Old Dominion University ODU Digital Commons

CCPO Publications

Center for Coastal Physical Oceanography

2021

Measuring Winds From Space to Reduce the Uncertainty in the Southern Ocean Carbon Fluxes: Science Requirements and Proposed Mission

Joellen L. Russell

David G. Long

Paul Chang

Madeline Cowell

Enrique Curchitser

See next page for additional authors

Follow this and additional works at: https://digitalcommons.odu.edu/ccpo_pubs

Part of the Climate Commons

Original Publication Citation

Russell, J. L., Long, D. G., Chang, P., Cowell, M., Curchitser, E., Dinniman, M. S., Fellows, C., Goodman, P., Hofmann, E., Jelenak, Z., Klinck, J., Krasting, J. P., Lovenduski, N. S., Lofverstrom, M., Mazloff, M. R., Petroy, S., Polit, A., Rodriguez, E., Schofield, O., . . . Zeng, X. (2021). Measuring winds from space to reduce the uncertainty in the Southern Ocean carbon fluxes: Science requirements and proposed mission. *ESS Open Archive*, 1-19. https://dx.doi.org/10.1002/essoar.10506276.1

This Article is brought to you for free and open access by the Center for Coastal Physical Oceanography at ODU Digital Commons. It has been accepted for inclusion in CCPO Publications by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.

Authors

Joellen L. Russell, David G. Long, Paul Chang, Madeline Cowell, Enrique Curchitser, Michael S. Dinniman, Charles Fellows, Paul Goodman, Eileen Hofmann, Zorana Jelenak, John Klinck, John P. Krasting, Nicole Suzanne Lovenduski, Marcus Lofverstrom, Matthew R. Mazloff, Shelley Petroy, Anjani Polit, Ernesto Rodriguez, Oscar Schofield, Ad Stoffelen, Ronald J. Stouffer, Rik Wanninkhof, Carl Weimer, and Xubin Zeng

This article is available at ODU Digital Commons: https://digitalcommons.odu.edu/ccpo_pubs/385

1	Measuring Winds from Space to Reduce the Uncertainty in the Southern Ocean
2	Carbon Fluxes: Science Requirements and Proposed Mission
3	
4 5 6 7 8 9	Joellen L. Russell ¹ , David G. Long ² , Paul S. Chang ³ , Madeline Cowell ⁴ , Enrique Curchitser ⁵ , Michael S. Dinniman ⁶ , Charles Fellows ¹ , Paul J. Goodman ¹ , Eileen E. Hofmann ⁶ , Zorana Jelenak ³ , John Klinck ⁶ , John Krasting ⁷ , Nicole Lovenduski ⁸ , Marcus Lofverstrom ¹ , Matthew Mazloff ⁹ , Shelley Petroy ⁴ , Anjani Polit ¹ , Ernesto Rodriguez ¹⁰ , Oscar Schofield ⁵ , Ad Stoffelen ¹¹ , Ronald J. Stouffer ¹ , Rik Wanninkhof ¹² , Carl Weimer ⁴ , and Xubin Zeng ¹
10 11 12 13	Affiliations: 1. University of Arizona; 2. Brigham Young University; 3. NOAA/NESDIS/StAR; 4. Ball Aerospace; 5. Rutgers; 6. Old Dominion University; 7. NOAA/GFDL; 8. University of Colorado-Boulder; 9. Scripps Institution of Oceanography, UCSD; 10. Jet Propulsion Laboratory, California Institute of Technology; 11. KNMI; 12. NOAA/AOML
14	
15	Keywords: Observing System Design, Surface Vector Winds, Scatterometer, Southern Ocean, Air-Sea Carbon Flux
16	
17	Key points:
18	1) The current wind observing system samples Southern Ocean storms infrequently and is unlikely to directly observe the
19	highest winds and variability
20	2) Southern Ocean winds are critical to the global air-sea exchange of carbon and heat
21	3) Adding a carefully targeted scatterometer to the observing constellation will reduce the uncertainty in the global carbon
22	budget by focusing on the SO where the largest fraction of the air-sea exchange happens and where the current uncertainties
23	are largest.
24	
25	
26	Plain Language Summary
27	The Southern Ocean is the windiest place in the world, with frequent intense storms. The winds in these storms drive large
28	fluxes of carbon and heat between the ocean and the atmosphere. Unfortunately, these fluxes can't be observed directly from
29	space; we rely on wind measurements and climate reanalyses to determine them, Our space-based observing network,
30	however, only captures winds over the Southern Ocean twice per day at best, so our estimates of the SO winds and air-sea
31	fluxes are uncertain and about 50% of the global uncertainty in air-sea carbon exchange is associated with the Southern Ocean.
32	We show that higher winds are consistent with reduced uptake of atmospheric carbon by the Southern Ocean. We describe our

33	observing system design experiment to determine the best additional scatterometer to add to the wind-observing constellation
34	to capture more of the high winds and reduce the uncertainty in the Southern Ocean carbon budget
35	
36	
37	
38	Abstract
39	
40	Strong winds in Southern Ocean storms drive air-sea carbon and heat fluxes. These fluxes are integral to the global climate
41	system and wind speeds that drive them are increasing. The current scatterometer constellation measuring vector winds
42	remotely undersamples these storms and the higher winds within them, leading to potentially large biases in Southern Ocean
43	wind reanalyses and the carbon and heat fluxes that derive from them. This observing system design study addresses these
44	issues in two ways. First, we describe an addition to the scatterometer constellation, called Southern Ocean Storms – Zephyr, to
45	increase the frequency of independent observations, better constraining high winds. Second, we show that potential reanalysis
46	wind biases over the Southern Ocean lead to uncertainty over the sign of the net winter carbon flux. More frequent
47	independent observations per day will capture these higher winds and reduce the uncertainty in estimates of the global carbon
48	and heat budgets.
49	
50	1) Introduction
51	
52	The Southern Ocean is the windiest ocean basin in the world; storms play an important role in mass and heat transport and
53	precipitation (Wei & Qin, 2016) and drive air-sea fluxes of carbon and heat, which scale non-linearly with wind speed. These
54	strong winds, coupled with the unique geography and upper ocean processes around Antarctica, forge a connection where
55	carbon dioxide (and heat) are readily exchanged between the atmosphere, the oceanic mixed layer and the deep ocean (Russell
56	et al. 2006).
57	
58	The World Meteorological Organization (WMO) recognizes the need for global wind sampling every 6 hours (4 x per day);
59	preferably every 3 hours for ocean and climate applications (Bourassa et al. 2019; Stoffelen et al. 2019). This is not achieved by
60	the existing scatterometer constellation; undersampling is acute in the Southern Ocean (SO, hereafter, Hell et al., 2020) where
61	fast-moving storms drive an increase in carbon exchange (Matear & Lenton, 2008). Storms are frequent but inadequately
62	sampled (only 1-2 times per day at any location), limiting independent assessment of model-based wind reanalyses. Belmonte

