22 research outputs found

    J- and Ks-band Galaxy Counts and Color Distributions in the AKARI North Ecliptic Pole Field

    Get PDF
    We present the J- and Ks-band galaxy counts and galaxy colors covering 750 square arcminutes in the deep AKARI North Ecliptic Pole (NEP) field, using the FLoridA Multi-object Imaging Near-ir Grism Observational Spectrometer (FLAMINGOS) on the Kitt Peak National Observatory (KPNO) 2.1m telescope. The limiting magnitudes with a signal-to-noise ratio of three in the deepest regions are 21.85 and 20.15 in the J- and Ks-bands respectively in the Vega magnitude system. The J- and Ks-band galaxy counts in the AKARI NEP field are broadly in good agreement with those of other results in the literature, however we find some indication of a change in the galaxy number count slope at J~19.5 and over the magnitude range 18.0 < Ks < 19.5. We interpret this feature as a change in the dominant population at these magnitudes because we also find an associated change in the B - Ks color distribution at these magnitudes where the number of blue samples in the magnitude range 18.5 < Ks < 19.5 is significantly larger than that of Ks < 17.5

    JPCam: A 1.2Gpixel camera for the J-PAS survey

    Full text link
    JPCam is a 14-CCD mosaic camera, using the new e2v 9k-by-9k 10microm-pixel 16-channel detectors, to be deployed on a dedicated 2.55m wide-field telescope at the OAJ (Observatorio Astrofisico de Javalambre) in Aragon, Spain. The camera is designed to perform a Baryon Acoustic Oscillations (BAO) survey of the northern sky. The J-PAS survey strategy will use 54 relatively narrow-band (~13.8nm) filters equi-spaced between 370 and 920nm plus 3 broad-band filters to achieve unprecedented photometric red-shift accuracies for faint galaxies over ~8000 square degrees of sky. The cryostat, detector mosaic and read electronics is being supplied by e2v under contract to J-PAS while the mechanical structure, housing the shutter and filter assembly, is being designed and constructed by a Brazilian consortium led by INPE (Instituto Nacional de Pesquisas Espaciais). Four sets of 14 filters are placed in the ambient environment, just above the dewar window but directly in line with the detectors, leading to a mosaic having ~10mm gaps between each CCD. The massive 500mm aperture shutter is expected to be supplied by the Argelander-Institut fur Astronomie, Bonn. We will present an overview of JPCam, from the filter configuration through to the CCD mosaic camera. A brief outline of the main J-PAS science projects will be included.Comment: 11 pages and 9 figure

    On the nature of the extragalactic number counts in the K-band

    Get PDF
    We investigate the causes of the different shape of the KK-band number counts when compared to other bands, analyzing in detail the presence of a change in the slope around K17.5K\sim17.5. We present a near-infrared imaging survey, conducted at the 3.5m telescope of the Calar Alto Spanish-German Astronomical Center (CAHA), covering two separated fields centered on the HFDN and the Groth field, with a total combined area of 0.27\sim0.27deg2^{2} to a depth of K19K\sim19 (3σ3\sigma,Vega). We derive luminosity functions from the observed KK-band in the redshift range [0.25-1.25], that are combined with data from the references in multiple bands and redshifts, to build up the KK-band number count distribution. We find that the overall shape of the number counts can be grouped into three regimes: the classic Euclidean slope regime (dlogN/dm0.6d\log N/dm\sim0.6) at bright magnitudes; a transition regime at intermediate magnitudes, dominated by MM^{\ast} galaxies at the redshift that maximizes the product ϕdVcdΩ\phi^{\ast}\frac{dV_{c}}{d\Omega}; and an α\alpha dominated regime at faint magnitudes, where the slope asymptotically approaches -0.4(α\alpha+1) controlled by post-MM^{\ast} galaxies. The slope of the KK-band number counts presents an averaged decrement of 50\sim50% in the range 15.5<K<18.515.5<K<18.5 (dlogN/dm0.60.30d\log N/dm\sim0.6-0.30). The rate of change in the slope is highly sensitive to cosmic variance effects. The decreasing trend is the consequence of a prominent decrease of the characteristic density ϕK,obs\phi^{\ast}_{K,obs} (60\sim60% from z=0.5z=0.5 to z=1.5z=1.5) and an almost flat evolution of MK,obsM^{\ast}_{K,obs} (1σ\sigma compatible with MK,obs=22.89±0.25M^{\ast}_{K,obs}=-22.89\pm0.25 in the same redshift range).Comment: 18 pages, 22 figures, Accepted by Astronomy & Astrophysic

    J-PLUS: Photometric Re-calibration with the Stellar Color Regression Method and an Improved Gaia XP Synthetic Photometry Method

