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Abstract 

The control of foot-and-mouth disease virus (FMDV) outbreaks in non-endemic countries 
relies on the rapid detection and removal of infected animals. In this paper we use the 
observed relationship between the onset of clinical signs and direct contact transmission of 
FMDV to identify predictors for the onset of clinical signs and identify possible approaches 
to preclinical screening in the field. Threshold levels for various virological and 
immunological variables were determined using Receiver Operating Characteristic (ROC) 
curve analysis and then tested using generalized linear mixed models to determine their 
ability to predict the onset of clinical signs. In addition, concordance statistics between 
qualitative real time PCR test results and virus isolation results were evaluated. For the 
majority of animals (71%), the onset of clinical signs occurred 3–4 days post infection. The 
onset of clinical signs was associated with high levels of virus in the blood, oropharyngeal 
fluid and nasal fluid. Virus is first detectable in the oropharyngeal fluid, but detection of virus 
in the blood and nasal fluid may also be good candidates for preclinical indicators. Detection 
of virus in the air was also significantly associated with transmission. This study is the first to 
identify statistically significant indicators of infectiousness for FMDV at defined time periods 
during disease progression in a natural host species. Identifying factors associated with 
infectiousness will advance our understanding of transmission mechanisms and refine intra-
herd and inter-herd disease transmission models. 

Introduction 

Foot-and-mouth disease virus (FMDV), a member of the Aphthovirus genus within the 
Picornaviridae family, is the causative agent of foot-and-mouth disease (FMD), one of the 
world’s most important infectious animal diseases, responsible for huge global losses of 
livestock production and trade, as well as frequent and highly disruptive large-scale 
epidemics [1,2]. The disease is characterised by a short lasting fever, epithelial lesions on the 
tongue, dental pad and inner mouth area leading to excessive salivation and drooling and 
lesions on the feet causing lameness. Secondary infection of epithelial lesions can 
significantly increase the severity of disease [3,4]. 

There are seven immunologically distinct serotypes and more than 60 antigenic variations 
[5,6] and many are endemic in large parts of Asia, Africa and South America [7]. Here, we 
focus on serotype O, which is the most prevalent serotype globally and shown to be 
transmitted by several different routes. One of the most common routes of transmission in 
ruminants is by direct contact between infected and naïve animals. Indirect contact also 
occurs by mechanical transfer via people, wild animals and birds, vehicles, fomites and 
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animal products e.g. milk or meat products [8-13]. The virus may also spread by inhalation of 
infectious droplets and droplet nuclei originating mainly from the breath of infected animals 
[14] which can be wind borne [15]. Wind borne transmission occurs infrequently, as it 
requires particular climatic and epidemiological conditions [16-18]. 

A recent publication [19] reported the results of experimental studies of direct FMDV 
transmission in cattle. The results of that study suggested that conditions promoting 
transmission exist for only a brief period and showed that infectiousness is a complex 
phenomenon related not just to virus dynamics but also to host responses and clinical signs, 
which is consistent with a common but rarely tested expectation that disease signs may be 
functionally linked to infectiousness. Prior to this research, studies into FMDV transmission 
had used proxy measures for infectiousness (for example the detection of virus in the blood 
or other tissues) rather than directly demonstrating transmission to another animal. Recent 
results [19] highlighted that cattle infected with FMDV are substantially less likely to be 
infectious before showing clinical signs than was previously realized. As such there is a need 
for more robust empirical evidence on relationships between clinical signs and infectiousness. 

The aim of the present study was to utilize the relationship between the onset of clinical signs 
and direct contact transmission of FMDV to identify possible predictors of the onset of 
clinical signs as well as identify candidates for preclinical screening in the field. Such 
information will advance our knowledge of the transmission mechanisms and improve the 
model predictions that are used in disease control. The assumption that the likelihood of 
transmission is decreased if control can be implemented just 24 h earlier provides strong 
support for investment in the development of practical tools for preclinical diagnosis. If we 
can identify infected cattle before they show signs of disease using tests in the laboratory then 
perhaps these can be used in the field during an outbreak. Measures of concordance between 
qualitative real time (qRT)-PCR results and virus isolation results were also determined in 
each experiment. These measures of concordance are useful in evaluating the performance of 
both methods of virus detection. 

Materials and methods 

Details of the methods used in this paper have been published elsewhere [19] but are 
described in brief below. All experiments were approved by the Institute’s ethical review 
process and were in accordance with national guidelines on animal use. 