Manuscript in preparation for submission to Geophysical Research Letters

Rivas and Stoffelen (2019) show large SO reanalysis biases in mean and eddy flow; additional uncertainty is associated with 63 64 reduced precision and accuracy of high wind speeds (Stofflen et al. 2020), and the lack of coincident rain determination (Xu & 65 Stoffelen, 2020). Uncertainties at high wind speeds and short storm durations (Wentz et al. 2017, Chang et al. 2009, Hell et al. 2020) suggest that the current satellite-based wind observations are insufficient. Given the small spatial scales of the SO storms 66 67 and their fluctuating intensities, it is likely that current satellite wind speed observations are biased low, especially in winter. 68 69 Scatterometer, radiometer, and altimeter observations of SO winds, ocean wave height, and ocean power over the last decade 70 indicate that all are increasing (Young et al. 2011, 2017; Young & Ribal, 2019; Reguero et al. 2019). Wei and Qin (2016) note 71 increasing SO storms during each season, although the increase was only statistically significant in summer. Verhoef et al. 72 (2017) show increasing global winds in reanalyses but decreasing winds in collocated QuikSCAT data. Stronger winds bring 73 more carbon-rich deep water to the surface; this decreases uptake and increases outgassing by changing the air-sea gradient, 74 as observed by autonomous biogeochemical floats in the SO (Gray et al. 2018). 75 76 Several studies report significant uncertainties and potential biases in wind reanalysis products over the SO, especially in the 77 highest winds (Marseille et al., 2017; Risien & Chelton, 2008; Ardhuin et al. 2011; Chawla et al. 2013, Verezemskaya et al. 78 2017). Sampe and Xie (2007) found that >5% of QuikSCAT winds (Spencer et al. 2000) exceeded 20 m/s over large areas south 79 of 40°S during winter (June-August, JJA). Comparable calculations from the ERA5 reanalysis (5th reanalysis from the ECMWF; 80 Hersbach et al. 2020) for 2018-2019 find that <1% of winter wind speeds exceed the 20 m/s threshold. Tetzner et al. (2019) 81 found that ERA-Interim (Dee et al. 2011) and ERA5 reanalyses (Hersbach et al. 2020) underestimated monthly-mean winds 82 over the Antarctic Peninsula by >1 m/s and partly attribute this to higher-frequency observations by the meteorological 83 stations. Verezemskaya et al. (2017) compared QuikSCAT wind speeds in SO mesocydones during winter (June-September; 84 Ricciardulli & Wentz, 2015) to four different reanalysis products (ERA-Interim, Dee et al. 2011; NCEP CFSR, Saha et al. 2010; 85 JRA55, Kobayashi et al. 2015; MERRA2, Bosilovich et al. 2016), showing that mean wind speed was underestimated in each by 86 1-7 m/s and the 75th percentile was underestimated by 5-10 m/s. A significant underrepresentation in the higher winds will 87 impact the trend. 88 89 Air-sea fluxes of CO_2 and heat are not directly observable from space; we rely on bulk formulae, experiments and simulations to 90 determine these quantities. Current estimates of the ocean's role in the global carbon budget indicate that >50% of the

anthropogenic uptake of carbon from the atmosphere by the global ocean (1.4 PgC/yr in the SO of the 2.6 PgC/yr global) and

92 50% of the uncertainty (\pm 0.3 PgC/yr) in air-sea CO₂ exchange occurs in the SO (Friedlingstein et al. 2020). Uncertainties in the

SO winds contribute to significant uncertainties in the global and regional carbon budgets; this uncertainty hampers prediction
 and challenges our carbon emission reduction projections to stabilize global atmospheric CO₂ levels.

95

96 Current estimates of the net global carbon flux (Friedlingstein et al. 2020; lida et al. 2015; Landschutzer et al. 2016; Takahashi 97 et al. 2014, Wanninkhof et al. 2013) rely on a method based on the observed net invasion of bomb-1⁴C to scale the gas 98 exchange rate equation, assuming *a priori* that gas exchange scales to the square of the winds (Sweeney et al. 2007). This 99 process depends on spatial and temporal resolution of the "observed" wind speeds (Naegler et al. 2006). Sweeney et al. (2007) 100 note that, "no single (scaling) value can be applied for all wind products"; other parameterizations based on isotopic evidence 101 have been proposed (e.g. Krakauer et al. 2006). Wanninkhof and Triñanes, 2017 found that a different gas exchange 102 parameterization (Wanninkhof et al. 2009) with increased exchange above 14 m/s and below 5 m/s (relative to the standard 103 square of wind speed) adequately represents the net invasion of bomb $^{-14}$ C. Alternative approaches to carbon flux 104 parameterization using high resolution surface roughness estimates (e.g. Frew et al. 2007) have not been explored in the SO. A 105 coherent observing system with detailed calibration and validation will allow a more precise estimate of the gas exchange rate 106 and therefore the carbon flux in the SO. 107 108 To assess the effects of missing high winds and/or increasing winds over the SO, we take advantage of a unique and powerful 109 tool, the Biogeochemical SO State Estimate (BSOSE, Verdy & Mazloff, 2017). The state estimate is constrained with physical 110 and biogeochemical observations while maintaining closed budgets and obeying dynamical and thermodynamic balances. The 111 ocean state estimate solves for the model initial and **boundary conditions** (i.e. surface heat fluxes, freshwater and carbon) 112 that minimize the weighted least squares sum of model-observation misfits. 113 114 When we compare net carbon flux that occurs under high winds (>10 m/s in ERA5 reanalysis) to total flux in the daily solutions 115 from BSOSE for 2013-2018 (forced with ERA5 hourly winds), we find that >60% of the carbon flux happens under winds 116 greater than 10 m/s, although the fraction of the SO (south of 30°S) under these high wind speeds is ~35% of the total area 117 (Supp. Fig. S1). We show that the air-sea carbon fluxes and upwelling consistent with stronger winds (imposed as

part of an idealized experiment) indicate that the SO will change from a net carbon sink into a net carbon source

during austral winter. This change is consistent with findings of strong outgassing between the polar front and sea ice edge

based on the biogeochemical float array (Gray et al. 2018). Bronselaer et al. 2020 showed that the float observations noted by

121 Gray et al. 2018 are not reproducible without imposing stronger winds.

122

Manuscript in preparation for submission to Geophysical Research Letters

As proposed, SOS-Zephyr addresses key Decadal Survey questions (NASEM 2018): How can we reduce the uncertainty in the 123 124 carbon cycle feedback (carbon budget), by up to a factor of 2? And how large are variations in the global carbon cycle? SOS-125 Zephyr reduces uncertainty in the global carbon budget by focusing on the SO where a large fraction of the air-sea carbon 126 exchange takes place and where the uncertainties are largest; the two biggest sources of uncertainty are: 1) "Are we (now) 127 capturing the surface vector wind field sufficiently with our observing constellation?", and 2) is our uncertainty about the vector 128 wind field concealing a trend? All indicators point to surface winds strengthening over the SO; SOS-Zephyr's contribution to the 129 wind field refines our uncertainty estimates of the vector wind field and the statistics of the number, size and strength of SO 130 Storms and indicates the presence or absence of significant trend.

