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1 A global approach to mapping the environmental risk of harbours on aquatic 

2 systems 

3 Highlights:

4 ● A method is proposed to assess the environmental risk of commercial harbours on 

5 aquatic systems.

6 ● The method is a tool to identify the factors of risk on harbour aquatic systems 

7 ● Results obtained from 15 globally distributed harbours are analysed

8 ● Towards the creation of a global atlas of environmental risk of harbours on aquatic 

9 systems

10 Graphical abstract:

11

12 Abstract:

13 The goal of this paper is to propose a screening method for assessing the environmental 

14 risk to aquatic systems in harbours worldwide. A semi-quantitative method is based on 

15 environmental pressures, environmental conditions and societal response. The method is 

16 flexible enough to be applied to 15 harbours globally distributed through a multinational 

17 test using standardised and homogenised open data that can be obtained for any port 

18 worldwide. The method emerges as a useful approach towards the foundation of a global 
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19 environmental risk atlas of harbours that should guide the harbour sector to develop a 

20 more globally informed strategy of sustainable development. 

21 Keywords: environmental risk assessment; global atlas; pressure-state-response model; 

22 harbour aquatic systems; harbour management; sustainable development.

23

24 1. INTRODUCTION

25 Shipping has an important role in moving about 90% of global trade, which is vital for the 

26 continuing and sustainable development of the world economy (ICS, 2018; 2019). The 

27 shipping sector is projected to continue to expand in the future with an estimated annual 

28 growth rate of 3.2% by 2017-2022 (UNCTAD, 2017). The relevance of this sector for world 

29 trade has placed this industry at the centre of a policy debate on globalisation, trade, 

30 development and environmental sustainability (UNCTAD, 2012). Harbours are continuing to 

31 expand to accommodate the infrastructure required to support growth in the shipping 

32 industry (UNCTAD, 2012). This growth increases the likelihood of environmental damage, 

33 which, to some extent, is being mitigated by harbour authorities embracing a sustainable 

34 development approach (EC, 2013). Shipping, alongside the many other marine activities, 

35 generates several threats of varying severity to marine ecosystems (Gómez et al., 2014; 

36 Knights et al., 2015; Valdor et al., 2017), and harbours themselves can be some of the most 

37 impacted habitats on Earth (Halpern et al., 2008).  

38

39 The environmental sustainability of harbours needs to be focused on preventing the 

40 impoverishment of aquatic systems caused by pollution from commercial ships or other 

41 navigation activity. Harbours are guided and regulated by international legislation that aims 

42 to limit ecosystem exposure to harmful activities. International bodies, like the International 

43 Maritime Organisation (IMO), continue to develop legal frameworks to mitigate 

44 environmental harm as a result of commercial shipping (e.g. IMO, 2004; 2013; 2014 or 

45 Lethbridge, 1991), and they set the appropriate standards through international treaties and 

46 conventions. Others, such as the World Association for Waterborne and Transport 
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47 Infrastructure (PIANC), provide expert guidance (PIANC, 2019), recommendations (PIANC, 

48 2011) and technical advice (PIANC, 2020) on environmental issues related to both 

49 recreational and commercial navigation activity (Brolsma, 2010). The maintenance of high-

50 quality aquatic systems (e.g. by preventing marine pollution) is a permanent and universal 

51 goal of these conventions, guidelines and the research developed by these international 

52 organisations. Consequently, water quality has been one of the top 10 environmental 

53 priorities of the harbour sector over last years (2003-2009) (ESPO‐ECOPORTS, 2019).

54

55 Scientific research that provides an evidence-based for decision-making related to 

56 environmental risk on harbour aquatic systems is conducted by projects like the World 

57 Harbour Project (WHP) (www.worldharbourproject.org, Steinberg et al., 2016). This project 

58 enhances research and management across major urban harbours. To develop resilient 

59 urban harbours, a global network of collaborating scientists works on different topics such 

60 as ecological engineering (Strain et al., 2019), environmental management (Valdor et al., 

61 2019), accessible syntheses and summaries of current knowledge (e.g. Juanes et al., 

62 2020). Thus, research programs should be responsible in developing science and 

63 communicating findings in an accessible way to a wide range of users to facilitate the 

64 design of global strategies. We suggest that global strategies are needed to ensure that 

65 harbour managers worldwide are able to assess the environmental risk on aquatic 

66 systems using an easy-to-apply and versatile method. In this context, one of the main 

67 objectives of global strategies is to provide standardised methods to analyse risk. In this 

68 way, data among different harbours are comparable, and their management can be 

69 adjusted to the best available practices regarding limiting environmental risk. 

