72 research outputs found

    What are the effects of macroalgal blooms on the structure and functioning of marine ecosystems? A systematic review protocol

    Get PDF
    Abstract Background Anthropogenic activities are believed to have caused an increase in the magnitude, frequency, and extent of macroalgal blooms in marine and estuarine environments. These blooms may contribute to declines in seagrasses and non-blooming macroalgal beds, increasing hypoxia, and reductions in the diversity of benthic invertebrates. However, they may also provide other marine organisms with food and habitat, increase secondary production, and reduce eutrophication. The objective of this systematic review will be to quantify the positive and negative impacts of anthropogenically induced macroalgal blooms in order to determine their effects on ecosystem structure and functioning, and to identify factors that cause their effects to vary. Methods We will search a number of online databases to gather empirical evidence from the literature on the impacts of macroalgal blooms on: (1) species richness and other univariate measures of biodiversity; (2) productivity and abundance of algae, plants, and animals; and (3) biogeochemical cycling and other flows of energy and materials, including trophic interactions and cross-ecosystem subsidies. Data from relevant studies will be extracted and used in a random effects meta-analysis in order to estimate the average effect of macroalgal blooms on each response of interest. Where possible, sub-group analyses will be conducted in order to evaluate how the effects of macroalgal blooms vary according to: (1) which part of the ecosystem is being studied (e.g. which habitat type, taxonomic group, or trophic level); (2) the size of blooms; (3) the region in which blooms occurred; (4) background levels of ecosystem productivity; (5) physical and chemical conditions; (6) aspects of study design and quality (e.g. lab vs. field, experimental vs. observational, degree of replication); and (7) whether the blooms are believed to be anthropogenically induced or not

    A response-surface approach into the interactive effects of multiple stressors reveals new insights into complex responses

    Get PDF
    Understanding the difficult to predict interactive effects of anthropogenic stressors is recognized as one of the major challenges facing environmental scientists and ecosystem managers. Despite burgeoning research, predicting stressor interactions is still difficult, in part because the same two stressors can interact, or not, depending on their intensities. While laboratory experiments have provided useful insights about how organisms respond to serial doses of single stressors, we lack ‘response-surface’ field experiments in which naturally occurring assemblages are exposed to multiple types and concentrations of stressors. Here we used a field-based dosing system combined with a ‘response-surface’ design to test the individual and combined effects of two stressors (copper and chlorpyrifos) at five concentrations of each, for a total of 25 replicated treatments (n=4). After six weeks of dosing, chemical uptake and impacts at several levels of biological organization in mussel assemblages were measured. Stressor combinations produced interactive effects that would not have been revealed without using this replicated ‘response-surface approach’. Results show that non-additive effects of multiple stressors may be more complex and more common than previously thought. Additionally, our findings suggest that interactive effects of multiple stressors vary across levels of organization which has implications for monitoring and managing the chemical, biological and ecological impacts of priority pollutants in the real world

    Replicating natural topography on marine artificial structures:A novel approach to eco-engineering

    Get PDF
    Ocean sprawl is a growing threat to marine and coastal ecosystems globally, with wide-ranging consequences for natural habitats and species. Artificial structures built in the marine environment often support less diverse communities than natural rocky marine habitats because of low topographic complexity. Some structures can be eco-engineered to increase their complexity and promote biodiversity. Tried-and-tested eco-engineering approaches include building-in habitat designs to mimic features of natural reef topography that are important for biodiversity. Most designs mimic discrete microhabitat features like crevices or holes and are geometrically-simplified. Here we propose that directly replicating the full fingerprint of natural reef topography in habitat designs makes a novel addition to the growing toolkit of eco-engineering options. We developed a five-step process for designing natural topography-based eco-engineering interventions for marine artificial structures. Given that topography is highly spatially variable in rocky reef habitats, our targeted approach seeks to identify and replicate the ‘best’ types of reef topography to satisfy specific eco-engineering objectives. We demonstrate and evaluate the process by designing three natural topography-based habitat units for intertidal structures, each targeting one of three hypothetical eco-engineering objectives. The process described can be adapted and applied according to user-specific priorities. Expanding the toolkit for eco-engineering marine structures is crucial to enable ecologically-informed designs that maximise biodiversity benefits from burgeoning ocean sprawl