131

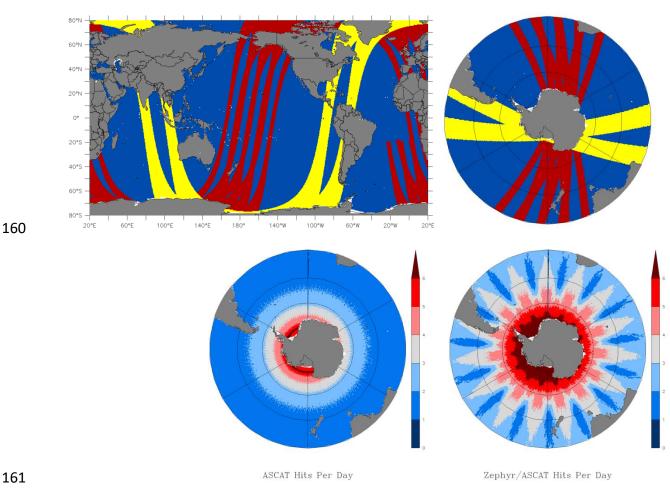
The second source of uncertainty is that while wind speed determines the gas exchange rate, vector wind fields determine upwelling and mixed layer depth and therefore air-sea carbon gradient. Quantifying time-varying air-sea carbon flux in the SO requires numerical simulations to quantify underlying the ocean circulation; these simulations of biogeochemistry and air-sea carbon flux in the SO vary widely. Accordingly, SOS-Zephyr proposes a scatterometer mission to capture vector winds rather than a radiometer which can only determine wind speeds.

137

138 Reducing uncertainty in SO wind speed and variability improves estimates of air-sea CO₂ exchange in this critical

region. More frequent, finely-resolved measurements allow us to better quantify the SO's role in the global

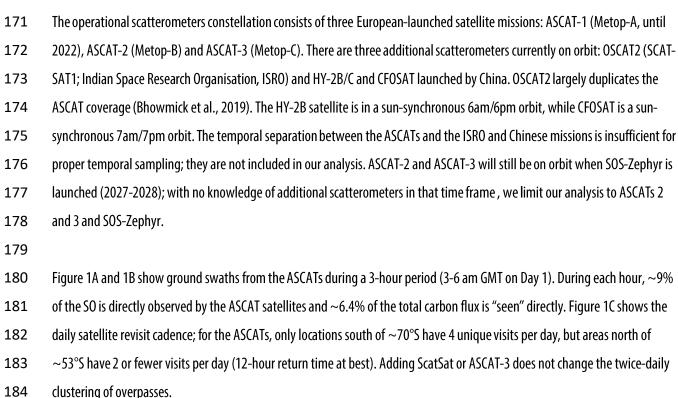
140 carbon cycle and the climate system; enhancing our ability to predict the evolution of the carbon system over the

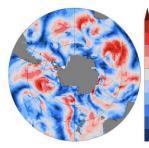

141 near term.

142

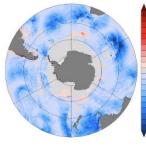
143 This modeling study, where faster winds are assimilated into BSOSE, indicate that stronger winds lead to significantly increased 144 carbon outgassing along the seasonal sea ice zone in winter and enhanced outgassing during most seasons at most latitudes, 145 likely due to increased upwelling. Heat fluxes were enhanced by stronger winds but did not change sign. We conduct an 146 observing system simulation experiment (OSSE) within the state estimation to illustrate how adding a satellite to the existing 147 constellation reveals a change in magnitude and potentially the sign of present-day SO air-sea CO₂ flux estimates. The study is 148 as follows: Section 2 describes the current scatterometer constellation, the tools we use to assess performance, and the 149 Biogeochemical SO State Estimate; Section 3 evaluates orbital and performance specifications of the scatterometer 150 constellation, without and with the proposed SOS-Zephyr mission. Section 4 describes our experiment in BSOSE, where surface 151 wind speeds are increased by 20% and compares the seasonal carbon and heat fluxes in the two simulations; and Section 5 152 presents our conclusions.

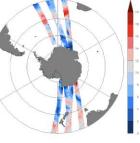
154 2) Data and Methods

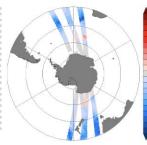

- 155
- 156 We first assess how often per day and at what spatial resolution the existing scatterometer constellation measures SO winds.
- 157 We determine the orbital and sampling details needed for an additional satellite, to reduce the uncertainty in the net air-sea
- exchange of CO₂ over the SO by > 30% to \pm 0.2 PgC/yr or less.
- 159



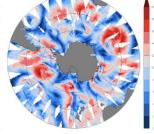
- 162 Figure 1: (A) Locations of ground swaths during a "typical" period (3-6am GMT) for ASCAT-2 and ASCAT-3 (red) and SOS-Zephyr
- 163 (yellow) with a Δ RAAN of approximately 90° and Δ LTAN of about 6 hours. (B) Polar plot of the same data; (C) Number of
- 164 *"independent" observations (defined as observations not in the same hour) per day for the constellation of ASCAT-2 and ASCAT-3;*
- and (D) independent observations for proposed constellation (ASCAT plus SOS-Zephyr) where most locations over the Southern
- 166 Ocean will be revisited 3 to 5 times per day a 2x to 3x improvement providing the necessary temporal/spatial coverage to capture
- 167 storms.

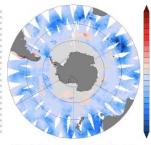

169 2.1 Satellite-borne Scatterometers (ASCAT-1, ASCAT-2 & ASCAT-3)

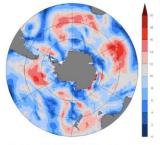

170

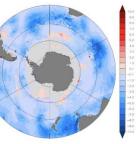


nd Speed, BSOSE, July 1, 2014, 4–5am, m/s $\,$




Wind Speed, BSOSE, July 1, 2014, 4-5am, m/s


flux OUT OF the ocean (mol/m2/yr), July 1, 2014, 4–5 $\rm km$


Speed, BS0SE, July 1, 2014, 4-5am, m/s

lux OUT OF the ocean (mol/m2/yr), July 1, 2014, 4-5am

ind Speed (m/s), July 1, 2014, daily avg

CO2 flux OUT OF the ocean (mel/m2/yr) July 1, 2014, daily avg

Manuscript in preparation for submission to Geophysical Research Letters

187 Figure 2: (Top row, A) Wind speed (m/s) for the BSOSE solution (2013-2018) for July 1, 2014, at 4-5am (from ERA5 hourly data);

