128 research outputs found

    The host-galaxy response to the afterglow of GRB 100901A

    Get PDF
    For Gamma-Ray Burst 100901A, we have obtained Gemini-North and Very Large Telescope optical afterglow spectra at four epochs: one hour, one day, three days and one week after the burst, thanks to the afterglow remaining unusually bright at late times. Apart from a wealth of metal resonance lines, we also detect lines arising from fine-structure levels of the ground state of Fe II, and from metastable levels of Fe II and Ni II at the host redshift (z = 1.4084). These lines are found to vary significantly in time. The combination of the data and modelling results shows that we detect the fall of the Ni II 4 F9/2 metastable level population, which to date has not been observed. Assuming that the population of the excited states is due to the UV-radiation of the afterglow, we estimate an absorber distance of a few hundred pc. This appears to be a typical value when compared to similar studies. We detect two intervening absorbers (z = 1.3147, 1.3179). Despite the wide temporal range of the data, we do not see significant variation in the absorption lines of these two intervening systems.Comment: 17 pages, 9 figures. Accepted by Monthly Notices of the Royal Astronomical Society on Jan 11th 201

    The Disc-Jet Relation in Strong-Lined Blazars

    Full text link
    The relation between accretion disc (thermal emission) and jet (non-thermal emission) in blazars is still a mystery as, typically, the beamed jet emission swamps the disc even in the ultraviolet band where disc emission peaks. In this paper we estimate the accretion disc component for 136 flat-spectrum radio quasars selected from the Deep X-ray Radio Blazar Survey. We do this by deriving the accretion disc spectrum from the mass and accretion rate onto the central black hole for each object, estimated using the emission line widths and the power emitted from the broad line region. We find that non-thermal emission dominates the optical/UV band of our sources. The thermal component, in fact, is, on average, ~ 15 per cent of the total and > 90 per cent of the objects in the sample have a thermal component < 0.5 of the total luminosity. We then estimate the integrated disc and kinetic jet powers and find that, on average, the disc luminosity is ~ 1 to 20 times the jet power (depending on the uncertainties in the estimation of the latter quantity). A comparison with previous, independent results favours a scenario in which jet and disk powers are of the same order of magnitude. Extraction of energy from a rotating black hole via the ``Blandford-Znajek'' mechanism fails to explain the estimated jet power in the majority of our sources. Finally, we find that the typical masses for our sources are ~ 5 10^8 solar masses and that, contrary to previous claims, about one quarter of our radio quasars have relatively small (< 3 10^8 solar masses) black hole mass.Comment: 15 Pages, 8 ps figures, accepted for pubblication in MNRA

    Unusual Central Engine Activity in the Double Burst GRB 110709B

    Get PDF
    The double burst, GRB 110709B, triggered Swift/BAT twice at 21:32:39 UT and 21:43:45 UT, respectively, on 9 July 2011. This is the first time we observed a GRB with two BAT triggers. In this paper, we present simultaneous Swift and Konus-WIND observations of this unusual GRB and its afterglow. If the two events are from the same physical origin, their different time-dependent spectral evolution suggest they must belong to different episodes of the central engine, which may be a magnetar-to-BH accretion system

