39 research outputs found

    Expression of alternatively spliced human T-cell leukemia virus type 1 mRNAs is influenced by mitosis and by a novel cis-acting regulatory sequence

    Get PDF
    Human T-cell leukemia virus type 1 (HTLV-1) expression depends on the concerted action of Tax, which drives transcription of the viral genome, and Rex, which favors expression of incompletely spliced mRNAs and determines a 2-phase temporal pattern of viral expression. In the present study, we investigated the Rex dependence of the complete set of alternatively spliced HTLV-1 mRNAs. Analyses of cells transfected with Rex-wild-type and Rex-knockout HTLV-1 molecular clones using splice site-specific quantitative reverse transcription (qRT)-PCR revealed that mRNAs encoding the p30Tof, p13, and p12/8 proteins were Rex dependent, while the p21rex mRNA was Rex independent. These findings provide a rational explanation for the intermediate-late temporal pattern of expression of the p30tof, p13, and p12/8 mRNAs described in previous studies. All the Rex-dependent mRNAs contained a 75-nucleotide intronic region that increased the nuclear retention and degradation of a reporter mRNA in the absence of other viral sequences. Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) analysis revealed that this sequence formed a stable hairpin structure. Cell cycle synchronization experiments indicated that mitosis partially bypasses the requirement for Rex to export Rex-dependent HTLV-1 transcripts. These findings indicate a link between the cycling properties of the host cell and the temporal pattern of viral expression/latency that might influence the ability of the virus to spread and evade the immune system

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Analysys of Tax-expressing cell lines generated from HTLV-I Tax-transgenic mice: correlation between C-MYC overexpression and neoplastic potential.

    No full text
    Human T-cell leukemia/lymphotropic virus type I (HTLV-I) infection causes a variety of human diseases, including adult T-cell leukemia/lymphoma. The viral transactivator Tax has been implicated as a key factor in the HTLV-I-induced transformation pathway. To investigate the components of this pathway, we derived fibroblast-like cell lines, designated T6 and T9, from tail biopsies of tax-transgenic C57BL/6 mice that do not develop tumors. Phenotypic characterization of T6 and T9 cells and T6-derived subclones revealed that they differ in their abilities to form foci in vitro and tumors in vivo. The observed differences in the levels of Tax expression did not correlate with their degree of neoplastic potential. However, a control cell line derived from a nontransgenic C57BL/6 mouse did not form foci in vitro or tumors in vivo, indicating that Tax was required for the transformation process. Results of Northern analyses showed that the T9 cells and the highly malignant derivatives of T6 cells expressed elevated levels of c-myc mRNA. These findings suggest that progression of the tax-transgenic cells toward a more malignant phenotype might involve c-myc deregulation

    Coding potential of the X region of the human T-Cell leukemia/lymphotropic virus type II.

    No full text
    IF=3.90

    The microRNA regulatory network in normal- and HTLV-1-transformed T cells.

    No full text
    Recent efforts to understand the molecular networks governing normal T cell development and driving the neoplastic transformation of T cells have brought to light the involvement of microRNAs (miRNAs), a class of noncoding RNAs of approximately 22 nucleotides that regulate gene expression at the posttranscriptional level. In the present review, we compare the expression profiles of miRNAs in normal T cell development to that of transformed T cells using as a model adult T cell leukemia/lymphoma, an aggressive malignancy of mature CD4. + T cells that is caused by infection with human T cell leukemia virus type 1. \ua9 2012 Elsevier Inc

    Mitochondria as functional targets of proteins coded by human tumor viruses

    No full text
    Molecular analyses of tumor virus-host cell interactions have provided key insights into the genes and pathways involved in neoplastic transformation. Recent studies have revealed that the human tumor viruses Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV), human papillomavirus (HPV), hepatitis B virus (HBV), hepatitis C virus (HCV), and human T-cell leukemia virus type 1 (HTLV-1) express proteins that are targeted to mitochondria. The list of these viral proteins includes BCL-2 homologues (BHRF1 of EBV; KSBCL-2 of KSHV), an inhibitor of apoptosis (IAP) resembling Survivin (KSHV K7), proteins that alter mitochondrial ion permeability and/or membrane potential (HBV HBx, HPV E[wedge]14, HCV p7, and HTLV-1 p13(II)), and K15 of KSHV, a protein with undefined function. Consistent with the central role of mitochondria in energy production, cell death, calcium homeostasis, and redox balance, experimental evidence indicates that these proteins have profound effects on host cell physiology. In particular, the viral BCL-2 homologues BHRF1 and KSBCL-2 inhibit apoptosis triggered by a variety of stimuli. HBx, p7, E1[wedge]4, and p13(II) exert powerful effects on mitochondria either directly due to their channel-forming activity or indirectly through interactions with endogenous channels. Further investigation of these proteins and their interactions with mitochondria will provide important insights into the mechanisms of viral replication and tumorigenesis and could aid in the discovery of new targets for anti-tumor therapy