- (*B*) wind speed "seen" at 4-5am by the ASCAT-only constellation (~9% of the area); (*C*) wind speed "seen" by all visits of the ASCAT
- 189 constellation during the day (24 hours) applied to the same wind field (~85% of the area); (D) daily average wind speed from ERA5
- for July 1, 2014. (Bottom row, E) Carbon flux ($mol/m^2/yr$) consistent with the above winds from BSOSE at the same day/time; (F)
- 191 *flux "seen" by ASCAT constellation during the hour; (G) flux "seen" by all visits of the ASCAT constellation during the day (24 hours)*
- applied to the same flux field; (H) daily average of the carbon flux from BSOSE.
- 193
- 194 We determined where and when the constellation of satellites (ASCAT-2, ASCAT-3) observe the ocean over the course of 7 days
- (168 hours). We projected these observations onto hourly and daily grids of $\frac{1}{2}^{\circ}$, $\frac{1}{2}^{\circ}$ and 1° spacing, creating a series of 168

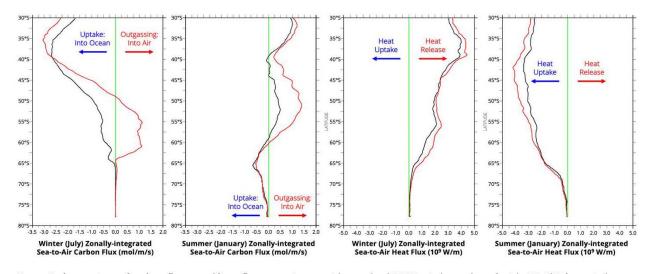
hourly "coverage maps" indicating whether a location was observed at least once by the constellation during that hour or not.

197 We will refer to these coverage maps as "masks" because they hide the results of the model that are *unseen* by the satellites.

198 Our results were insensitive to mask resolution; the rest of this study describes results using the ½° hourly masks. Daily masks

- were calculated from hourly masks (Figure 2C, 2G). We note that applying these "daily" masks to *individual hours* is more
- 200 representative than applying them to the *daily average* of any particular field.
- 201

202 2.2 Biogeochemical SO State Estimate


203

The Biogeochemical SO State Estimate (BSOSE, Verdy & Mazloff, 2017) at 1/6° horizontal grid (~18km), January 2013 to
 December 2018, is used (<u>http://sose.ucsd.edu/BSOSE6_iter133_solution.html</u>). BSOSE assimilates observations from shipboard
 sensors, profiling floats, satellites and reanalyses (wind speeds, SST, SSS, biogeochemical data, etc.) into a numerical model,

- 207 producing a state estimate for the SO. In BSOSE, the MIT general circulation model (MITgcm) is fully coupled to a
- 208 Biogeochemistry with Light, Iron, Nutrients, and Gases (BLING) model (Galbraith et al. 2015). Please refer to Verdy and Mazloff
- 209 (2017) for additional details.
- 210

The BSOSE solution assimilates ERA5 hourly wind speed data, so we are able to assess the ocean state consistent with any wind regime. To gauge the effects of either a low bias in the reanalysis winds and/or increasing wind speeds on the ocean (e.g. the mixed-layer depth, the surface temperature, the air-sea fluxes of carbon and heat, etc.), we ran a *perturbation* experiment where BSOSE winds are increased by 20%. This approach is similar to the idealized perturbation experiments recently published by Bronselaer et al. 2018, 2020 in which a fixed zonal wind forcing anomaly was applied to the SO surface to assess the effect of possible biases in wind stress and latitudinal position. We chose a 20% increase to envelope the effects of the possible missing

217	winds. This experiment addresses two specific points: how do surface fluxes over the SO change in response to stronger winds,
218	and how often must we sample the SO winds to capture either the missing winds or the trend. All other parameters for the
219	2013-2018 simulation were held constant from the control experiment. Increasing the winds has two direct effects on the
220	ocean; mixed layers deepen, exposing a larger volume of water to the atmosphere, and air-sea fluxes that depend on wind
221	speed will be greater. Either or both could alter the air-sea exchange.
222	
223	3) Adding SOS-Zephyr to the Constellation
224	
225	SOS-Zephyr will be a sun synchronous, conical scan, single swath instrument similar to SeaWinds on QuikSCAT (Spencer et al.,
226	2000). Having a wider swath with overlap at lower latitudes was one of the big advantages of QuikSCAT over the ASCAT design:
227	QuikSCAT visited 93% of the global ocean each day while the ASCAT constellation only observes 77% each day (Verspeek &
228	Stoffelen, 2009). Many orbital details proposed for SOS-Zephyr are found in the Supplemental Methods section; the essential
229	parameters are the swath-width of 1225km and the RAAN/LTAN of ~152° and ~3:30/15:30 respectively. The size and timing of
230	SOS-Zephyr's ground track decreases the average revisit to less than 6 hours south of 65°S (Fig 1D, 4 per day at most
231	longitudes) and less than 8 hours south of about 50°S (3 per day). The relative swath positions of SOS-Zephyr in our optimal
232	orbit (Fig 1A & 1B) show excellent separation from the ASCAT swaths. Including the SOS-Zephyr coverage in the constellation
233	increased the area observed from 9% per hour with ASCAT alone to more than 14% per hour. Fast transient changes will be
234	better tracked by adding SOS-Zephyr; inclusion into the constellation increases the fraction of integrated carbon flux retrieved
235	from 6.4% with ASCAT-only to 11.2% per hour (75% increase).
236	
237	To quantify the net improvement per day by the augmented constellation, the daily mask of all locations visited that day by
238	each constellation was applied to both the hourly retrievals and the daily sum of the hourly fluxes. The fraction of net flux
239	captured by each constellation was similar in both methods; the differences between ASCAT and ASCAT+SOS-Zephyr are clear,
240	with increases of daily capture at 96%, compared to 75% for carbon and 86% for heat for ASCAT-only.

243 Figure 3: Comparison of carbon fluxes and heat fluxes consistent with standard ERA5 wind speeds and with 20% higher wind

speeds. Carbon Fluxes (zonally-integrated) during (A) July 2014 for BSOSE-ERA5x1.0 (black), BSOSE-ERA5x1.2 (red), and (B)

245 January 2014 for BSOSE-ERA5x1.0 (black), and BSOSE-ERA5x1.2 (red); and Heat Fluxes (zonally-integrated) for (C) July 2014 and

246 (D) January 2014 with the same color convention. Positive (negative) values are out of (into) the ocean. Note that carbon fluxes in

247 January of the ERAx1.0 run (panel B, black line) are generally out of the ocean except at 40°S and south of 58°S, while in the

248 *ERAx1.2 run (red line), these fluxes are more strongly out of the ocean (degassing) between 60°S and 40°S, mirroring the strong*

249 outgassing seen between 62°S and 50°S during July (A, red line) under increased winds compared to the uptake at these latitudes in

250 July under standard winds (A, black line).

251

242

252 4) The Experiment: A State Estimate with Stronger Wind Speeds

253

To assess potential benefits of adding SOS-Zephyr to our scatterometer constellation, we pose two questions: 1) "If reanalysis winds are biased low, how would this affect the carbon and heat fluxes?" and 2) "Would adding an additional satellite capture more of these higher winds?".

