46 research outputs found

    Interannual variability of the Mid-Atlantic bight cold pool

    Get PDF
    Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(8), (2020): e2020JC016445, doi:10.1029/2020JC016445.The Mid‐Atlantic Bight (MAB) Cold Pool is a bottom‐trapped, cold (temperature below 10°C) and fresh (practical salinity below 34) water mass that is isolated from the surface by the seasonal thermocline and is located over the midshelf and outer shelf of the MAB. The interannual variability of the Cold Pool with regard to its persistence time, volume, temperature, and seasonal along‐shelf propagation is investigated based on a long‐term (1958–2007) high‐resolution regional model of the northwest Atlantic Ocean. A Cold Pool Index is defined and computed in order to quantify the strength of the Cold Pool on the interannual timescale. Anomalous strong, weak, and normal years are categorized and compared based on the Cold Pool Index. A detailed quantitative study of the volume‐averaged heat budget of the Cold Pool region (CPR) has been examined on the interannual timescale. Results suggest that the initial temperature and abnormal warming/cooling due to advection are the primary drivers in the interannual variability of the near‐bottom CPR temperature anomaly during stratified seasons. The long persistence of temperature anomalies from winter to summer in the CPR also suggests a potential for seasonal predictability.This work was funded by the National Oceanic and Atmospheric Administration through Awards NOAA‐NA‐15OAR4310133 and NOAA‐NA‐13OAR4830233 and the National Science Foundation Awards OCE‐1049088, OCE‐1419584, and OCE‐0961545.2021-02-0

    Numerical modelling in a multiscale ocean

    Get PDF
    Systematic improvement in ocean modelling and prediction systems over the past several decades has resulted from several concurrent factors. The first of these has been a sustained increase in computational power, as summarized in Moore\u27s Law, without which much of this recent progress would not have been possible. Despite the limits imposed by existing computer hardware, however, significant accruals in system performance over the years have been achieved through novel innovations in system software, specifically the equations used to represent the temporal evolution of the oceanic state as well as the numerical solution procedures employed to solve them. Here, we review several recent approaches to system design that extend our capability to deal accurately with the multiple time and space scales characteristic of oceanic motion. The first two are methods designed to allow flexible and affordable enhancement in spatial resolution within targeted regions, relying on either a set of nested structured grids or, alternatively, a single unstructured grid. Finally, spatial discretization of the continuous equations necessarily omits finer, subgrid-scale processes whose effects on the resolved scales of motion cannot be neglected. We conclude with a discussion of the possibility of introducing subgrid-scale parameterizations to reflect the influences of unresolved processes

    PICES Advisory Report on the decline of Fraser River sockeye salmon Oncorhynchus nerka (Steller, 1743) in relation to marine ecology

    Get PDF
    In the spring of 2010, the Government of Canada invited PICES to participate in a Commission of Inquiry into the Decline of Sockeye Salmon in the Fraser River by considering how marine ecology may have affected their abundance. A major objective that was achieved in this report was to assemble, within an eight week period, as comprehensive a summary as was possible of what is known about Fraser River sockeye salmon (Oncorhynchus nerka) in the ocean. While much of this effort involved summarizing information published in data/technical reports and the primary literature, where necessary, original data have been re-examined and new analyses conducted to fulfill the terms of the Statement of Work. The compilation provides a background of knowledge against which to judge what can be known regarding the two major questions posed by the Cohen Commission to PICES: -Can the decline in Fraser River sockeye in 2009 be explained by the conditions the fish experienced in the marine environment? -Is there any evidence for declines in marine productivity or changes in Fraser River sockeye distribution that can be associated with the 15-year gradual decrease in Fraser River sockeye productivity

    On-shelf transport of oceanic zooplankton in the Bering Sea.

    Get PDF
    Neocalanus are zooplankton that require deep water to successfully reproduce so tend to occur in oceanic and shelf-break habitats. Shelf-break fronts in the Eastern Bering Sea reduce cross-shelf advection over the outer-shelves potentially retarding on-shelf transport of the oceanic copepods. South-Easterly winds October-May are thought to increase on-shelf flow over the southern shelf. Because Neocalanus are large-bodied with a high energy content they are an important food source for juvenile stages of commercially important fish such as pollock, capelin and salmon in the Bering Sea. Annual differences in forage and commercial fish stocks in the Bering Sea may depend on climatic and oceanographic conditions promoting on- shelf transport of Neocalanus. Timing of on-shelf transport of Neocalanus, and the key physical processes determining the degree and extent of this transport are unclear.This work was funded by the North Pacific Research Board and the National Science Foundation

    Bottom-up control of sardine and anchovy population cycles in the canary current: insights from an end-to-end model simulation

