60 research outputs found

    Evaluation of the palatability and toxicity of candidate baits and toxicants for mongooses (\u3ci\u3eHerpestes auropunctatus\u3c/i\u3e)

    Get PDF
    The small Indian mongoose (Herpestes auropunctatus) is an invasive pest species responsible for damage to native avian, reptile, and amphibian species on Hawaii, Croatia, Mauritius, and several Caribbean Islands, among other regions.Mongoose control has been pursued through a variety of means, with varying success. One toxicant, diphacinone, has been shown to be effective in mongooses and is co-labeled in a rodenticide bait for mongoose control in Hawaii; however, preliminary observations indicate low performance as a mongoose toxicant due likely to poor consumption. We evaluated the efficacy and palatability of 10 commercial rodenticide baits, technical diphacinone powder, and two alternative acute toxicants against mongooses in laboratory feeding trials. We observed poor acceptance and subsequent low overall mortality, of the hard grain-based pellets or block formulations typical of most of the commercial rodenticide baits. The exception was Tomcat® bait blocks containing 0.1% bromethalin, an acute neurotoxin, which achieved up to 100% mortality. Mortality among all other commercial rodenticide formulations ranged from 10 to 50%. Three-day feedings of 0.005% technical diphacinone formulated in fresh minced chicken achieved 100% mortality. One-day feedings of para-aminopropiophenone (PAPP), a chemical that reduces the oxygen-carrying capacity of the blood, achieved 100% mortality at concentrations of 0.10 to 0.15%. Bait acceptance of two sodium nitrite formulations (similar toxic mode of action as PAPP) was relatively poor, and mortality averaged 20%. In general, commercially produced rodenticide baits were not preferred by mongooses and had lower mortality rates compared to freshly prepared meat bait formulations. More palatable baits had higher consumption and achieved higher mortality rates. The diphacinone bait registered for rat and mongoose control in Hawaii achieved 20% mortality and was less effective than some of the other commercial or candidate fresh bait products evaluated in this study

    Predicting Gull/Human Conflicts with Mathematical Models: A Tool for Management

    Get PDF
    Gulls are highly adaptable animals that thrive in proximity to humans. Although gulls enjoy legal protection in North America, England, and Europe, they often conflict with human interests by spreading disease, transporting contaminants, fouling public areas with droppings, and colliding with aircraft. Of particular concern are aggregates of loafing gulls that gather on parking lots, rooftops, and airport runways. Loafing in birds is a general state of immobility that involves behaviors such as sleeping, sitting, standing, resting, preening, and defecating. The ability to predict the incidence of aggregated loafing provides a first step toward the amelioration of bird/human conflicts. We used mathematical models to predict the aggregate loafing behavior of gulls as a function of environmental conditions and tested model portability across years, phase of breeding cycle, loafing location, and species. Because groups of loafing birds quickly reassemble after disturbance, algebraic models for the steady-state dynamics can be obtained from the differential equations using time-scale analysis. The accessible management tool requires data collection on an appropriate time scale and information-theoretic model selection from a suite of alternative algebraic models. ©2009 Wiley Periodicals, Inc

    Analysis of Iophenoxic Acid Analogues in Small Indian Mongoose (\u3ci\u3eHerpestes Auropunctatus\u3c/i\u3e) Sera for Use as an Oral Rabies Vaccination Biological Marker

    Get PDF
    The small Indian mongoose (Herpestes auropunctatus) is a reservoir of rabies virus (RABV) in Puerto Rico and comprises over 70% of animal rabies cases reported annually. The control of RABV circulation in wildlife reservoirs is typically accomplished by a strategy of oral rabies vaccination (ORV). Currently no wildlife ORV program exists in Puerto Rico. Research into oral rabies vaccines and various bait types for mongooses has been conducted with promising results. Monitoring the success of ORV relies on estimating bait uptake by target species, which typically involves evaluating a change in RABV neutralizing antibodies (RVNA) post vaccination. This strategy may be difficult to interpret in areas with an active wildlife ORV program or in areas where RABV is enzootic and background levels of RVNA are present in reservoir species. In such situations, a biomarker incorporated with the vaccine or the bait matrix may be useful. We offered 16 captive mongooses placebo ORV baits containing ethyl-iophenoxic acid (et-IPA) in concentrations of 0.4% and 1% inside the bait and 0.14% in the external bait matrix. We also offered 12 captive mongooses ORV baits containing methyl-iophenoxic acid (me-IPA) in concentrations of 0.035%, 0.07% and 0.14% in the external bait matrix. We collected a serum sample prior to bait offering and then weekly for up to eight weeks post offering. We extracted Iophenoxic acids from sera into acetonitrile and quantified using liquid chromatography/mass spectrometry. We analyzed sera for et-IPA or me-IPA by liquid chromatography-mass spectrometry. We found adequate marking ability for at least eight and four weeks for et- and me-IPA, respectively. Both IPA derivatives could be suitable for field evaluation of ORV bait uptake in mongooses. Due to the longevity of the marker in mongoose sera, care must be taken to not confound results by using the same IPA derivative during consecutive evaluations