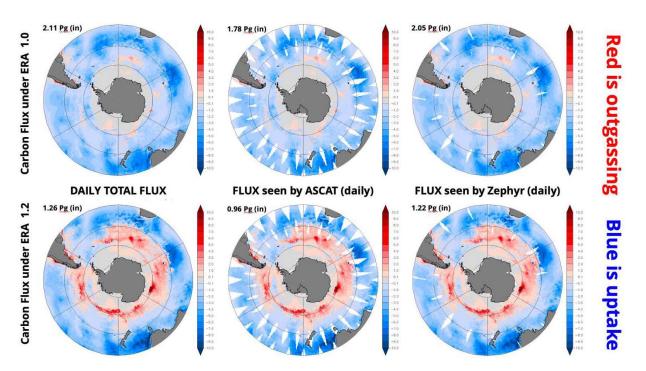

257

Figure 3 shows zonally-integrated carbon fluxes (A,B) and total heat fluxes (C,D) for July (A,C) and January (B,D) under standard ERA5 winds (black) and stronger winds (red) in response to increasing the wind speeds. In the SO, south of about 50°S, the vertical carbon gradient in winter is strong; increased stirring brings more carbon-enriched deep water to the surface in a region of divergence where it can escape to the atmosphere. Enhanced mixing of deep carbon changes the sign of the air-sea gradient and turns the region south of 50°S from a net sink (Fig 3A, black line) taking up of 0.024 PgC for the month to a net source (red line) releasing 0.044 PgC for the month – a change of 0.067 PgC. Increased gas exchange in uptake regions at lower

- latitudes increase the net uptake there, but stronger divergence in the latitudes of Drake Passage (63°S-55°S) under higher
- winds ventilates older, deeper carbon-rich water, and turns the SO from a strong net sink taking up 0.175 PgC into a weaker net
- sink, only taking up 0.096 PgC. Outgassing is this region in winter near the ice edge has been documented by
- biogeochemically-sensored floats (Gray et al. 2018). Carbon fluxes in January are not as uniform; there is uptake at the highest
- 268 latitudes adjacent to the continent, but most of the region is outgassing except along the northern edge of the Antarctic
- 269 Circumpolar Current. Increasing winds turn the summer SO, south of 30°S, from a weak outgassing region with a net release of
- 270 0.020 PgC over the month into a strong outgassing region releasing 0.074 PgC. The average monthly change implies an annual
- change of ~0.84 PgC/yr less uptake, representing a 33% decrease in the total uptake by global ocean (2.5 PgC, and an
- additional atmospheric increase of ~0.4 ppm per year) or about 60% of the annual US emissions (1.4 PgC/yr in 2018,
- 273 Friedlingstein et al. 2019).
- 274

275 This experiment illustrates that carbon fluxes respond differently to increasing winds than do heat fluxes. Heat fluxes (both in

- and out) are enhanced by stronger winds, while stronger winds release more carbon out of the ocean throughout the year.
- 277

279 *Figure 4 (Top row, A,B,C) Simulated carbon fluxes on July 1, 2014 from BSOSE-ERA5x1.0; (Bottom row, D,E,F) Simulated carbon*

- 280 *fluxes from BSOSE-ERA5x1.2. In each panel, red (positive) is out of the ocean while blue (negative) is into the ocean. The left column*
- 281 (*A*,*D*) shows the total from BSOSE; the middle column (*B*,*E*) shows what is captured by the ASCAT constellation; and the right

- 282 column (C,F) shows what is captured by the addition of SOS-Zephyr. The total fluxes (PqC/yr) are indicated in the upper left corner 283 of each panel. 284 285 4a) Carbon Flux captured by the Satellite Constellation 286 287 We next look at the differences between carbon and heat fluxes captured. On an hourly basis, ASCAT sees \sim 9% of the area and 288 6.4% of the carbon flux, while ASCAT+SOS-Zephyr sees ~14% of the area and 11.2% of the carbon. Over the course of each 24-289 hour interval, the ASCAT constellation visits ~88% of the SO (south of 30°S) while adding SOS-Zephyr increases that area to 290 97%. This increase has significant repercussions for the total fluxes of carbon and heat observed. 291 292 Figure 4 shows total surface fluxes of carbon from BSOSE assimilations for July 1, 2014. The hourly output from BSOSE was 293 averaged over the entire day; the mask for each constellation includes locations that were visited at least once during the day. 294 Most of the carbon flux is into the ocean except for the highest latitudes near the ice edge and the coastal regions of South 295 America. The net carbon flux for the month is uptake of ~0.17 PgC, equivalent to ~2.1 PgC/yr. The daily average for the ASCAT-296 constellation represents 81% of the total flux (1.7 Pq/yr, less than the relative area covered) whereas the addition of SOS-297 Zephyr increases the net flux captured to 96% (2.0 Pg/yr). As can be seen, the gaps in the coverage by the ASCAT-only 298 constellation coincide with the larger uptake fluxes, biasing the total toward the low end. 299 300 Monteiro et al (2015) support the importance of temporal resolution, noting that pCO_2 observations less than two days apart 301 are required to reduce the annual uncertainty of the SO carbon flux below 10%. They conclude that "the synoptic period and 302 the spatial scale of the wind stress, particularly the magnitude and phasing of storm events, make a significant contribution to 303 reducing the uncertainty of the flux." Trindade et al. (2020) show that reanalysis differences with scatterometers can be 304 reduced by 20% by subtracting local biases that are constant over 5 days, indicating that these biases are associated with the 305 local ocean state rather than with the local weather. Local ocean states vary on the ocean eddy scale of a few km; we believe 306 that the higher spatial resolution of SOS-Zephyr reduces this aspect of our uncertainty (Lindsley et al. 2016). 307 308 5) Discussion 309 310 SO winds are the strongest on average globally, but are distinctly spatially and temporally heterogeneous due to the presence 311 of long-lasting, fast-moving storms. These winds stir the surface ocean, driving strong carbon and heat fluxes between
 - 12