    Get PDF
    Sardine and anchovy can exhibit dramatic decadal-scale shifts in abundance in response to climate variability. Sharpe declines of these populations entail particularly serious commercial and ecological consequences in eastern boundary current ecosystems, where they sustain major world fisheries and provide the forage for a broad variety of predators. Understanding the mechanisms and environmental forcing that drive the observed fish variability remains a challenging problem. The modelling study presented here provides an approach that bridges a comprehensive database with an end-to-end modelling framework enabling the investigation of the sources of variability of sardine and anchovy in the Canary Current System. Different biological traits and behaviour prescribed for sardine and anchovy gave rise to different distribution and displacements of the populations, but to a rather synchronous variability in terms of abundance and biomass, in qualitative agreement with historical landing records. Analysis of years with anomalously high increase and decline of the adult population points to food availability (instead of temperature or other environmental drivers) as the main environmental factor determining recruitment for both sardine (via spawning and survival of feeding age-0 individuals) and anchovy (via survival of feeding age-0). Consistent with this, the two species thrive under enhanced upwelling-favourable winds, but only up to some threshold of the wind velocity beyond which larval drift mortality exceeds the positive effect of the extra food supply. Based on the analysis of the simulation, we found that anchovy larvae are particularly vulnerable to enhanced wind-driven advection, and as such do better with more moderate upwelling than sardines.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tech

    Coupled wind-forced controls of the Bering–Chukchi shelf circulation and the Bering Strait throughflow: Ekman transport, continental shelf waves, and variations of the Pacific–Arctic sea surface height gradient

    Get PDF
    AbstractWe develop a conceptual model of the closely co-dependent Bering shelf, Bering Strait, and Chukchi shelf circulation fields by evaluating the effects of wind stress over the North Pacific and western Arctic using atmospheric reanalyses, current meter observations, satellite-based sea surface height (SSH) measurements, hydrographic profiles, and numerical model integrations. This conceptual model suggests Bering Strait transport anomalies are primarily set by the longitudinal location of the Aleutian Low, which drives oppositely signed anomalies at synoptic and annual time scales. Synoptic time scale variations in shelf currents result from local wind forcing and remotely generated continental shelf waves, whereas annual variations are driven by basin scale adjustments to wind stress that alter the magnitude of the along-strait (meridional) pressure gradient. In particular, we show that storms centered over the Bering Sea excite continental shelf waves on the eastern Bering shelf that carry northward velocity anomalies northward through Bering Strait and along the Chukchi coast. The integrated effect of these storms tends to decrease the northward Bering Strait transport at annual to decadal time scales by imposing cyclonic wind stress curl over the Aleutian Basin and the Western Subarctic Gyre. Ekman suction then increases the water column density through isopycnal uplift, thereby decreasing the dynamic height, sea surface height, and along-strait pressure gradient. Storms displaced eastward over the Gulf of Alaska generate an opposite set of Bering shelf and Aleutian Basin responses. While Ekman pumping controls Canada Basin dynamic heights (Proshutinsky et al., 2002), we do not find evidence for a strong relation between Beaufort Gyre sea surface height variations and the annually averaged Bering Strait throughflow. Over the western Chukchi and East Siberian seas easterly winds promote coastal divergence, which also increases the along-strait pressure head, as well as generates shelf waves that impinge upon Bering Strait from the northwest

    Projected effects of climate change on Pseudo-nitzschia bloom dynamics in the Gulf of Maine

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Clark, S., Hubbard, K., Ralston, D., McGillicuddy, D., Stock, C., Alexander, M., & Curchitser, E. Projected effects of climate change on Pseudo-nitzschia bloom dynamics in the Gulf of Maine. Journal of Marine Systems, 230, (2022): 103737, https://doi.org/10.1016/j.jmarsys.2022.103737.Worldwide, warming ocean temperatures have contributed to extreme harmful algal bloom events and shifts in phytoplankton species composition. In 2016 in the Gulf of Maine (GOM), an unprecedented Pseudo-nitzschia bloom led to the first domoic-acid induced shellfishery closures in the region. Potential links between climate change, warming temperatures, and the GOM Pseudo-nitzschia assemblage, however, remain unexplored. In this study, a global climate change projection previously downscaled to 7-km resolution for the Northwest Atlantic was further refined with a 1–3-km resolution simulation of the GOM to investigate the effects of climate change on HAB dynamics. A 25-year time slice of projected conditions at the end of the 21st century (2073–2097) was compared to a 25-year hindcast of contemporary ocean conditions (1994–2018) and analyzed for changes to GOM inflows, transport, and Pseudo-nitzschia australis growth potential. On average, climate change is predicted to lead to increased temperatures, decreased salinity, and increased stratification in the GOM, with the largest changes occurring in the late summer. Inflows from the Scotian Shelf are projected to increase, and alongshore transport in the Eastern Maine Coastal Current is projected to intensify. Increasing ocean temperatures will likely make P. australis growth conditions less favorable in the southern and western GOM but improve P. australis growth conditions in the eastern GOM, including a later growing season in the fall, and a longer growing season in the spring. Combined, these changes suggest that P. australis blooms in the eastern GOM could intensify in the 21st century, and that the overall Pseudo-nitzschia species assemblage might shift to warmer-adapted species such as P. plurisecta or other Pseudo-nitzschia species that may be introduced.This research was funded by the National Science Foundation (Grant Number OCE-1840381), the National Institute of Environmental Health Sciences (Grant Number 1P01ES028938), the Woods Hole Center for Oceans and Human Health, and the Academic Programs Office of the Woods Hole Oceanographic Institution