70

71 However, when global strategies are designed, the harbours’ histories, the 

72 geomorphological and environmental contexts and the socio-economic settings are very 

73 different across the world (Steinberg et al., 2016) and thus may affect approaches to 

74 environmental management. In that context, the Environmental Risk Assessment (ERA) 
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75 arises as a general management tool that is used worldwide to assess potential effects on 

76 the environment due to the exposure to disturbing agents derived from different human 

77 activities (e.g. fishery, industry, urban, agricultural or harbour activities, among others) 

78 (AENOR, 2008; Hope, 2006; Smith et al., 2007; Samhouri and Levin, 2012; Valdor et al., 

79 2016). Using the ERA approach, the potential effects of environmental hazards on the 

80 quality of aquatic systems in harbour areas have been widely studied (e.g. Ronza et al., 

81 2006; Grifoll et al., 2010; Gómez et al., 2015; Ondiviela et al., 2012; Parra et al., 2018), and 

82 methods to assess the environmental risks of harbour activities have been proposed (e.g. 

83 Gómez et al., 2015; Juanes et al., 2013; Ondiviela et al., 2012; Puig et al., 2015; Valdor et 

84 al., 2016). However, worldwide studies to assess the environmental risk of harbour activities 

85 on aquatic systems to support global strategies, such as Global Sustainable Development 

86 Goals (United Nations, 2015), have not been conducted.

87 Harbours around the world implement different environmental management methods that 

88 make use of different approaches to the characterisation of systems, use different analytical 

89 tools and databases, thus making it challenging to obtain standardised quantitative data 

90 globally (PIANC, 2019). For this reason, qualitative and semi-quantitative data analyses are 

91 more suitable alternatives when conducting an ERA study at a global scale (Gómez et al., 

92 2019). Moreover, parameters, indicators, and assessment criteria should be carefully 

93 selected to integrate the singularities of each specific harbour (Darbra et al., 2005; Gupta et 

94 al., 2005). We suggest that, at the same time, the simplicity and low computing cost of the 

95 method should allow for wider applicability to harbours of different sizes, hydrodynamic 

96 characteristics, harbour uses and pressures or resources to assess environmental 

97 challenges.

98

99 The goal of this paper is to propose a method for mapping the assessment of the 

100 environmental risk of harbours on aquatic systems. This method will be: i) flexible enough 

101 to be applied to any harbour worldwide; ii) open-data dependent; and iii) implemented to lay 

102 the foundation to create a global atlas of environmental risk on aquatic systems of harbours. 
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103 The proposed method is tested by applying it to 15 harbours spread across five continents 

104 worldwide. The main contributions of this study are: (i) the development of a standard and 

105 unified ERA method to assess environmental risk of harbour activities worldwide on aquatic 

106 systems (Section 2); (ii) the implementation of the ERA method in 15 harbours around the 

107 world (Section 3); and (iii) the discussion of the proposed method and the results obtained 

108 in the implementation (Section 4).

109 2. MATERIALS AND METHODS

110 The semi-quantitative method providing an assessment of environmental risk on aquatic 

111 systems is based on the Pressure-State-Response (PSR) model defined by Gómez et al. 

112 (2019) for marinas. The method comprises the following three steps: i) identification of 

113 harbours and data collection; ii) estimation of the risk factors (environmental pressures of 

114 harbour activities on the aquatic system, environmental conditions and management 

115 responses); and iii) assessment of environmental risk.

116 2.1 Identification of harbours 

117 Harbours are classified based on the typologies defined by the US National Geospatial-

118 Intelligence Agency (2015) into: i) coastal natural harbours are harbours that are sheltered 

119 from the wind and sea due to their location within a natural coastline or occur in the protective 

120 lee of an island, cape, reef or other natural barrier, or harbours that are located along a river; 

121 ii) coastal breakwater harbours are harbours located behind a human-made breakwater that 

122 are constructed to provide shelter or supplement inadequate shelter already provided by 

123 natural resources; and iii) natural river harbours are harbours in which slips for vessels have 

124 been excavated in the banks obliquely or at right angles to the axis of the stream.

125 For this study, general data, hydro-morphological characteristics and environmental 

126 management information was gathered globally at all 15 harbours through a standardised 

127 form (Supplementary Data. Appendix A) and through other sources of information (e.g., 

128 official harbour webpages). 
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129 2.2 Estimation of environmental risk

130 Environmental risk assessment at the harbour level was based on three factors: i) Pressures 

131 from human activities exerted on the environment; ii) State, or the environmental conditions 

132 that relate to the quality of the environment; and, iii) Response, or the extent to which the 

133 harbour responds to environmental concerns (OECD, 2003) (Eq.1). 