312	atmosphere and ocean, especially in winter. Significant shortcomings and assumptions associated with determining the air-sea
313	carbon fluxes over the SO persist. 1) Our current wind observing system samples these storms infrequently (once or twice per
314	day), and is unlikely to directly observe the highest winds and variability. 2) Uncertainty in precision and accuracy of existing
315	scatterometers are large at the highest wind speeds. 3) Climate reanalyses underestimate the mean winds by 1-7 m/s and the
316	75 th percentile by 5-10 m/s compared to scatterometer data (Vezeremskaya et al. 2017). It is these reanalysis winds that
317	determine the SO and global carbon fluxes and budgets. 4) Determination of the wind-dependent air-sea gas exchange
318	parameterization relies on these uncertain winds to determine the global formulation. And 5) coupled climate models
319	consistently simulate wind speeds over the SO that are weaker and more equatorward than observed, which has a large impact
320	on the simulated fluxes (Russell et al. 2006; Bracegirdle et al. 2013; Russell et al. 2018; Beadling et al. 2020).
321	
322	By paying careful attention to the orbital parameters, this design OSSE addresses most of the above issues. 1) SOS-Zephyr
323	increases temporal resolution to 3-6 observations per day, south of 45°S. 2) Increased spatial resolution using new processing
324	algorithms increases precision and accuracy at the highest wind speeds and provides data close to coasts and sea ice edges, and
325	coincident radiometer observations reduce the confounding effects of coincident rain. And 3) new wind observations and new
326	attention to the gas exchange parameterization will refine this critical component of our carbon budget estimates. The "best"
327	estimate of the global carbon budget (Friedlingstein et al. 2020) indicates that more than half of the net air-sea carbon flux
328	occurs in the SO and half of the global uncertainty in the air-sea carbon flux is in the SO.
329	
330	An additional, targeted scatterometer achieves our main goal of reducing the uncertainty in the global carbon budget by
331	focusing on the SO where the largest fraction of the air-sea exchange happens and where the current uncertainties are largest.
332	If successful, SOS-Zephyr will become a pathfinder for additional instruments that could provide a trove of new data, closing
333	many of the holes in our understanding and quantification of the carbon and heat budgets due to weathered ocean-scale air-
334	sea interaction.
335	
336	Acknowledgments
337	
220	This work was sponsored in part by MSE's Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) Project

338 This work was sponsored in part by NSF's Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) Project

339 under the NSF Awards PLR-1425989 and OPP-1936222, with additional support from NOAA and NASA. Logistical support for

- this project in the Antarctic was provided by the U.S. National Science Foundation through the U.S. Antarctic Program. We
- 341 acknowledge the use of the Ferret program from NOAA's Pacific Marine Environmental Laboratory for analysis and graphics

342	(http://ferret.pmel.noaa.gov/Ferret/). We also thank the Thomas R. Brown foundation at the University of Arizona for
343	supporting JLR.
344	
345	Data availability statement.
346	
347	The B-SOSE Iteration 133 output used in this analysis is available at Scripps Institution of Oceanography:
348	http://sose.ucsd.edu/BSOSE6_iter133_solution.html.
349	
350	References
351	
352	Ardhuin, F., Hanafin, J., Quilfen, Y., Chapron, B., Queffeulou, P., Obrebski, M., et al. (2011). Calibration of the IOWAGA global
353	wave hindcast (1991–2011) using ECMWF and CFSR winds. In Proc. 12th International Workshop of Wave Hindcasting and
354	Forecasting, Hawaii. Joint Technical Commission for Oceanography and Marine Meteorology Technical Report No. 67,
355	Kohala Coast, Hawaii.
356	Beadling, R.L., Russell, J.L., Stouffer, R.J., Mazloff, M., Talley, L.D., Goodman, P.J., et al. (2020). Representation of Southern
357	Ocean properties across Coupled Model Intercomparison Project generations: CMIP3 to CMIP6, J. Climate, 33(15), 6555-
358	6581. https://doi.org/10.1175/JCLI-D-19-0970.1
359	Belmonte Rivas, M. & Stoffelen, A. (2019). Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT. Ocean
360	Science, 15 , 831–852. <u>https://doi.org/10.5194/os-15-831-2019</u>
361	Bhowmick, S.A., Cotton, J., Fore, A., Kumar, R., Payan, C., Rodriguez, E., et al. (2019). An assessment of the performance of
362	ISRO's SCATSAT-1 Scatterometer. Current Science, 117, 959. doi: 10.18520/cs/v117/i6/959-972.
363	Bosilovich, M.G., Lucchesi, R. & Suarez, M. (2016). MERRA-2: File Specification. GMAO Office Note No. 9 (Version 1.1), 73 pp.
364	[Available at http://gmao.gsfc.nasa.gov/pubs/office_notes.]
365	Bourassa, M.A., Meissner, T., Cerovecki, I., Chang, P.S., Dong, X., Chiara, G.D., et al. (2019). Remotely Sensed Winds and Wind
366	Stresses for Marine Forecasting and Ocean Modeling. Frontiers in Marine Science, 6, 443.
367	https://doi.org/10.3389/fmars.2019.00443
368	Bracegirdle, T.J., Shuckburgh, E., Sallee, JB., Wang, Z., Meijers, A.J.S., Bruneau, N., et al. (2013). Assessment of surface winds
369	over the Atlantic, Indian, and Pacific Ocean sectors of the Southern Ocean in CMIP5 models: historical bias, forcing
370	response, and state dependence, J. Geophysical Research-Atmosphere, 118 , 547–562, doi:10.1002/jgrd.50153.