    Measuring Winds From Space to Reduce the Uncertainty in the Southern Ocean Carbon Fluxes: Science Requirements and Proposed Mission

    Get PDF
    Strong winds in Southern Ocean storms drive air-sea carbon and heat fluxes. These fluxes are integral to the global climate system and the wind speeds that drive them are increasing. The current scatterometer constellation measuring vector winds remotely undersamples these storms and the higher winds within them, leading to potentially large biases in Southern Ocean wind reanalyses and the fluxes that derive from them. This observing system design study addresses these issues in two ways. First, we describe an addition to the scatterometer constellation, called Southern Ocean Storms -- Zephyr, to increase the frequency of independent observations, better constraining high winds. Second, we show that potential reanalysis wind biases over the Southern Ocean lead to uncertainty over the sign of the net winter carbon flux. More frequent independent observations per day will capture these higher winds and reduce the uncertainty in estimates of the global carbon and heat budgets

    Challenges and Prospects in Ocean Circulation Models

    Get PDF
    We revisit the challenges and prospects for ocean circulation models following Griffies et al. (2010). Over the past decade, ocean circulation models evolved through improved understanding, numerics, spatial discretization, grid configurations, parameterizations, data assimilation, environmental monitoring, and process-level observations and modeling. Important large scale applications over the last decade are simulations of the Southern Ocean, the Meridional Overturning Circulation and its variability, and regional sea level change. Submesoscale variability is now routinely resolved in process models and permitted in a few global models, and submesoscale effects are parameterized in most global models. The scales where nonhydrostatic effects become important are beginning to be resolved in regional and process models. Coupling to sea ice, ice shelves, and high-resolution atmospheric models has stimulated new ideas and driven improvements in numerics. Observations have provided insight into turbulence and mixing around the globe and its consequences are assessed through perturbed physics models. Relatedly, parameterizations of the mixing and overturning processes in boundary layers and the ocean interior have improved. New diagnostics being used for evaluating models alongside present and novel observations are briefly referenced. The overall goal is summarizing new developments in ocean modeling, including: how new and existing observations can be used, what modeling challenges remain, and how simulations can be used to support observations.Peer reviewe

    OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project

    Get PDF
    The Ocean Model Intercomparison Project (OMIP) is an endorsed project in the Coupled Model Intercomparison Project Phase 6 (CMIP6). OMIP addresses CMIP6 science questions, investigating the origins and consequences of systematic model biases. It does so by providing a framework for evaluating (including assessment of systematic biases), understanding, and improving ocean, sea-ice, tracer, and biogeochemical components of climate and earth system models contributing to CMIP6. Among the WCRP Grand Challenges in climate science (GCs), OMIP primarily contributes to the regional sea level change and near-term (climate/decadal) prediction GCs. OMIP provides (a) an experimental protocol for global ocean/sea-ice models run with a prescribed atmospheric forcing; and (b) a protocol for ocean diagnostics to be saved as part of CMIP6. We focus here on the physical component of OMIP, with a companion paper (Orr et al., 2016) detailing methods for the inert chemistry and interactive biogeochemistry. The physical portion of the OMIP experimental protocol follows the interannual Coordinated Ocean-ice Reference Experiments (CORE-II). Since 2009, CORE-I (Normal Year Forcing) and CORE-II (Interannual Forcing) have become the standard methods to evaluate global ocean/sea-ice simulations and to examine mechanisms for forced ocean climate variability. The OMIP diagnostic protocol is relevant for any ocean model component of CMIP6, including the DECK (Diagnostic, Evaluation and Characterization of Klima experiments), historical simulations, FAFMIP (Flux Anomaly Forced MIP), C4MIP (Coupled Carbon Cycle Climate MIP), DAMIP (Detection and Attribution MIP), DCPP (Decadal Climate Prediction Project), ScenarioMIP, HighResMIP (High Resolution MIP), as well as the ocean/sea-ice OMIP simulations
    corecore