperbolic flux
tube embedded in the QSL is related to a stagnation point
flow.7,8 In particular, Aulanier et al. claim that no stagnation
point exists at the intense current sheet. This is certainly
confirmed by our simulation, however we remark that the
focus on a strict definition of stagnation point, i.e., v=0,
maybe somewhat misleading because �i� the velocity is sen-
sitive to the chosen frame of reference, and �ii� the compo-
nent along the current sheet should be discarded from these
considerations anyway, because it largely decouples from the
mechanism of magnetic shearing discussed in Refs. 6 and 7.
The flow pattern projected into the y-z-plane is shown in Fig.
5, again transformed into a frame that moves upward with
the current sheet and, in addition, results in vy =0 in the
current sheet center. This figure also demonstrates that the
current sheet is indeed elongated in the y-direction. Hence, at
least in the latest stage displayed in Figs. 4 and 5, it can be
treated as a quasi-one-dimensional sheet. Finally, we remark
that the assumption of a quasistationary evolution loses its
validity in the late stage of the sheet evolution: obviously, the
collapse becomes a localized, dynamic process associated
with significant magnetic forces. This can be seen from the
field line plot shown in Fig. 6, where magnetic field lines
connecting the thin current sheet with the photosphere have
been colored with the quantity �ª �j� / �B�. For a force-free
field, j�B=0, the value of � is constant along magnetic field
lines. This condition is obviously not met in the QSL, which
means that the currents close locally across field lines.

IV. CONCLUSIONS

We carried out numerical simulations of current sheet
formation in a quasiseparatrix layer using a simplified MHD
model appropriate for the quasistatic evolution of a low-�
plasma. The setting under consideration has been investi-
gated before Ref. 8 and our results agree well with that work
as long as the current sheet structure is well resolved in both
studies. With the use of local AMR, we were able to follow
the thinning of the current sheet further down to a scale
which is about one order of magnitude smaller than previ-
ously investigated. In particular, our simulations reached a
stage in which the maxima of �j� in the upper part of the QSL
grow significantly beyond the values close to the photo-
spheric boundaries, which gives clear evidence that the most
intense current densities actually can be expected in the up-
per part of the QSL. This late stage is characterized by a
relatively fast collapse of the locally almost one-dimensional
sheet with an approximately exponential increase of max��j��
in time, and the evolution is no more quasistatic at this point.

When magnetic forces become significant in this late
stage of the current sheet formation, full nonlinear MHD
dynamics will take place. Previous studies have addressed
details of the local dynamics of such current sheets using
appropriate initial conditions and periodic systems �e.g. Ref.
14 and the references therein�. There, one particular question
has been whether the current density might form a singular-
ity in finite time, or whether its growth is limited to merely,
e.g., exponential behavior. On theoretical grounds, it could
be shown that a dynamical alignment between the velocity
and the magnetic field would bound �j� to exponential
growth. Analyzing our data further, we actually found indi-
cations of such an alignment �not shown here�, so that we
expect to see a collapse of the sheet with exponential growth,
i.e., a continuation of the phase observed between t�4.7 and
�5.5 in Fig. 3, given that it could be resolved numerically.
At present however, even our AMR simulations are limited

FIG. 5. �Color online� Color coded �j� and velocity components �vy ,vz�
at x=−2.5·10−2 and t=5.8, corresponding to the bottom right plot in
Fig. 4. Here, v has been transformed into the comoving frame
�Vy ,Vz�= �−6,7� ·10−3 and max��v���1.1·10−2 in that frame. Coordinates
are relative to �y0 ,z0�= �0,0.18�.

FIG. 6. �Color online� Color coded �= �j� / �B� in the planes y=0 and z=0 at
t=5.8. The maximum value �m�2·103 is attained in the current sheet center
�red�. The magnetic field lines, starting equidistant from �0.03, 0, 0.175� to
�0.03, 0, 0.185�, are also color coded with � and show that B ·���0, i.e.,
the magnetic field deviates significantly from a force-free field.
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by the lack of further resolution and by numerical side-
effects like artificial stabilizing diffusion.