    STR profiling of HTLV-1-infected cell lines

    No full text
    Many investigations of the replication and pathogenesis of human T-cell leukemia virus type 1 (HTLV-1) employ chronically infected cell lines, cell lines stabilized from primary adult T-cell leukemia cells, and noninfected T-cell lines. The validity of data obtained from such studies depends on the unambiguous identification of each cell line, which can be performed by short-tandem-repeat (STR) profiling (DNA fingerprinting). While kit-based profiling represents the standard method for cell line authentication, not all labs have ready access to the required capillary electrophoresis equipment, and the costs of such tests can become substantial, especially if the cell lines are to be tested frequently. We analyzed DNA from a panel of HTLV-1-infected cell lines and noninfected T-cell lines using a commercial STR kit and then analyzed the same DNA for individual STR markers followed by nondenaturing polyacrylamide gel electrophoresis. This simplified method should facilitate routine confirmation of cell line identity in diverse laboratory settings

    Functional domain structure of human T-cell leukemia virus type 2 Rex

    No full text
    The Rex protein of human T-cell leukemia virus (HTLV) acts posttranscriptionally to induce the cytoplasmic expression of the unspliced and incompletely spliced viral RNAs encoding the viral structural and enzymatic proteins and is therefore essential for efficient viral replication. Rex function requires nuclear import, RNA binding, multimerization, and nuclear export. In addition, it has been demonstrated that the phosphorylation status of HTLV-2 Rex (Rex-2) correlates with RNA binding and inhibition of splicing in vitro. Recent mutational analyses of Rex-2 revealed that the phosphorylation of serine residues 151 and 153 within a novel carboxy-terminal domain is critical for function in vivo. To further define the functional domain structure of Rex-2, we evaluated a panel of Rex-2 mutants for subcellular localization, RNA binding capacity, multimerization and trans-dominant properties, and the ability to shuttle between the nucleus and the cytoplasm. Rex-2 mutant S151A,S153A, which is defective in phosphorylation and function, showed diffuse cytoplasmic staining, whereas mutant S151D,S153D, previously shown to be functional and in a conformation corresponding to constitutive phosphorylation, displayed increased intense speckled staining in the nucleoli. In vivo RNA binding analyses indicated that mutant S151A,S153A failed to efficiently bind target RNA, while its phosphomimetic counterpart, S151D,S153D, bound twofold more RNA than wild-type Rex-2. Taken together, these findings provide direct evidence that the phosphorylation status of Rex-2 is linked to cellular trafficking and RNA binding capacity. Mutants with substitutions in either of the two putative multimerization domains or in the putative activation domain-nuclear export signal displayed a dominant negative phenotype as well as defects in multimerization and nucleocytoplasmic shuttling. Several carboxy-terminal mutants that displayed wild-type levels of phosphorylation and localized to the nucleolus were also partially impaired in shuttling. This is consistent with the hypothesis that the carboxy terminus of Rex-2 contains a novel domain that is required for efficient shuttling. This work thus provides a more detailed functional domain map of Rex-2 and further insight into its regulation of HTLV replication

    The human T-cell leukemia virus type 1 p13(II) protein: effects on mitochondrial function and cell growth

    No full text
    p13(II) of human T-cell leukemia virus type 1 (HTLV-1) is an 87-amino-acid protein that is targeted to the inner mitochondrial membrane. p13(II) alters mitochondrial membrane permeability, producing a rapid, membrane potential-dependent influx of K(+). These changes result in increased mitochondrial matrix volume and fragmentation and may lead to depolarization and alterations in mitochondrial Ca(2+) uptake/retention capacity. At the cellular level, p13(II) has been found to interfere with cell proliferation and transformation and to promote apoptosis induced by ceramide and Fas ligand. Assays carried out in T cells (the major targets of HTLV-1 infection in vivo) demonstrate that p13(II)-mediated sensitization to Fas ligand-induced apoptosis can be blocked by an inhibitor of Ras farnesylation, thus implicating Ras signaling as a downstream target of p13(II) function
    corecore