134 Accordingly and based on Gómez et al., (2019), environmental risk of harbours on aquatic 

135 systems was estimated through the following formulas: 

136 Ri = Pti x Sti + Rsi (Eq. 1)

137 Ri = (NVi + HSi + HOi + CDi) x (SUi + EVi + NAi) + (AMi + AIi) (Eq. 2)

138 Where R is the environmental risk, Pt is the Pressure, St is the State and Rs is the Response 

139 of an i harbour. Pressure is estimated considering the navigation activity (NV), the harbour 

140 services (HS), the harbour operation (HO) and the coastal development around the harbour 

141 (CD). While, State is estimated by combining the susceptibility (SU), the ecological value 

142 (EV) and the naturalness (NA). Finally, Response was estimated through the adopted 

143 measures (AM) and the Adopted Instruments (AI).

144 Estimation of environmental risk was evaluated using a semi-quantitative assessment 

145 criteria that was based on a combination of specific indicators, representative of a number 

146 of selected parameters for each factor (Table 1). 

147 Table 1. Parameters, indicators, metrics and criteria assessment to estimate each environmental risk 

148 factor. (i: a specific harbour; max: maximum value obtained for a parameter considering all harbours 

149 under study; ISO: International Organisation for Standardisation; EMAS: Eco-Management and Audit 

150 Scheme; PERS: Port Environmental Review System). Unless specifically indicated by appropriate 

151 references to the source paper indicators were originally developed here.

Factor Parameter Indicator and metric (units) Criteria assessment

Pressures Navigation 
Activity (NV) 

Density of trade vessels 
(vessels per year/m2) by 
dividing vessels per year by 
the surface water area where 
the harbour activities take 
place. 

NVi/NVmax [0-1]
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HSi/HSmax [0-1]
Harbour Services 
(HS)

Harbour services: presence 
(1) or absence (0) of fuel oil 
and diesel oil supplies, major 
repair services and 
dangerous/hazardous goods 
handling within the area where 
the harbour activities take 
place (Valdor et al., 2016).  

Continual 1.0
Periodic 0.5Harbour 

Operation (HO)
Dredging probability, 
frequency of dredging 
operations. None 0.0

Artificial 1.0

Agricultural 0.5

Coastal 
Development 
(CD)

Land uses developed in a 1-
km buffer distance around the 
harbour (worst case scenario)  
(Gómez et al., 2019).

Natural - Other uses 0.0

Susceptibility 
(SU) 

Flushing capacity of the 
water volume where harbour 
activities take place, 
combining hydrodynamic and 
morphological characteristics
through the Complexity Tidal 
Range Index (CTRI*) (Gómez 
et al., 2017).

CTRI*i/CTRI*max [0-1]

Ecological Value 
(EV)

Number of Protected areas 
(#) in a 1-km buffer distance 
around the surface water area 
where the harbour activities 
take place (Gómez et al., 
2019). 

EVi/EVmax [0-1]

Open Roadstead 1.0 

Natural (Coastal or 
River) 0.75

Coastal Breakwater/ 
River Basin 0.5

State

Naturalness (NA)

Alteration by hydro-
morphological pressures in 
a harbour’s environment 
(harbour’s typology) 
(US National Geospatial-
Intelligence Agency, 2015) Tide Gates (Coastal or 

River)/Canal or Lake 0.0

Adopted 
Measures (AM)

Number of adopted 
measures (#) to reduce the 
pressure of human activities 
on the environment (garbage 
disposal, dirty ballast 
management, etc.) (Gómez et 
al., 2019).

AMi/AMmax [0-1]

Response

Adopted 
Instruments (AI)

Number of adopted 
standards (#) to improve the 
environmental performance 
(ISO 14001, EMAS, PERS, 
others.) (Gómez et al., 2019).

AIi/AImax [0-1]

152
153 *    Where A is the surface water area where the harbour activities take place (m²), L is the 𝐶𝑇𝑅𝐼𝑖= [1 ‒ 4 × 𝐴

𝜋 × 𝐿²] × 𝑒
𝑅

154 diameter of the smallest circle enclosing the surface water area polygon (m), e is the minimum distance between 

155 the harbour’s infrastructures or the natural elements that conform the harbour’s entry (m) and R is the medium 

156 tidal range (m) (Gómez et al., 2017).
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157

158 The range of the potential values of all parameters were normalised (varying from 0 to1) by 

159 dividing the observed value by the maximum value, after discarding outliers for each 

160 parameter with values greater than x ̅± 3·SD (Gómez et al., 2019). 