- 371 Bronselaer, B., Winton, M., Griffies, S.M., Hurlin, W.J., Rodgers, K.B., Sergienko, O.V. et al. (2018). Change in future climate due
- 372 to freshwater from Antarctic ice melt, *Nature*, **564**, 53-58. <u>https://doi.org/10.1038/s41586-018-0712-z</u>
- Bronselaer, B., Russell, J.L., Winton, M. Williams, N.L., Key, R.M., Dunne, J.P. et al. (2020). Importance of wind and meltwater
- for observed chemical and physical changes in the Southern Ocean, *Nature Geosciences*, **13**, 35-42.
- 375 <u>https://doi.org/10.1038/s41561-019-0502-8</u>
- 376 Chang, P.S., Jelenak, Z., Sienkiewicz, J., Knabb, R., & Brennan, M. (2009). Operational Utilization and Impact of Satellite
- **377** Remotely-Sensed Ocean Surface Vector Winds in the Marine Warning and Forecasting Environment. *Oceanography*
- 378 *Magazine*, **22**, 194–207. <u>https://doi.org/10.5670/oceanog.2009.49</u>
- Chawla, A., Spindler, D.M. & Tolman, H.L. (2013). Validation of a thirty-year wave hindcast using the Climate Forecast System
 Reanalysis winds. *Ocean Modelling*, **70**, 189-206. doi: 10.1016/j.ocemod.2012.07.005
- 381 Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., et al. (2011). The ERA-Interim reanalysis:
- configuration and performance of the data assimilation system. *Quarterly Journal of the Royal Meteorological Society*, **137**,
 553–597. https://doi.org/10.1002/gi.828
- Frew, N.M., Glover, D.M., Bock, E.J. & McCue, S.J. (2007). A new approach to estimation of global air-sea gas transfer velocity
 fields using dual-frequency altimeter backscatter, *J. Geophysical Research*, **112**, C11003, doi:10.1029/2006JC003819
- 386Friedlingstein, P., Jones, M.W., O'Sullivan, M., Andrew, R.M., Hauck, J., Peters, G., et al. (2019). Global Carbon Budget 2019,
- 387 *Earth System Science Data*, **11**, 1783–1838. https://doi.org/10.5194/essd-11-1783-2019
- Friedlingstein, P., O'Sullivan, M., Jones, M.W., Andrew, R.M., Hauck, J., Olsen, A. et al. (2020). Global Carbon Budget 2020. *Earth System Science Data*, **12**, 3269–3340. <u>https://doi.org/10.5194/essd-12-3269-2020</u>
- 390 Galbraith, E.D., Dunne, J.P., Gnanadesikan, A., Slater, R.D., Sarmiento, J.L., Dufour, C.O. et al. (2015), Complex functionality with
- minimal computation: Promise and pitfalls of reduced-tracer ocean biogeochemistry models, *J. Advances in Modeling Earth Systems*, 7, 2012–2028, doi:10.1002/2015MS000463.
- Gray, A.R., Johnson, K.S., Bushinsky, S.M., Riser, S.C., Russell, J.L., Talley, L.D., et al. (2018). Autonomous Biogeochemical Floats
- 394 Detect Significant Carbon Dioxide Outgassing in the High-Latitude Southern Ocean. *Geophysical Research Letters*, **45**.
- **395** <u>https://doi.org/10.1029/2018GL078013</u>
- Hell, M.C., Gille, S.T., Cornuelle, B.D., Miller, A.J., Bromirski, P.D., & Crawford, A.D. (2020). Estimating Southern Ocean Storm
 Positions With Seismic Observations. *Journal of Geophysical Research: Oceans*, **125(4)**.
- 398 https://doi.org/10.1029/2019jc015898
- Hersbach, H, Bell, B, Berrisford, P, Hirahara, S., Horányi, A., Muñoz-Sabater, J., et al. (2020). The ERA5 global reanalysis.
- 400 *Quarterly Journal of the Royal Meteorolical Society*, **146**, 1999–2049. <u>https://doi.org/10.1002/gi.3803</u>

- 401 Ilda, Y., Kojima, A., Takatani, Y., Nakano, T., Sugimoto, H., Midorikawa, T., & Ishii, M. (2015). Trends in pCO₂ and sea-air CO₂ flux
- 402 over the global open oceans for the last two decades. *Journal of Oceanography*, **71**, 637–661.

403 <u>https://doi.org/10.1007/s10872-015-0306-4</u>

- 404 Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., et al. (2015), The JRA-55 reanalysis: General specifications
- 405 and basic characteristics, *Journal of the Meteorological Society of Japan. Series II*, **93(1)**, 5–48.
- 406 <u>https://doi.org/10.2151/jmsj.2015-001</u>
- Krakauer, N.Y., Randerson, J.T., Primeau, F.W., Gruber, N., & Menemenlis, D. (2006). Carbon isotope evidence for the latitudinal
 distribution and wind speed dependence of the air-sea gas transfer velocity. *Tellus B*, **58**, 390-417, doi: 10.1111/j.16000889.2006.00223.x.
- Landschützer, P., Gruber, N. & Bakker, D.C.E. (2016). Decadal variations and trends of the global ocean carbon sink, *Global Biogeochemical Cycles*, 30, 1396–1417. doi:10.1002/2015GB005359.
- 412 Lindsley, R.D., Blodgett, J.R. & Long, D.G. (2016). Analysis and Validation of High-Resolution Wind from ASCAT, *IEEE*
- 413 *Transactions on Geoscience and Remote Sensing*, **54(10)**, 5699-5711. doi:10.1109/TGRS.2016.2570245
- 414 Marseille, G.J., Stoffelen, A., van den Brink, H. & Stepek, A. (2017). WISC Intermediate Bias Derivation and Uncertainty
- Assessment, Copernicus Climate Change Service (C3S) Wind Information Service (WISC) report, KNMI, de Bilt, the
 Netherlands, REF.: (C3S_441_Lot3_WISC_SC2-D3.3-CGI-RP-17-0071),
- 417 https://wisc.climate.copernicus.eu/wisc/documents/shared/C3S_WISC_Intermediate_Bias_Derivation_and_Uncertainty
- 418 <u>Assessment_v1-0.pdf</u>
- Matear, R. J., & Lenton, A. (2008). Impact of Historical Climate Change on the Southern Ocean Carbon Cycle, *Journal of Climate*,
 21(22), 5820–5834. <u>https://iournals.ametsoc.org/view/iournals/clim/21/22/2008icli2194.1.xml</u>
- 421 Monteiro, P.M.S., Gregor, L., Lévy, M., Maenner, S., Sabine, C.L. & Swart, S. (2015). Intraseasonal variability linked to sampling
- 422 alias in air-sea CO₂ fluxes in the Southern Ocean, *Geophysical Research Letters*, **42**, 8507–8514.
- 423 doi:<u>10.1002/2015GL066009</u>.
- 424 Naegler T., Ciais P., Rodgers K. & Levin I. (2006). Excess radiocarbon constraints on air-sea gas exchange and the uptake of CO2
- 425 by the oceans. *Geophysical Research Letters*, **33**: L11802, doi:10.1029/2005GL025408.
- 426 National Academies of Sciences, Engineering, and Medicine. 2018. *Thriving on Our Changing Planet: A Decadal Strategy for Earth* 427 *Observation from Space*. Washington, DC: The National Academies Press. doi: https://doi.org/10.17226/24938
- 428 Reguero, B.G., Losada, I.J. & Méndez, F.J. (2019). A recent increase in global wave power as a consequence of oceanic warming.
- 429 *Nature Communications*, **10**, 205. https://doi.org/10.1038/s41467-018-08066-0

