2,115 research outputs found
The Quantum McKay Correspondence for polyhedral singularities
Let G be a polyhedral group, namely a finite subgroup of SO(3). Nakamura's
G-Hilbert scheme provides a preferred Calabi-Yau resolution Y of the polyhedral
singularity C^3/G. The classical McKay correspondence describes the classical
geometry of Y in terms of the representation theory of G. In this paper we
describe the quantum geometry of Y in terms of R, an ADE root system associated
to G. Namely, we give an explicit formula for the Gromov-Witten partition
function of Y as a product over the positive roots of R. In terms of counts of
BPS states (Gopakumar-Vafa invariants), our result can be stated as a
correspondence: each positive root of R corresponds to one half of a genus zero
BPS state. As an application, we use the crepant resolution conjecture to
provide a full prediction for the orbifold Gromov-Witten invariants of [C^3/G].Comment: Introduction rewritten. Issue regarding non-uniqueness of conifold
resolution clarified. Version to appear in Inventione
The Ruled Vertex and Nontoric del Pezzo Surfaces
We construct the topological partition function of local nontoric del Pezzo
surfaces using the ruled vertex formalism.Comment: 16 pages, 4 figure
Implementation of the LANS-alpha turbulence model in a primitive equation ocean model
This paper presents the first numerical implementation and tests of the
Lagrangian-averaged Navier-Stokes-alpha (LANS-alpha) turbulence model in a
primitive equation ocean model. The ocean model in which we work is the Los
Alamos Parallel Ocean Program (POP); we refer to POP and our implementation of
LANS-alpha as POP-alpha. Two versions of POP-alpha are presented: the full
POP-alpha algorithm is derived from the LANS-alpha primitive equations, but
requires a nested iteration that makes it too slow for practical simulations; a
reduced POP-alpha algorithm is proposed, which lacks the nested iteration and
is two to three times faster than the full algorithm. The reduced algorithm
does not follow from a formal derivation of the LANS-alpha model equations.
Despite this, simulations of the reduced algorithm are nearly identical to the
full algorithm, as judged by globally averaged temperature and kinetic energy,
and snapshots of temperature and velocity fields. Both POP-alpha algorithms can
run stably with longer timesteps than standard POP.
Comparison of implementations of full and reduced POP-alpha algorithms are
made within an idealized test problem that captures some aspects of the
Antarctic Circumpolar Current, a problem in which baroclinic instability is
prominent. Both POP-alpha algorithms produce statistics that resemble
higher-resolution simulations of standard POP.
A linear stability analysis shows that both the full and reduced POP-alpha
algorithms benefit from the way the LANS-alpha equations take into account the
effects of the small scales on the large. Both algorithms (1) are stable; (2)
make the Rossby Radius effectively larger; and (3) slow down Rossby and gravity
waves.Comment: Submitted to J. Computational Physics March 21, 200
Impact of Transfused Citrate on Pathophysiology in Massive Transfusion
UNLABELLED: This narrative review article seeks to highlight the effects of citrate on physiology during massive transfusion of the bleeding patient.
DATA SOURCES: A limited library of curated articles was created using search terms including citrate intoxication, citrate massive transfusion, citrate pharmacokinetics, hypocalcemia of trauma, citrate phosphate dextrose, and hypocalcemia in massive transfusion. Review articles, as well as prospective and retrospective studies were selected based on their relevance for inclusion in this review.
STUDY SELECTION: Given the limited number of relevant studies, studies were reviewed and included if they were written in English. This is not a systematic review nor a meta-analysis.
DATA EXTRACTION AND SYNTHESIS: As this is not a meta-analysis, new statistical analyses were not performed. Relevant data were summarized in the body of the text.
CONCLUSIONS: The physiologic effects of citrate independent of hypocalcemia are poorly understood. While a healthy individual can rapidly clear the citrate in a unit of blood (either through the citric acid cycle or direct excretion in urine), the physiology of hemorrhagic shock can lead to decreased clearance and prolonged circulation of citrate. The so-called Diamond of Death of bleeding-coagulopathy, acidemia, hypothermia, and hypocalcemia-has a dynamic interaction with citrate that can lead to a death spiral. Hypothermia and acidemia both decrease citrate clearance while circulating citrate decreases thrombin generation and platelet function, leading to ionized hypocalcemia, coagulopathy, and need for further transfusion resulting in a new citrate load. Whole blood transfusion typically requires lower volumes of transfused product than component therapy alone, resulting in a lower citrate burden. Efforts should be made to limit the amount of citrate infused into a patient in hemorrhagic shock while simultaneously addressing the induced hypocalcemia
Understanding foot-and-mouth disease virus transmission biology: identification of the indicators of infectiousness
The control of foot-and-mouth disease virus (FMDV) outbreaks in non-endemic countries relies on the rapid detection and removal of infected animals. In this paper we use the observed relationship between the onset of clinical signs and direct contact transmission of FMDV to identify predictors for the onset of clinical signs and identify possible approaches to preclinical screening in the field. Threshold levels for various virological and immunological variables were determined using Receiver Operating Characteristic (ROC) curve analysis and then tested using generalized linear mixed models to determine their ability to predict the onset of clinical signs. In addition, concordance statistics between qualitative real time PCR test results and virus isolation results were evaluated. For the majority of animals (71%), the onset of clinical signs occurred 3–4 days post infection. The onset of clinical signs was associated with high levels of virus in the blood, oropharyngeal fluid and nasal fluid. Virus is first detectable in the oropharyngeal fluid, but detection of virus in the blood and nasal fluid may also be good candidates for preclinical indicators. Detection of virus in the air was also significantly associated with transmission. This study is the first to identify statistically significant indicators of infectiousness for FMDV at defined time periods during disease progression in a natural host species. Identifying factors associated with infectiousness will advance our understanding of transmission mechanisms and refine intra-herd and inter-herd disease transmission models