161 2.3. Environmental Risk Assessment

162 To assess the environmental risk to the harbour’s aquatic systems, the results of pressure 

163 and state factors were classified into four categories (1 to 4), while the response factor was 

164 categorised by assigning one of either values: 0 or 4 (Table 2, Eq. 2).  Levels separating the 

165 different categories were established for all harbours under study using the 25th, 50th and 

166 75th percentile values, with the 50th percentile value used as the threshold between optimal 

167 and insufficient response (Table 2). 

168

169 Table 2. Criteria to assess Pressures (Pri), State (Sti) and Response (Rsi) categories from study site 

170 results (VL: Very low; L: low; M: moderate; H: high; P25: 25th Percentile; P50: 50th Percentile; P75: 

171 75th Percentile).

Factor Category Criteria Thresholds
Pressures 
(Pr)

VL (1) Pri ⩽ P25 Pri ⩽ 2.11

L (2) P25 < Pri ⩽ P50 2.11 < Pri ⩽2.51
M (3) P50 < Pri ⩽ P75 2.51 < Pri ⩽ 2.58
H (4) Pri > P75 Pri > 2.58

VL (1) Sti ⩽ P25 Sti ⩽ 0.95
State (St) L (2) P25 < Sti ⩽ P50 0.95 < Sti ⩽ 1.10

M (3) P50 < Sti ⩽ P75 1.10 < Sti ⩽ 1.37
H (4) Sti > P75 Sti > 1.37

Response (Rs) Optimal (0) Rsi ≥ P50 Rsi ≥ 0.75
Insufficient (4) Rsi < P50 Rsi < 0.75

172

173

174 Obtained scores at the factor level (Table 2) were used to estimate the environmental risk 

175 of each harbour through Eq. 1. Based on the environmental risk value (Eq. 1), each harbour 
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176 was classified considering three categories: (i) high-risk harbour (Ri ≥ 12), (ii) moderate-risk 

177 harbour (6 ≤ Ri < 12), (iii) low-risk harbour (1 ≤ Ri < 6).

178 3. RESULTS

179 3.1. Identification of harbours

180 The twenty-seven partners of World Harbour Project network were invited to participate to 

181 test the developed ERA method (Steinberg et al., 2016). Fifteen WHP partners were able to 

182 encourage harbour managers from their respective cities to participate and to gather the 

183 needed information. WHP partners contacted harbour managers by email or phone, and 

184 meetings were conducted when necessary. The fifteen harbours, where the developed ERA 

185 method was tested, spanned Europe (Dublin, Heraklion, Plymouth, Santander, Ravenna 

186 and Vigo), Australasia (Ashdod, Auckland, Darwin, Hobart, Hong Kong, Qingdao and 

187 Sydney) and the Americas (Baltimore and Rio de Janeiro) (Figure 1). “Coastal natural 

188 harbour” was the typology best represented by seven harbours (Rio de Janeiro, Qingdao, 

189 Hong Kong, Santander, Vigo, Darwin and Sydney), followed by “coastal breakwater 

190 harbours” represented by four harbours (Ashdod, Dublin, Heraklion, and Ravenna) and 

191 “natural river harbours” represented by four harbours (Baltimore, Plymouth, Auckland and 

192 Hobart) (Figure 1).

193

194 Figure 1. Harbours assessed using the ERA method. 
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195 The standardised form (Appendix A) was used to gather information from harbour 

196 managers. Harbour managers sent the filled-in form through email to their respective local 

197 WHP partner. In addition to consulting with harbour managers, where possible, data 

198 collected was cross-checked using global, national (e.g. puertos.es) and local resources or 

199 was specifically sourced from each harbour (e.g. the official web page of each harbour). 

200 Using these sources of information, a database of metrics was generated for each harbour.

201 3.2. Estimation of environmental risk

202 The environmental risk assessment process provided explicit information on the parameters 

203 of risk. To define the spatial scope, a polygon of the surface area of the water where harbour 

204 activities take place was first digitalized using ArcGIS software. Harbour managers were 

205 asked to approve the delimitation of these areas. The resulting polygons indicated harbour 

206 surface-water areas (Supplementary data. Appendix B). The tools “extract by mask” and 

207 “Clip” from the ArcGIS software were used to recognize both land uses and protected areas 

208 in 1-km buffer around each harbour, using Globe Land 30 (Chen et al., 2015) and World 

209 Database on Protected Areas (UNEP-WCMC, 2016), respectively. Mean tidal range (R, m), 

210 as a hydrodynamic characteristic, was calculated from the GOS dataset (Cid et al., 2014); 

211 morphological characteristics were estimated for each harbour using ArcGIS techniques, 

212 including area (A, m2), applying the “calculate geometry” tool; length (L, m) and entrance 

213 width (e, m), using the “minimum bounding geometry” tool (Gómez et al., 2017). 

