20 research outputs found

    Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    Get PDF
    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{6×10196\times 10^{19}eV}. The anisotropy was measured by the fraction of arrival directions that are less than 3.13.1^\circ from the position of an active galactic nucleus within 75 Mpc (using the V\'eron-Cetty and V\'eron 12th12^{\rm th} catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (386+7)(38^{+7}_{-6})%, compared with 2121% expected for isotropic cosmic rays. This is down from the early estimate of (6913+11)(69^{+11}_{-13})%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201

    Wavelet-based Self-Organizing Maps for classifying multivariate time series

    No full text
    Following a nonparametric approach, we suggest a time series clustering method. Our clustering approach combines the benefits connected to the interpretative power of the nonparametric representation of the time series, and the clustering and vector quantization informational gain produced by the adopted unsupervised neural networks technique, enhanced with the Self-Organizing Maps ordering and topological preservation abilities. The proposed clustering method takes into account a composite wavelet-based information of the multivariate time series by adding to the information connected to the wavelet variance, viz., the influence of variability of individual univariate components of the multivariate time series across scales, the information associated to wavelet correlation, represented by the interaction between pairs of univariate components of the multivariate time series at each scale, and then suitably tuning the combination of these pieces of information. In order to assess the effectiveness of the proposed clustering approach a simulation study and an empirical application are shown

    Structure of regional dykes and local cone sheets in the Midhyrna-Lysuskard area, Snaefellsnes Peninsula (NW Iceland).

    No full text
    This paper provides the first detailed structural description of 48 vertical dykes, 384 inclined sheets and two large intrusions and the geometry (strike, dip direction and dip) of 1116 fractures in the central area of the Snaefellsnes peninsula, NW Iceland. Our data show a more complex set- ting than that depicted by the WNW-ESE en-echelon trend of the volcanic structures at the surface. In the Miocene basement lavas, dykes dominantly strike N50\u2013100\ub0E whereas other directions are also present with a higher dispersion. Two main swarms of centrally dipping sheets have also been recog- nized, focussing towards two areas. Sheet dips range from 2 to 75\ub0 with the higher frequency between 10 and 45\ub0. In section view, there is no systematic variation of sheet dip with dis- tance from the focus area. Gabbro and granophyre laccoliths are present in the studied area but cross-cutting relations indicate that most of the inclined sheets are younger. Compar- ison with regional tectonics suggests that the N50\u201380\ub0E-strik- ing dykes are coherent with emplacement under the stress field of the pre-6 Ma Snaefellsnes Rift dominated by a NNW-SSE-directed least principal stress (!3). The N80\u2013 100\ub0E dykes and the late Quaternary WNW-trending sub- aerial volcanic features are instead consistent with the devel- opment of a more recent E-W, right-lateral shear zone affecting the Snaefellsnes peninsula. Coherent sets of fractures have also been found. Within the inclined sheet swarms, the stress tensor rotated in response to an excess magma pressure linked to two underlying magma chambers of lobate shape, located at an estimated depth of about 400 and 500 m below sea level. This local magmatic stress also produced the cen- trally inclined fracture swarms that have been found in this area

    Surface soil humidity retrieval by means of a semi-empirical coupled SAR model

    No full text
    In the last years, the availability of new technologies of Earth Observation encouraged researches to use integrated approaches for environmental monitoring. Even for agro-hydrological applications, remotely sensed data are available on wide areas allowing the retrieval of cost-effective and representative estimation of high spatial and temporal variability of the soil-vegetation system variables. In particular, soil water content plays an important role determining the partition of precipitation between surface runoff and infiltration and, moreover, influences the distribution of the incoming radiation between latent and sensible heat flux. As a consequence, distributed soil water content maps are essential data for watershed applications such as flood prediction and crop irrigation scheduling. Since cloud cover has been highlighted as the main limitation of SW/TIR traditional techniques, this research is focused on the applicability of soil moisture models based on active microwave. In particular, a Semi Empirical Coupled Model (SECM) is proposed. Reliable assessments of both surface roughness and dielectric constant (thus soil moisture) are retrieved by means of two iterative modules, without any calibration phase. The validation with in situ soil moisture, taken at a depth comparable to the RADAR penetration, gives a good agreement for bare-sparse vegetation coverage. The research is carried out on the 24 km\ub2 test-site of DEMMIN (G\uf6rmin farm, Mecklenburg Vorpommern), in the North-East of Germany. Data were acquired within the ESA-funded AgriSAR project, between April and July 2006. The implemented model uses HH, VV and HV polarized L-bands, acquired by the German Aerospace Center (Deutsches Zentrum f\ufcr Luft- und Raumfahrt - DLR) using an airborne platform

    Sviluppo psicologico e \u201cnuove\u201d dipendenze senza sostanze

    No full text
    Il capitolo descrive le nuove forme di dipendenza senza sostanze

    Decision support systems to manage water resources at irrigation district level in Southern Italy using remote sensing information. An integrated Project (AQUATER)

    No full text
    An efficient management of water resources is crucial point for Italy and in particular for southern areas characterized by Mediterranean climate in order to improve the economical and environmental sustainability of the agricultural activity. A three-year Project (2005-2008) has been funded by the Italian Ministry of Agriculture and Forestry Policies; it involves four Italian research institutions: the Agricultural Research Council (ISA, Bari), the National Research Council (ISSIA, Bari) and two Universities (Federico II-Naples and Milan). It is focused on the remote sensing, the plant and the climate and, for interdisciplinary relationships, the project working group consists of agronomists, engineers and physicists. The aims of the Project are: a) to produce a Decision Support System (DSS) combining remote sensing information, spatial data and simulation models to manage water resources in irrigation districts; b) to simulate irrigation scenarios to evaluate the effects of water stress on crop yield using agro-ecological indicators; c) to identify the most sensitive areas to drought risk in Southern Italy. The tools used in this Project will be: 1. Remote sensing images, topographic maps, soil and land use maps; 2. Geographic Information Systems; 3. Geostatistic methodologies; 4. Ground truth measurements (land use, canopy and soil temperatures, soil and plant water status, Normalized Difference Vegetation Index, Crop Water Stress Index, Leaf Area Index, actual evapotranspiration, crop coefficients, crop yield, agro-ecological indicators); 5. Crop simulation models. The Project is structured in four work packages with specific objectives, high degree of interaction and information exchange: 1) Remote Sensing and Image Analysis; 2) Cropping Systems; 3) Modelling and Softwares Development; 4) Stakeholders. The final product will be a DSS with the purpose of integrating remote sensing images, to estimate crop and soil variables related to drought, to assimilate these variables into a simulation model at district scale and, finally, to estimate evapotranspiration, plant water status and drought indicators. A project Web home page, a technical course about DSS for the employers of irrigation authorities and dissemination of results (meetings, publications, reports), are also planned
    corecore