    The Highly Energetic Expansion of SN2010bh Associated with GRB 100316D

    Get PDF
    We present the spectroscopic and photometric evolution of the nearby (z = 0.059) spectroscopically confirmed type Ic supernova, SN 2010bh, associated with the soft, long-duration gamma-ray burst (X-ray flash) GRB 100316D. Intensive follow-up observations of SN 2010bh were performed at the ESO Very Large Telescope (VLT) using the X-shooter and FORS2 instruments. Owing to the detailed temporal coverage and the extended wavelength range (3000--24800 A), we obtained an unprecedentedly rich spectral sequence among the hypernovae, making SN 2010bh one of the best studied representatives of this SN class. We find that SN 2010bh has a more rapid rise to maximum brightness (8.0 +/- 1.0 rest-frame days) and a fainter absolute peak luminosity (L_bol~3e42 erg/s) than previously observed SN events associated with GRBs. Our estimate of the ejected (56)Ni mass is 0.12 +/- 0.02 Msun. From the broad spectral features we measure expansion velocities up to 47,000 km/s, higher than those of SNe 1998bw (GRB 980425) and 2006aj (GRB 060218). Helium absorption lines He I lambda5876 and He I 1.083 microm, blueshifted by ~20,000--30,000 km/s and ~28,000--38,000 km/s, respectively, may be present in the optical spectra. However, the lack of coverage of the He I 2.058 microm line prevents us from confirming such identifications. The nebular spectrum, taken at ~186 days after the explosion, shows a broad but faint [O I] emission at 6340 A. The light-curve shape and photospheric expansion velocities of SN 2010bh suggest that we witnessed a highly energetic explosion with a small ejected mass (E_k ~ 1e52 erg and M_ej ~ 3 Msun). The observed properties of SN 2010bh further extend the heterogeneity of the class of GRB supernovae.Comment: 37 pages and 12 figures (one-column pre-print format), accepted for publication in Ap

    Systematic investigation of the role of the epoxides as substrates for CO<sub>2</sub> capture in the cycloaddition reaction catalysed by ascorbic acid

    Get PDF
    This work establishes a comprehensive theoretical framework for synthesizing cyclic organic carbonates, crucial for the polymer industry, through the organocatalytic cycloaddition of carbon dioxide (CO2) to epoxides under mild pressure and temperature conditions. Using advanced computational techniques, the study examines the thermodynamic and kinetic aspects of the reaction, with a particular focus on epoxide substrates featuring diverse substituents. Detailed analysis reveals activation energy barriers and identifies the rate-determining step (rds), offering crucial insights into the molecular processes governing the reaction. An automated data-driven workflow revealed that the buried volume of the epoxide O atoms was among the most influential molecular features affecting reaction barriers. Overall, the findings align with experimental data, offering insights into substrate design for optimized CO2 utilization. This work calls for a systematic exploration of ascorbic acid-based catalyst modifications to optimize energy barriers and improve overall reaction performance, paving the way for rational catalyst design and predictive catalysis in CO2 valorization. The computational study is not limited to basic research or ascorbic acid but is applicable to most catalysts capable of carrying out this reaction in the polymer industry

    Unusual Central Engine Activity in the Double Burst GRB 110709B

    Full text link
    The double burst, GRB 110709B, triggered Swift/BAT twice at 21:32:39 UT and 21:43:45 UT, respectively, on 9 July 2011. This is the first time we observed a GRB with two BAT triggers. In this paper, we present simultaneous Swift and Konus-WIND observations of this unusual GRB and its afterglow. If the two events originated from the same physical progenitor, their different time-dependent spectral evolution suggests they must belong to different episodes of the central engine, which may be a magnetar-to-BH accretion system.Comment: 10 pages, 14 figures, 2 tables. ApJ accepte

    First joint absorption and T e -based metallicity measured in a GRB host galaxy at z = 4.28 using JWST /NIRSpec

    Get PDF
    We present the first gamma-ray burst (GRB) host galaxy with a measured absorption line and electron temperature (T) based metallicity, using the temperature sensitive [O iii]4363 auroral line detected in the JWST/NIRSpec spectrum of the host of GRB 050505 at redshift . We find that the metallicity of the cold interstellar gas, derived from the absorption lines in the GRB afterglow, of 12 + log(O/H) is in reasonable agreement with the temperature-based emission line metallicity in the warm gas of the GRB host galaxy, which has values of 12 + log(O/H) = 7.800.19 and 7.960.21 for two common indicators. When using strong emission line diagnostics appropriate for high-z galaxies and sensitive to ionization parameter, we find good agreement between the strong emission line metallicity and the other two methods. Our results imply that, for the host of GRB050505, mixing between the warm and the cold interstellar medium along the line of sight to the GRB is efficient, and that GRB afterglow absorption lines can be a reliable tracer of the metallicity of the galaxy. If confirmed with a large sample, this suggest that metallicities determined via GRB afterglow spectroscopy can be used to trace cosmic chemical evolution to the earliest cosmic epochs and in galaxies far too faint for emission line spectroscopy, even for JWST
    corecore