214 Pressures: Normalised values of navigation activity (NV) were extremely variable among the 

215 studied harbours. Ashdod had the highest density of trade vessels (1), followed by Ravenna 

216 (0.18), Dublin (0.16), Qingdao (0.15) and Rio de Janeiro (0.11), while the other harbours 

217 showed normalised values lower than 0.07 (Figure 2, NV). Most harbour areas showed the 

218 maximum value of Harbour Services (HS), since 10 of the 15 study sites develop fuel oil and 

219 diesel oil supplies, major repair services and dangerous or hazardous goods handling 

220 activities (Figure 2, HS). Exceptions to this were Hobart and Plymouth, where fuel oil supply 
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221 and major repairs are not developed, and Heraklion and Ravenna, where dangerous or 

222 hazardous goods handling is not carried out. Harbour Operation (HO) was estimated 

223 through dredging activities, which is are periodic operation in most of the harbours (0.5) 

224 apart from Ashdod and Hong Kong, where continual dredging operations are undertaken 

225 (1), and Hobart and Qingdao, where dredging operations are not carried out (Figure 2, HO). 

226 Normalised Coastal development scored 1 in nearly all the harbours, since the land use 

227 around the harbours was mainly artificial (urban, mining or industrial). Only one harbour 

228 (Darwin) presented natural land uses in its surroundings (Figure 2, CD).

229

230 Figure 2. Representation of normalised values of the parameters applied for the estimation of the 

231 environmental pressures (Pressures) at each of the 15 studied harbours

232

233 State: Susceptibility (SU, a measure of flushing capacity) was the most variable parameter 

234 of State in all the 15 harbours studied (Figure 3, SU) as it is related to the cleaning capacity 

235 of the water volume, which combines hydrodynamic and morphological characteristics at 

236 the harbour level. The main characteristics of the harbours that were responsible for this 

237 variability were the differences in water surface area (~0.8 km2 in Plymouth, to 36.73 km2 in 

591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649



238 Darwin), the minimum distance between the elements that conform the harbour’s entry (~0.2 

239 km in Ravenna to ~316 km in Darwin) and the variability in tidal ranges (microtidal in the 

240 Mediterranean to a 5 m tidal range in Plymouth). Regarding the Ecological Value (EV), the 

241 number of protected areas located in a 1-km buffer distance around the harbour’s water 

242 surface area varied among the different harbours: 0 (five harbours), 1 (four harbours), 2 (two 

243 harbours), 4 (two harbours) and 6 (two harbours) (Figure 3, EV). Conversely, naturalness 

244 (NA) showed similar values at all harbours, with most of them (11) with a normalised NA 

245 value of 0.75 and only 4 harbours with 0.5 (Figure 3, NA).

246

247 Figure 3. Representation of normalised values of the parameters applied for the estimation of 

248 environmental conditions (State) at each of the 15 studied harbours.

249
250 Response: All studied harbours implemented a minimum of 3 Adopted Measures (AM) to 

251 reduce the pressures of human activities on the environment (AM normalised value ≤ 0.5), 

252 with 8 being the maximum number of measures applied in Qingdao and Baltimore (1 AM 

253 normalised value) (Figure 4, AM). A higher variability was registered in the number of 

254 Adopted Instruments (AI), with eight harbours where no instruments to achieve international 
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255 standards were applied, four harbours where 1 was adopted, two harbours where 2 

256 instruments were applied and one harbour where 3 international instruments were applied 

257 (Figure 4, AI).

258

259 Figure 4. Representation of normalised values of the parameters applied for the estimation of level 

260 of response (Response), at each of the 15 studied harbours.

261
262 3.3. Environmental risk assessment

263 In terms of Pressure categories, two harbours were assessed to have high environmental 

264 pressure with four harbours assessed as being moderate. This was followed by a total of six 

265 harbours that were assessed as having low environmental pressures and, finally, three 

266 harbours with very low associated pressures (Figure 5, Pressures in blue bars). Regarding 

267 the State factor, four harbours were classified within the high category, with three harbours 

268 showing moderate environmental conditions and a total of eight harbours within the low and 

269 very-low categories (Figure 5, State in yellow bars). Finally, 7 of the 15 studied harbours 

270 showed insufficient environmental management, while 8 harbours presented an optimal 

271 level of management Response (Figure 5, Response in green bars).
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272 The most frequent category of risk was moderate; 8 of the 15 harbours studied presented 

273 moderate risk, 5 harbours presented low risk, while 2 harbours presented a high 

274 environmental risk to aquatic systems (Figure 5, Environmental risk in red bars).