The plasma flow pattern has been analyzed in a cut plane
that is approximately perpendicular to the local direction of
the current density in the sheet: If transformed into a frame
that moves with the expanding structure, it exhibits a shear
pattern which arises from a vortex below and a large-scale
flow above. The vortex maps to the vortical boundary driver,
while the large-scale flow is related to the slow overall ex-
pansion of the magnetic structure.

In this paper, we have only addressed the case of one
specific boundary perturbation, namely a twisting motion at
the footpoints. We have also conducted a number of simula-
tions with a translational motion analogous to that used in
Ref. 8, and observed comparable behavior in these cases as
well. In particular, the achieved current densities continued
to rise at similar rates until they were restricted by finite grid
resolution.

ACKNOWLEDGMENTS

The authors would like to thank G. Aulanier for helpful
discussions during the preparation of the manuscript, and an
anonymous referee for comments that helped to improve it.

This work was supported by Deutsche Forschungsge-
meinschaft through Forschergruppe FOR 1048 and by the
European Commission through the Solaire network �Grant
No. MTRN-CT-2006-035484�.

1P. Démoulin, J. C. Henoux, E. R. Priest, and C. H. Mandrini, Astron.
Astrophys. 308, 643 �1996�.

2P. Démoulin, E. R. Priest, and D. P. Lonie, J. Geophys. Res. 101, 7631,
doi:10.1029/95JA03558 �1996�.

3L. Milano, P. Dmitruk, C. Mandrini, and D. Gómez, Astrophys. J. 521,
889 �1999�.

4V. S. Titov and G. Hornig, Adv. Space Res. 29, 1087 �2002�.
5V. S. Titov, Astrophys. J. 660, 863 �2007�.
6V. S. Titov, K. Galsgaard, and T. Neukirch, Astrophys. J. 582, 1172
�2003�.

7K. Galsgaard, V. S. Titov, and T. Neukirch, Astrophys. J. 595, 506 �2003�.
8G. Aulanier, E. Pariat, and P. Démoulin, Astron. Astrophys. 444, 961
�2005�.

9G. Aulanier, E. Pariat, P. Démoulin, and C. R. Devore, Sol. Phys. 238,
347 �2006�.

10J. Dreher and R. Grauer, Parallel Comput. 31, 913 �2005�.
11L. Arnold, J. Dreher, R. Grauer, H. Soltwisch, and H. Stein, Phys. Plasmas

15, 042106 �2008�.
12A. Dedner, F. Kemm, D. Kröner, C. Munz, T. Schnitzer, and M.

Wesenberg, J. Comput. Phys. 175, 645 �2002�.
13C. Shu and S. Osher, J. Comput. Phys. 77, 439 �1988�.
14R. Grauer and C. Marliani, Phys. Rev. Lett. 84, 4850 �2000�.

032902-6 Effenberger et al. Phys. Plasmas 18, 032902 �2011�

Downloaded 16 May 2013 to 134.94.122.141. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pop.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1029/95JA03558
http://dx.doi.org/10.1086/307563
http://dx.doi.org/10.1016/S0273-1177(02)00021-2
http://dx.doi.org/10.1086/512671
http://dx.doi.org/10.1086/344799
http://dx.doi.org/10.1086/377258
http://dx.doi.org/10.1051/0004-6361:20053600
http://dx.doi.org/10.1007/s11207-006-0230-2
http://dx.doi.org/10.1016/j.parco.2005.04.011
http://dx.doi.org/10.1063/1.2903904
http://dx.doi.org/10.1006/jcph.2001.6961
http://dx.doi.org/10.1016/0021-9991(88)90177-5
http://dx.doi.org/10.1103/PhysRevLett.84.4850