    Analysis of Iophenoxic Acid Analogues in Small Indian Mongoose (\u3ci\u3eHerpestes Auropunctatus\u3c/i\u3e) Sera for Use as an Oral Rabies Vaccination Biological Marker

    Get PDF
    The small Indian mongoose (Herpestes auropunctatus) is a reservoir of rabies virus (RABV) in Puerto Rico and comprises over 70% of animal rabies cases reported annually. The control of RABV circulation in wildlife reservoirs is typically accomplished by a strategy of oral rabies vaccination (ORV). Currently no wildlife ORV program exists in Puerto Rico. Research into oral rabies vaccines and various bait types for mongooses has been conducted with promising results. Monitoring the success of ORV relies on estimating bait uptake by target species, which typically involves evaluating a change in RABV neutralizing antibodies (RVNA) post vaccination. This strategy may be difficult to interpret in areas with an active wildlife ORV program or in areas where RABV is enzootic and background levels of RVNA are present in reservoir species. In such situations, a biomarker incorporated with the vaccine or the bait matrix may be useful. We offered 16 captive mongooses placebo ORV baits containing ethyl-iophenoxic acid (et-IPA) in concentrations of 0.4% and 1% inside the bait and 0.14% in the external bait matrix. We also offered 12 captive mongooses ORV baits containing methyl-iophenoxic acid (me-IPA) in concentrations of 0.035%, 0.07% and 0.14% in the external bait matrix. We collected a serum sample prior to bait offering and then weekly for up to eight weeks post offering. We extracted Iophenoxic acids from sera into acetonitrile and quantified using liquid chromatography/mass spectrometry. We analyzed sera for et-IPA or me-IPA by liquid chromatography-mass spectrometry. We found adequate marking ability for at least eight and four weeks for et- and me-IPA, respectively. Both IPA derivatives could be suitable for field evaluation of ORV bait uptake in mongooses. Due to the longevity of the marker in mongoose sera, care must be taken to not confound results by using the same IPA derivative during consecutive evaluations

    Policy Recommendations for Meeting the Grand Challenge to Achieve Equal Opportunity and Justice

    Get PDF
    This brief was created forSocial Innovation for America’s Renewal, a policy conference organized by the Center for Social Development in collaboration with the American Academy of Social Work & Social Welfare, which is leading theGrand Challenges for Social Work initiative to champion social progress. The conference site includes links to speeches, presentations, and a full list of the policy briefs

    Federated learning enables big data for rare cancer boundary detection.

    Get PDF
    Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing

    Author Correction: Federated learning enables big data for rare cancer boundary detection.

    Get PDF
    10.1038/s41467-023-36188-7NATURE COMMUNICATIONS14

    Evaluation of appendicitis risk prediction models in adults with suspected appendicitis

    Get PDF
    Background Appendicitis is the most common general surgical emergency worldwide, but its diagnosis remains challenging. The aim of this study was to determine whether existing risk prediction models can reliably identify patients presenting to hospital in the UK with acute right iliac fossa (RIF) pain who are at low risk of appendicitis. Methods A systematic search was completed to identify all existing appendicitis risk prediction models. Models were validated using UK data from an international prospective cohort study that captured consecutive patients aged 16–45 years presenting to hospital with acute RIF in March to June 2017. The main outcome was best achievable model specificity (proportion of patients who did not have appendicitis correctly classified as low risk) whilst maintaining a failure rate below 5 per cent (proportion of patients identified as low risk who actually had appendicitis). Results Some 5345 patients across 154 UK hospitals were identified, of which two‐thirds (3613 of 5345, 67·6 per cent) were women. Women were more than twice as likely to undergo surgery with removal of a histologically normal appendix (272 of 964, 28·2 per cent) than men (120 of 993, 12·1 per cent) (relative risk 2·33, 95 per cent c.i. 1·92 to 2·84; P < 0·001). Of 15 validated risk prediction models, the Adult Appendicitis Score performed best (cut‐off score 8 or less, specificity 63·1 per cent, failure rate 3·7 per cent). The Appendicitis Inflammatory Response Score performed best for men (cut‐off score 2 or less, specificity 24·7 per cent, failure rate 2·4 per cent). Conclusion Women in the UK had a disproportionate risk of admission without surgical intervention and had high rates of normal appendicectomy. Risk prediction models to support shared decision‐making by identifying adults in the UK at low risk of appendicitis were identified
    corecore