    Artificial shorelines lack natural structural complexity across scales

    Get PDF
    From microbes to humans, habitat structural complexity plays a direct role in the provision of physical living space and increased complexity supports higher biodiversity and ecosystem functioning across biomes. Natural coastlines are structurally complex transition zones between land and sea that support diverse ecological communities but are under increasing pressure from human activity. Coastal development and the construction of artificial shorelines are changing our landscape and altering biodiversity patterns as humans seek both socio-economic benefits and protection from coastal storms, flooding, and erosion. In this study, we evaluate how much structural complexity is missing, and at which scales, with the creation of artificial structures compared to naturally occurring rocky shores. We quantified the structural complexity of both artificial and natural shores at resolutions from 1 mm through to 10s of m using three remote sensing platforms (handheld camera, terrestrial laser scanner and uncrewed aerial vehicles) across both artificial and natural shorelines. Natural shorelines were approximately 20-50 % more structurally complex and offered greater structural variation between locations. In contrast, artificial shorelines were more structurally homogenous and typically deficient in structural complexity across scales. Our findings reinforce concerns that replacing natural rocky shorelines with artificial structures simplifies coastlines at organism-relevant scales. Furthermore, we offer much-needed insight into how structures might be modified to more closely capture the complexity of natural shorelines that support biodiversity

    Harnessing positive species interactions as a tool against climate-driven loss of coastal biodiversity

    Get PDF
    Habitat-forming species sustain biodiversity and ecosystem functioning in harsh environments through the amelioration of physical stress. Nonetheless, their role in shaping patterns of species distribution under future climate scenarios is generally overlooked. Focusing on coastal systems, we assess how habitat-forming species can influence the ability of stress-sensitive species to exhibit plastic responses, adapt to novel environmental conditions, or track suitable climates. Here, we argue that habitat-former populations could be managed as a nature-based solution against climate-driven loss of biodiversity. Drawing from different ecological and biological disciplines, we identify a series of actions to sustain the resilience of marine habitat-forming species to climate change, as well as their effectiveness and reliability in rescuing stress-sensitive species from increasingly adverse environmental conditions.EuroMarine - European Marine Research Networ

    Anxiety disorders in children with Williams syndrome, their mothers, and their siblings: Implications for the etiology of anxiety disorders

    Get PDF
    This study examines the prevalence of anxiety disorders in children with Williams syndrome (WS), their sibling closest in age, and their mothers as well as the predictors of anxiety in these groups. The prevalence of anxiety disorders was assessed and compared to that in the general population. Children with WS had a significantly higher prevalence of specific phobia, generalized anxiety disorder (GAD), and separation anxiety in comparison to children in the general population. While mothers had a higher prevalence of GAD than population controls, the excess was accounted for by mothers who had onset after the birth of their WS child. The siblings had rates similar to the general population. This pattern of findings suggests the presence of a gene in the WS region whose deletion predisposes to anxiety disorders. It is also worthwhile to investigate relations between genes deleted in WS and genes previously implicated in anxiety disorders

    Ecological impacts of non-native Pacific oysters (Crassostrea gigas) and management measures for protected areas in Europe

    Get PDF
    Pacific oysters are now one of the most ‘globalised’ marine invertebrates. They dominate bivalve aquaculture production in many regions and wild populations are increasingly becoming established, with potential to displace native species and modify habitats and ecosystems. While some fishing communities may benefit from wild populations, there is now a tension between the continued production of Pacific oysters and risk to biodiversity, which is of particular concern within protected sites. The issue of the Pacific oyster therefore locates at the intersection between two policy areas: one concerning the conservation of protected habitats, the other relating to livelihoods and the socio-economics of coastal aquaculture and fishing communities. To help provide an informed basis for management decisions, we first summarise evidence for ecological impacts of wild Pacific oysters in representative coastal habitats. At local scales, it is clear that establishment of Pacific oysters can significantly alter diversity, community structure and ecosystem processes, with effects varying among habitats and locations and with the density of oysters. Less evidence is available to evaluate regional-scale impacts. A range of management measures have been applied to mitigate negative impacts of wild Pacific oysters and we develop recommendations which are consistent with the scientific evidence and believe compatible with multiple interests. We conclude that all stakeholders must engage in regional decision making to help minimise negative environmental impacts, and promote sustainable industry development

    A global approach to mapping the environmental risk of commercial harbours on aquatic systems

    Get PDF
    The goal of this paper is to propose a screening method for assessing the environmental risk to aquatic systems in harbours worldwide. A semi-quantitative method is based on environmental pressures, environmental conditions and societal response. The method is flexible enough to be applied to 15 harbours globally distributed through a multinational test using standardised and homogenised open data that can be obtained for any port worldwide. The method emerges as a useful approach towards the foundation of a global environmental risk atlas of harbours that should guide the harbour sector to develop a more globally informed strategy of sustainable development
    • …
    corecore