- 430 Ricciardulli, L., & Wentz, F.J. (2015). A Scatterometer Geophysical Model Function for Climate- Quality Winds: QuikSCAT Ku-
- 431 2011. J. Atmospheric and Oceanic Technology, **32**, 1829-1846. DOI: 10.1175/JTECH-D-15-0008.1
- 432 Risien, C.M., & Chelton, D.B. (2008). A Global Climatology of Surface Wind and Wind Stress Fields from Eight Years of QuikSCAT
- 433 Scatterometer Data. J. Phys. Oceanogr., 38, 2379-2413. <u>https://doi.org/10.1175/2008JP03881.1</u>
- 434 Russell, J.L., Dixon, K.W., Gnanadesikan, A., Stouffer, R.J. & Toggweiler, J.R. (2006). The Southern Hemisphere Westerlies in a
- 435 Warming World: Propping Open the Door to the Deep Ocean. J. Climate, **19(24)**, 6382-6390.
- 436 <u>https://doi.org/10.1175/JCLI3984.1</u>
- Russell, J.L., Kamenkovich, I., Bitz, C., Ferrari, R., Gille, S.T., Goodman, P.J. et al. (2018). Metrics for the Evaluation of the
 Southern Ocean in Coupled Climate and Earth System Models, *J. Geophysical Research Oceans*, **123**, 3120-3143.
- 439 <u>https://doi.org/10.1002/2017JC013461</u>
- 440 Saha, S., Moorthi, S., Pan, H., Wu, X., Wang, J., Nadiga, S., Tripp, P., et al. (2010). The NCEP Climate Forecast System Reanalysis,
- 441 Bulletin of the American Meteorological Society, 91(8), 1015-1058. https://doi.org/10.1175/2010BAMS3001.1
- Sampe, T., & Xie, S. (2007). Mapping High Sea Winds from Space: A Global Climatology, *Bulletin of the American Meteorological Society*, 88(12), 1965-1978. <u>https://journals.ametsoc.org/view/journals/bams/88/12/bams-88-12-1965.xml</u>
- Spencer, M.W., Wu, C., & Long, D.G. (2000). Improved resolution backscatter measurements with the SeaWinds pencil-beam
 scatterometer. *IEEE Transactions on Geoscience and Remote Sensing*, 38(1), 89–104. <u>https://doi.org/10.1109/36.823904</u>
- 446 Stoffelen A., Kumar R., Zou J., Karaev V., Chang P.S. & Rodriguez E. (2019). Ocean Surface Vector Wind Observations. In: Barale
- 447 V., Gade M. (eds) *Remote Sensing of the Asian Seas*. Springer, Cham. https://doi.org/10.1007/978-3-319-94067-0_24
- 448 Stoffelen, A., Mouche, A., Polverari, F., van Zadelhoff, G.-J., Sapp, J., Portabella, M., et al. (2020). C-band High and Extreme-
- 449 Force Speeds (CHEFS), EUMETSAT project report, EUMETSAT ITT 16/166, https://www.eumetsat.int/CHEFS;
- 450 <u>https://www.eumetsat.int/media/45432</u>
- Sweeney, C., Gloor, E., Jacobson, A.R., Key, R.M., McKinley, G., Sarmiento, J.L., & Wanninkhof, R. (2007), Constraining global
 air-sea gas exchange for CO₂ with recent bomb ¹⁴C measurements, *Global Biogeochemical Cycles*, **21**, GB2015,
 doi:10.1029/2006GB002784
- Takahashi, T., Sutherland, S.C., Chipman, D.W., Goddard, J.G., Ho, C., Newberger, T. et al. (2014). Climatological distributions of
 pH, pC02, total C02, alkalinity, and CaCO3 saturation in the global surface ocean, and temporal changes at selected
- 456 locations. *Marine Chemistry*, **164**, 95-125, https://doi.org/10.1016/j.marchem.2014.06.004
- 457 Trindade, A., Portabella, M., Stoffelen, A., Lin W. & Verhoef, A. (2020). ERAstar: A High-Resolution Ocean Forcing Product, *IEEE*
- 458 *Transactions on Geoscience and Remote Sensing*, **58(2)**, 1337-1347, doi: 10.1109/TGRS.2019.2946019

- Verdy, A. & Mazloff, M.R. (2017). A data assimilating model for estimating Southern Ocean biogeochemistry, *J. Geophysical Research-Oceans*, **122**, 6968–6988, doi:10.1002/2016JC012650
- Verezemskaya, P., Tilinina, N., Gulev, S., Renfrew, I.A. & Lazzara, M. (2017). Southern Ocean mesocyclones and polar lows from
 manually tracked satellite mosaics, *Geophysical Research Letters*, 44, 7985–7993, doi:10.1002/2017GL074053
- 463 Verhoef, A., Vogelzang, J., Verspeek, J. & Stoffelen, A. (2017). Long-Term Scatterometer Wind Climate Data Records, *IEEE*
- 464 *Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, **10(5)**, 2186-2194. doi:
- 465 10.1109/JSTARS.2016.2615873
- Verspeek, J., & Stoffelen, A. (2009). ASCAT tandem coverage, EUMETSAT Ocean and Sea Ice (OSI) Satellite Application Facility
 (SAF) report, v0.8,
- 468 https://cdn.knmi.nl/system/data_center_publications/files/000/068/323/original/ascat_tandem_coverage.pdf?149562
 469 1136
- Wanninkhof, R., Asher, W.E., Ho, D.T., Sweeney, C.S. & McGillis, W.R. (2009). Advances in quantifying air-sea gas exchange and
 environmental forcing. *Annual Reviews of Marine Science*, 1, 213–244, doi:10.1146/annurev.marine.010908.163742.
- Wanninkhof, R., Park, G.-H., Takahashi, T., Sweeney, C., Feely, R., Nojiri, Y., et al. (2013). Global ocean carbon uptake:
- 473 magnitude, variability and trends. *Biogeosciences*, **10**, 1983–2000. <u>https://doi.org/10.5194/bg-10-1983-2013</u>
- Wanninkhof, R. & Triñanes, J. (2017). The impact of changing wind speeds on gas transfer and its effect on global air-sea CO2
 fluxes. *Global Biogeochemical Cycles*, **31**, 961–974, doi:10.1002/2016GB005592
- Wei, L., & Qin, T. (2016). Characteristics of cyclone climatology and variability in the Southern Ocean. *Acta Oceanologica Sinica*,
 35, 59–67, doi: 10.1007/s13131-016-0913-y
- 478 Wentz, F., Ricciardulli, L., Rodriguez, E. Stiles, B., Bourassa, M., Long, D. et al. (2017). Evaluating and Extending the Ocean Wind
- 479 Climate Data Record. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*. 99, 2165–2185. doi:
 480 10.1109/JSTARS.2016.2643641
- Xu, X. & Stoffelen, A. (2020). Improved Rain Screening for Ku-Band Wind Scatterometry, *IEEE Transactions on Geoscience and Remote Sensing*, **58:4**, 2494-2503. doi: 10.1109/TGRS.2019.2951726
- Young, I.R., & Ribal, A. (2019). Multiplatform evaluation of global trends in wind speed and wave height. *Science*, 364(6440),
 eaav9527. https://doi.org/10.1126/science.aav9527
- 485 Young, I.R., Sanina, E., & Babanin, A.V. (2017). Calibration and Cross Validation of a Global Wind and Wave Database of
- 486 Altimeter, Radiometer, and Scatterometer Measurements. *Journal of Atmospheric and Oceanic Technology*, **34(6)**, 1285–
- 487 1306. <u>https://doi.org/10.1175/jtech-d-16-0145.1</u>

- 488 Young, I.R., Zieger, S., & Babanin, A.V. (2011). Global Trends in Wind Speed and Wave Height. *Science*, **332(6028)**, 451–455.
- 489 <u>https://doi.org/10.1126/science.1197219</u>
- 490
- 491
- 492