    Full text link
    We employ the corrected Gaia Early Data Release 3 (EDR3) photometric data and spectroscopic data from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) DR7 to assemble a sample of approximately 0.25 million FGK dwarf photometric standard stars for the 12 J-PLUS filters using the Stellar Color Regression (SCR) method. We then independently validated the J-PLUS DR3 photometry, and uncovered significant systematic errors: up to 15 mmag in the results of Stellar Locus (SL) method, and up to 10 mmag mainly caused by magnitude-, color-, and extinction-dependent errors of the Gaia XP spectra with the Gaia BP/RP (XP) Synthetic Photometry (XPSP) method. We have also further developed the XPSP method using the corrected Gaia XP spectra by Huang et al. (2023) and applied it to the J-PLUS DR3 photometry. This resulted in an agreement of 1-5 mmag with the SCR method, and a two-fold improvement in the J-PLUS zero-point precision. Finally, the zero-point calibration for around 91% of the tiles within the LAMOST observation footprint is determined through the SCR method, with the remaining approximately 9% of tiles outside this footprint relying on the improved XPSP method. The re-calibrated J-PLUS DR3 photometric data establishes a solid data foundation for conducting research that depends on high-precision photometric calibration.Comment: 21 papes; 20 figures, submitted, see main results in Figures 5 and 1

    Lyman break and UV-selected galaxies at z ~ 1: II. PACS-100um/160um FIR detections

    Full text link
    We report the PACS-100um/160um detections of a sample of 42 GALEX-selected and FIR-detected Lyman break galaxies (LBGs) at z ~ 1 located in the COSMOS field and analyze their ultra-violet (UV) to far-infrared (FIR) properties. The detection of these LBGs in the FIR indicates that they have a dust content high enough so that its emission can be directly detected. According to a spectral energy distribution (SED) fitting with stellar population templates to their UV-to-near-IR observed photometry, PACS-detected LBGs tend to be bigger, more massive, dustier, redder in the UV continuum, and UV-brighter than PACS-undetected LBGs. PACS-detected LBGs at z ~ 1 are mostly disk-like galaxies and are located over the green-valley and red sequence of the color-magnitude diagram of galaxies at their redshift. By using their UV and IR emission, we find that PACS-detected LBGs tend to be less dusty and have slightly higher total star-formation rates (SFRs) than other PACS-detected UV-selected galaxies within their same redshift range. As a consequence of the selection effect due to the depth of the FIR observations employed, all our PACS-detected LBGs are LIRGs. However, none of them are in the ULIRG regime, where the FIR observations are complete. The finding of ULIRGs-LBGs at higher redshifts suggests an evolution of the FIR emission of LBGs with cosmic time. In an IRX-β\beta diagram, PACS-detected LBGs at z ~ 1 tend to be located around the relation for local starburst similarly to other UV-selected PACS-detected galaxies at their same redshift. Consequently, the dust-correction factors obtained with their UV continuum slope allow to determine their total SFR, unlike at higher redshifts. However, the dust attenuation derived from UV to NIR SED fitting overestimates the total SFR for most of our PACS-detected LBGs in age-dependent way: the overestimation factor is higher in younger galaxies.Comment: Accepted for publication in MNRA

    Wide and deep near-UV (360nm) galaxy counts and the extragalactic background light with the Large Binocular Camera

    Full text link
    Deep multicolour surveys are the main tool to explore the formation and evolution of the faint galaxies which are beyond the spectroscopic limit with the present technology. The photometric properties of these faint galaxies are usually compared with current renditions of semianalytical models to provide constraints on the fundamental physical processes involved in galaxy formation and evolution, namely the mass assembly and the star formation. Galaxy counts over large sky areas in the near-UV band are important because they are difficult to obtain given the low efficiency of near-UV instrumentation, even at 8m class telescopes. A large instrumental field of view helps in minimizing the biases due to the cosmic variance. We have obtained deep images in the 360nm U band provided by the blue channel of the Large Binocular Camera at the prime focus of the Large Binocular Telescope. We have derived over an area of ~0.4 sq. deg. the galaxy number counts down to U=27 in the Vega system (corresponding to U=27.86 in the AB system) at a completeness level of 30% reaching the faintest current limit for this wavelength and sky area. The shape of the galaxy counts in the U band can be described by a double power-law, the bright side being consistent with the shape of shallower surveys of comparable or greater areas. The slope bends over significantly at U>23.5 ensuring the convergence of the contribution by star forming galaxies to the EBL in the near-UV band to a value which is more than 70% of the most recent upper limits derived for this band. We have jointly compared our near-UV and K band counts collected from the literature with few selected hierarchical CDM models emphasizing critical issues in the physical description of the galaxy formation and evolution.Comment: Accepted for publication in A&A. Uses aa.cls, 9 pages, 4 figures. Citations update
    corecore