275

276 Figure 5. Graphical representation of categorised risk factors (Pressures, State and Response) and 

277 categorised environmental risk to aquatic systems at each of the 15 studied harbours.

278
279 Results of environmental risk to aquatic systems of harbours, based on this study’s results 

280 are shown in Supplementary data Appendix B. 

281 4. DISCUSSION

282 4.1 Why this ERA method?: The conceptual model 

283 From a conceptual point of view, the Pressure-State-Response (PSR) model (OECD, 2003) 

284 is used as a framework to select indicators that assess environmental risk at the harbour 

285 level, based on Gómez et al., (2019). Moreover, the Driving force-Pressure-State-Impact-

286 Response (DPSIR) model (EEA, 2005) is integrated in the PSR model to define specific 

287 indices of Pressure, State and Response. These indices group and classify a small number 

288 of indicators (Figure 6).
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289 From a practical point of view, the selection of general-purpose indicators for global 

290 assessments was complex because of the need to obtain homogeneous, objective and 

291 systematic, open and publicly available data and information on a series of diverse 

292 parameters from analogous entities (harbours) that are under different socio-ecological 

293 contexts from all over the world. Indicators were selected based on: i) the complementarity 

294 and non-redundancy of indicators in their representation of risk factors; ii) the possibility of 

295 finding available and homogeneous data from harbours worldwide, and iii) state-of-the-art 

296 and previous studies.

297

298 Driving forces describe the social, demographic and economic development within a given 

299 harbour (EEA, 2005). Based on the conceptual model presented (Figure 6), indicators 

300 selected to estimate the environmental pressures include the four main driving forces 

301 relevant to the harbour areas (navigation, harbour services, harbour operation and coastal 

302 development). Navigation activity, estimated as the number of trade vessel visits per year 

303 by a water-surface area of a harbour, was selected, as it has been identified in previous 

304 works as a representative environmental stressor (Antão et al., 2016) and it is easily 

305 accessible from institutional statistics (e.g. Eurostat, or individual webpages of harbours). 

306 Regarding Harbours Services (HS), two indicators were selected: i) major repair services 

307 (shipyards, ship repair or painting, etc.) that generate chemical wastes (heavy metals, PAHs 

308 and antifoulants), which can pose a risk to aquatic organisms inhabiting harbour areas 

309 (Bebianno et al., 2015); and ii) dangerous/hazardous goods handling defined by IMO codes 

310 (IMO, 2014), which were previously considered in ERA mapping studies on harbour systems 

311 (e.g. Valdor et al., 2016). Furthermore, dredging, one of the most important operations and 

312 maintenance activities within harbours (PIANC, 2006), and dominant land use in the 

313 surrounding area, served as proxies of the external influences on water quality (Cornelissen 

314 et al., 2008). 
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316 Indirect or direct pressures are identified by each driving force (Gómez et al., 2019). The 

317 identified pressures produce impacts altering the state of the environment (Ondiviela et al., 

318 2013; Petrosillo et al., 2010). State factor of risk considers three important aspects of the 

319 harbour’s environment: susceptibility, ecological value and naturalness. From the eight 

320 pressure indicators proposed in the conceptual model (Figure 6), there are three related to 

321 quality of the aquatic system (chemical quality, physico-chemical quality and biological 

322 quality) that require periodic monitoring and systematic evaluation. Since each country 

323 applies different monitoring and evaluation systems (in terms of thresholds, frequency, etc.), 

324 the susceptibility to water and sediment contamination was considered as a standard 

325 representative indicator of the quality of the aquatic system of harbours worldwide, assuming 

326 a significant relationship between flushing capacity and water quality in littoral areas 

327 (Ferreira et al., 2005; Fortes and Silva., 2006; Gómez et al, 2014; Yin et al., 2000). This 

328 assumption was previously used for ERA in marinas (Gómez et al., 2017) and harbours 

329 (Gómez et al., 2015). The harbour’s ecological value considered that the greater the 

330 protected area in the vicinity of the harbours is, the greater the biodiversity and ecological 

331 processes that maintain that system (Gómez et al., 2015; Langanke et al., 2005; Margulles 

332 and Usger, 1981). Finally, their ‘naturalness’ (Machado, 2004) was estimated using the 

333 harbour typology (US National Geospatial-Intelligence Agency, 2015) as a surrogate of 

334 number and dimensions of hydro-morphological pressures at the marina level typology 

335 (Gamito, 2008; Gómez et al., 2019). 