Improving response rates using a monetary incentive for patient completion of questionnaires: an observational study
Background: Poor response rates to postal questionnaires can introduce bias and reduce the statistical power of a study. To improve response rates in our trial in primary care we tested the effect of introducing an unconditional direct payment of 5 pound for the completion of postal questionnaires. Methods: We recruited patients in general practice with knee problems from sites across the United Kingdom. An evidence-based strategy was used to follow-up patients at twelve months with postal questionnaires. This included an unconditional direct payment of 5 pound to patients for the completion and return of questionnaires. The first 105 patients did not receive the 5 pound incentive, but the subsequent 442 patients did. We used logistic regression to analyse the effect of introducing a monetary incentive to increase the response to postal questionnaires. Results: The response rate following reminders for the historical controls was 78.1% ( 82 of 105) compared with 88.0% ( 389 of 442) for those patients who received the 5 pound payment (diff = 9.9%, 95% CI 2.3% to 19.1%). Direct payments significantly increased the odds of response ( adjusted odds ratio = 2.2, 95% CI 1.2 to 4.0, P = 0.009) with only 12 of 442 patients declining the payment. The incentive did not save costs to the trial - the extra cost per additional respondent was almost 50 pound. Conclusion: The direct payment of 5 pound significantly increased the completion of postal questionnaires at negligible increase in cost for an adequately powered study
ALMA observations of lensed Herschel sources: testing the dark matter halo paradigm
With the advent of wide-area submillimetre surveys, a large number of high-redshift gravitationally lensed dusty star-forming galaxies have been revealed. Because of the simplicity of the selection criteria for candidate lensed sources in such surveys, identified as those with S500 μm > 100 mJy, uncertainties associated with the modelling of the selection function are expunged. The combination of these attributes makes submillimetre surveys ideal for the study of strong lens statistics. We carried out a pilot study of the lensing statistics of submillimetre-selected sources by making observations with the Atacama Large Millimeter Array (ALMA) of a sample of strongly lensed sources selected from surveys carried out with the Herschel Space Observatory. We attempted to reproduce the distribution of image separations for the lensed sources using a halo mass function taken from a numerical simulation that contains both dark matter and baryons. We used three different density distributions, one based on analytical fits to the haloes formed in the EAGLE simulation and two density distributions [Singular Isothermal Sphere (SIS) and SISSA] that have been used before in lensing studies. We found that we could reproduce the observed distribution with all three density distributions, as long as we imposed an upper mass transition of ∼1013 M⊙ for the SIS and SISSA models, above which we assumed that the density distribution could be represented by a Navarro–Frenk–White profile. We show that we would need a sample of ∼500 lensed sources to distinguish between the density distributions, which is practical given the predicted number of lensed sources in the Herschel surveys
Recommended from our members
The De-Icing Comparison Experiment (D-ICE): a study of broadband radiometric measurements under icing conditions in the Arctic
Surface-based measurements of broadband shortwave (solar) and longwave (infrared) radiative fluxes using thermopile radiometers are made regularly around the globe for scientific and operational environmental monitoring. The occurrence of ice on sensor windows in cold environments – whether snow, rime, or frost – is a common problem that is difficult to prevent as well as difficult to correct in post-processing. The Baseline Surface Radiation Network (BSRN) community recognizes radiometer icing as a major outstanding measurement uncertainty. Towards constraining this uncertainty, the De-Icing Comparison Experiment (D-ICE) was carried out at the NOAA Atmospheric Baseline Observatory in Utqiaġvik (formerly Barrow), Alaska, from August 2017 to July 2018. The purpose of D-ICE was to evaluate existing ventilation and heating technologies developed to mitigate radiometer icing. D-ICE consisted of 20 pyranometers and 5 pyrgeometers operating in various ventilator housings alongside operational systems that are part of NOAA's Barrow BSRN station and the US Department of Energy Atmospheric Radiation Measurement (ARM) program North Slope of Alaska and Oliktok Point observatories. To detect icing, radiometers were monitored continuously using cameras, with a total of more than 1 million images of radiometer domes archived. Ventilator and ventilator–heater performance overall was skillful with the average of the systems mitigating ice formation 77 % (many >90 %) of the time during which icing conditions were present. Ventilators without heating elements were also effective and capable of providing heat through roughly equal contributions of waste energy from the ventilator fan and adiabatic heating downstream of the fan. This provided ∼0.6 ∘C of warming, enough to subsaturate the air up to a relative humidity (with respect to ice) of ∼105 %. Because the mitigation technologies performed well, a near complete record of verified ice-free radiometric fluxes was assembled for the duration of the campaign. This well-characterized data set is suitable for model evaluation, in particular for the Year of Polar Prediction (YOPP) first Special Observing Period (SOP1). We used the data set to calculate short- and long-term biases in iced sensors, finding that biases can be up to +60 W m−2 (longwave) and −211 to +188 W m−2 (shortwave). However, because of the frequency of icing, mitigation of ice by ventilators, cloud conditions, and the timing of icing relative to available sunlight, the biases in the monthly means were generally less than the aggregate uncertainty attributed to other conventional sources in both the shortwave and longwave.
</p
- …