336

337 The response factor to environmental risk was used to integrate the actions and reactions, 

338 intended to mitigate, adapt to or prevent human-induced negative effects on the environment 

339 that could be applied to minimize the impacts of driving forces and improve the state of 

340 aquatic ecosystems (OECD, 2003). Responses may arise from different sectors, such as 

341 those in social, technical or institutional (i.e. local, national or international administrations) 

342 realms (Figure 6). Among all of them, institutional responses are the option that integrates 

343 a greater number of fields involving social responses (awareness campaigns), institutional 
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344 responses (policy and strategies) and technical responses (research). For this reason, the 

345 implementation of different kinds of well-known international measures (e.g., garbage 

346 disposal, oil recycling, ballast water management, among others) and international 

347 standards (e.g. EMAS, ISO, PERS, among others) was considered an appropriate indicator 

348 to estimate the response factor. 

349

350 Figure 6. Conceptualisation of the causal links between main driving forces, pressures, impacts, state and 

351 response of aquatic systems in harbours.

352

353 4.2 The global implementation 

354 Based on this study’s results, the method used provides a tool to standardize the 

355 assessment of environmental risk to aquatic systems at a global scale (Supplementary data 

356 Appendix B). However, a question arose from this implementation: Are the PSR and DPSIR 

357 scenarios of the study sites representative of the environmental risks of harbours globally? 

358 ERA results showed that most of the study areas had a moderate risk but included significant 

359 variability of environmental pressures, environmental conditions and societal responses. 

360 However, results showed differences at the indicator level in those harbours within the same 
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361 category of risk. For instance, Hobart showed a moderate environmental risk on the aquatic 

362 system due to a combination of high vulnerability (high naturalness but a moderate 

363 ecological value of the surroundings) with a high score of environmental management (due 

364 to the low number of adopted measures and none of the international standards 

365 implemented). Heraklion showed a moderate risk on the aquatic system even though they 

366 were adopting a good number of environmental measures (above the average) to reduce 

367 the pressure of human activities on the environment because no international environmental 

368 management instruments were applied. In other cases, the higher susceptibility (Baltimore) 

369 or the higher ecological value (Ravenna), were the parameters of risk that penalised the 

370 result for these harbours. Identification of such risk parameters allows for the targeted 

371 application of more preventive and corrective management actions to help reduce 

372 environmental risk to aquatic systems for those specific harbours. 

373 Therefore, from a practical perspective, the environmental risk assessment method can be 

374 used as a tool to proactively identify the most important factors of risk on which to apply 

375 actions that allow for environmental improvements in each. 

376 For this, expert knowledge on environmental risk is not strictly necessary, but a deep 

377 understanding on the environment harbour characteristics is needed. These data are 

378 controlled and known by harbour managers. In Section 2, practical steps are described 

379 considering parameters, indicators, metrics and criteria to estimate each risk factor. The 

380 pathway to apply the ERA method to an individual harbour include the collection of the 

381 information needed and the calculation of parameters for each risk factor. A standardized 

382 form to gather the information is provided in Appendix A and calculations described at 

383 Section 2 are easy to apply with a basic knowledge of spatial analysis using geographical 

384 information systems.

385 Once applied, the method can be used to detect which harbours should apply environmental 

386 measures or/and international standards to improve their management of aquatic systems, 

387 based on the highest standards of environmental quality applied around the world. An 

388 example of this is shown in Figure 7, which represents the hypothetical case in which the 15 
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389 harbours analysed for this implementation applying eight environmental measures (such as 

390 garbage disposal, dirty ballast management, waste management, bilge management, sewer 

391 pump-out, oil management) and 1 international standard (Figure 7). As all harbours apply 

392 the maximum number of environmental measures and standard certifications, the value of 

393 the response factor is 0 (optimal response) for all the harbours analysed. For this reason, 

394 the green bars are not observed in Figure 7.

395

396 Figure 7. Graphical representation of a hypothetical situation at each of the 15 studied harbours 

397 with reduced categorised risk factors (pressures, state and responses) by the application of at least 

398 4 environmental measures and 1 international standard and categorised environmental risk to 

399 aquatic systems.

400 In this case, one harbour continues to show high risk, five harbours show moderate risk 

401 while the other nine show a low environmental risk on the aquatic system. The screening 

402 capacity of this tool may address the global challenge of standardizing methods that produce 

403 comparable risk assessments of high-level entities (e.g. harbours) at large spatial scales.

404 However, if the harbours applying the environmental measures and certifications do not 

405 obtain a low value of environmental risk, they should then focus their efforts on reducing the 
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406 environmental risk factors that are penalizing the final value of environmental risk. This is 

407 the case in Hong Kong, which has high pressures due to the presence of intense navigation 

408 activity (NV), the harbour services (HS) provided in the harbour, the continual dredging 

409 activity (DG) in the harbour area and the Coastal development (CD) in their surroundings. 

410 Baltimore is also highly susceptible probably due to the morphological characteristics of the 

411 harbour area, which is very difficult to change from an environmental management 

412 standpoint. In these cases, socio-economic issues should also be incorporated into a long-

413 term sustainability or management plan, which must assess the disadvantages and benefits 

414 that may result from modifying factors that penalized the final value of the environmental 

415 risk.

416

417 To the extent that harbours collaborate by providing the necessary information for the 

418 calculation of environmental risk, it will be possible to create a global atlas of risk. 

419 Collaboration by harbours will be feasible as long as the global atlas were understood as a 

420 participatory process towards the sustainability of aquatic systems, recalling the adoption of 

421 the 2030 Agenda and its Sustainable Development Goals (SDG, in particular SDG 14) and 

422 the more recent resolution of the UN on the Decade for Ocean Sciences (2021-30), which 

423 will provide a unifying framework across the UN system to enable countries to achieve all of 

424 their ocean-related Agenda 2030 priorities (IOC, 2017).

425

426 The global atlas developed by using the method presented herein would introduce valuable 

427 bring the elements of judgment to guide managers involved in decision-making (AENOR, 

428 2008) towards the sustainability of aquatic systems in harbour areas, as well as to design 

429 the first global strategy for sustainability related to the water quality at a global level. 

430 Sustainable development goal (SDG) 14 in the UN 2030 Agenda requires to “conserve and 

431 sustainably use the oceans, seas and marine resources for sustainable development” 

432 (United Nations, 2015). Global Sustainable development goals require global analysis of the 

433 problems presented and definition of global strategies to resolve them. Many critical 
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434 management and conservation challenges of aquatic systems in harbour areas are 

435 inherently spatial issues (Valdor et al., 2016). As new spatial data are collected on the 

436 distribution and intensity of harbour activities, this will allow for more flexible and adaptive 

437 environmental management processes to identify global environmental problems and 

438 possible sustainable solutions through an environmental risk assessment approach.

439

440 Future work could improve the current Atlas through the collection and comparison of more 

441 data from more harbours across the globe, and it also could test for the robustness of this 

442 approach.  In addition, new indicators could be developed to improve the method proposed. 

443 For example, the navigation and docking of cruise ships or fishing vessels could serve as a 

444 complementary indicator for the parameter of risk related to navigation activity (NV), and an 

445 international connectivity index of harbours could be an indicator of the potential 

446 environmental risks from invasive species.

447 5. CONCLUSIONS

448 In this study, we present the first example of an Environmental Risk Assessment (ERA) 

449 screening approach to assess the environmental risk on aquatic systems in harbours at 

450 global scale. The method implemented in this attempt proposes a semi-quantitative and 

451 simple method to assess the environmental risk on aquatic systems in harbour areas 

452 worldwide. The implementation of the method to the 15 diverse harbours has provided 

453 sound evidence for the usefulness, versatility and adaptability of the proposed ERA method 

454 as a management tool. The method is flexible enough to be applied to any harbour 

455 worldwide using international open-databases. The implementation of this method to a wider 

456 number of study cases would allow identification of harbours that could improve their 

457 environmental management through the implementation of measures with specific 

458 indicators. The method lays the foundation of a global atlas for the sustainability of 

459 commercial harbours and it provides a powerful tool to facilitate the design of a strategy for 

460 the sustainability of the harbour sector at a global level.
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General data
Harbour’s name: 
Postal address: 
Code: 
City: 
Country: 
web: 
phone: 
e-mail address: 
Hydromorphological characteristics:
Entrance length (in meters): 
Average tidal range (in meters): 
Average depth (in meters): 
Depth at harbour entrance (in meters): 
Human pressures
Number of trade vessels visits per year: 
Select which activities are developed in the harbour:
☐  Fuel oil and diesel oil supplies

☐ Major repair services

☐ Dangerous/hazardous goods handling
Frequency of dredging operations:
☐ Continual

☐ Periodic

☐ No dredging
Environmental management
Number of Environmental Standard: 
Please, specify what kind of environmental standards (international certifications) are 
implemented in the marina:
Select which environmental measures are implemented in the harbour:

Measures:
☐  Garbage disposal

☐  Dirty ballast management

☐  Waste management

☐  Bilge management, Sewer Pump-Out

☐  Oil management
Specify any other environmental measure or instrument implemented in the harbour:

Application scope
1. Access to GoogleEarth: https://www.google.es/intl/es/earth/
2. Introduce the name of the harbour in the seeker. 
3. Using Add -> Add a polygon: draw the water surface where port activity takes 

place.
4. Save the polygon as a .kmz and send it with this questionnaire filled out to: 

xxxxx.xxxx@unican.es
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