Animal experiments and samples 

Four individual animal experiments using 100–150 kg Holstein Friesian calves were 
performed. For each experiment, two animals (referred to later as inoculates) were selected at 
random, and were needle challenged intradermolingually (1) with 1 × 105.7 TCID50 of cattle 
adapted FMDV O UKG 34/2001. Forty eight hours after challenge naïve animals (“donors”, 
2 animals for each of 4 experiments) were introduced to the inoculates and were challenged 
by direct contact exposure for 24 h. The inoculates were removed from the study and the 
animals exposed to infection (n = 8) were used to attempt transmission to further naive cattle 
(“recipients”) at two, four, six and eight (in experiments 3 and 4 only) days post infection for 
a period of 8 h each time. A total of 28 recipients were used in this study design. 
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Individual donors were examined daily for the presence of clinical signs (lesions in the 
mouth, tongue, snout, feet and the presence of nasal discharge). Rectal temperature was also 
recorded. Blood and nasal fluid samples were taken daily for the first 8 days following 
challenge and then every other day for up to 14 days after challenge. The samples were 
transferred immediately to the laboratory for processing; nasal fluid was stored at −80 °C and 
heparinised blood aliquoted and stored for subsequent virus detection in bovine thyroid cells 
(BTY) culture as described earlier [19]. Aliquots of serum were stored at −80 °C for 
subsequent total antibody (Ab) detection, nucleic acid extraction and analysis by qRT-PCR. 
Samples of oropharyngeal fluid (OPF) were collected by probang cup from all the animals 
before challenge and thereafter from the donors daily for the first week and fourteen days 
after challenge. All probang samples were stored at −80 °C for subsequent virus detection 
using BTY cell culture and genome detection using real-time quantitative PCR. 

Several air samples using multiple devices were collected simultaneously, each hour, during 
all but 2 of the 28 challenge periods. Air samples were collected using an all-glass Cyclone 
sampler (operated for 5 min at a flow rate of approximately 390 l/min) and an all glass Porton 
impinger sampler (operated for 5 min at a flow rate of 11 l/min). These sampling periods 
were determined as the optimal sampling configurations for the instruments [20-22]. The 
collecting media employed in these samplers was modified eagle’s medium (MEM) -HEPES 
with antibiotics and 0.1% (w/v) BSA [16,23]. The concentration of virus per litre of air was 
determined by endpoint titration for each particular air-sample, which was multiplied by the 
volume of the collecting fluid and the flow of the sampler. The amount of infectivity 
recovered was expressed as the total amount (50% tissue culture infectious dose, TCID50) of 
airborne FMDV per animal per challenge period (8 hrs). 

Virus detection 

Live virus was detected in the biological samples collected (heparinised blood, nasal swabs, 
OPF) and in the collecting media from the air samples using BTY primary cell cultures 
[16,23,24]. Given the large number of samples taken, they were first screened to determine 
the presence of virus, and then a tenfold dilution series of those verified to be virus positive 
were made and each dilution inoculated onto five BTY tubes. Titres were calculated by the 
Karber equation according to Lennette [25]. The specificity of any cytopathic effect was 
confirmed by an antigen capture ELISA [26-28]. 

Viral nucleic acid purification 

RNA (200 µL of sample, mixed with 300 µL of MagNA Pure LC total nucleic acid 
Lysis/Binding Buffer) was extracted using the MagNA Pure LC total nucleic acid isolation 
kit (Roche, UK) and an automated nucleic acid robotic workstation according to the 
manufacturer’s instruction (MagNA Pure LC, Roche, UK). The samples were eluted in a 
volume of 50 µL and stored at −80 °C for later analysis. 

FMDV RNA standards and reverse transcription 

As these experiments were performed with the O UKG 34/01 isolate, a homologous RNA 
standard was used (synthesized in vitro from a plasmid containing a 500 base pair insert of 
the internal ribosomal entry site (IRES) of FMDV O UKG 34/01) as described by Quan et al. 
[29]. The reverse transcription was performed as previously described [29-31]. 
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Quantitative RT-PCR 

To determine the amount of FMDV RNA in extracts of the total nucleic acid from blood, 
OPF, and nasal fluid a qRT-PCR was performed according to the methodology previously 
described [30,32]. In the PCR reaction, primers SA-UK-IRES-248 F (50-AAC CAC TGG 
TGA CAG GCT AAG G-30)/SA-UK-IRES-308R (50-CCG AGT GTC GCG TGT AC CT-
30) and a UK-IRES- 271 T (6-FAM-TGC CCT TTA GGT ACC C-MGB) TaqMan® Minor 
Groove Binding probe (Applied Biosystems) were used, as this primer/probe set was 
designed for optimum detection of the FMDV O UKG 2001 virus [29]. The PCR was 
performed on a Stratagene® MX3005P™ QPCR system using MXPro-MX3005 v 3.00 Build 
311 software (Stratagene, UK), and fifty PCR cycles were carried out. Once obtained, results 
and amplification plots were analysed and standard curves constructed from cycle threshold 
values [32-34] of the RNA standard dilutions, to provide a measure of the number of FMDV 
genome copies. 

Assay for FMDV specific antibodies 

Serum samples were tested for the presence of antibodies to FMDV using a liquid phase 
blocking ELISA (LPBE) [35,36]. 

Assay for interferon detection 

Type-I interferon (IFN) biological activity was measured in serum samples from donor 
animals by using an Mx/chloramphenicol acetyltransferase (Mx/CAT) reporter gene assay 
[37]. 

Database management and statistical analysis 

Table 1 contains a list of all of the nonclinical variables measured during the course of this 
experiment. Examination of the structure of the data required that some variables be 
categorised for the purpose of statistical analysis. Cut-off levels for some variables (blood VI, 
blood qRT-PCR, OPF VI, OPF qRT-PCR) were determined using Receiver Operating 
Characteristic (ROC) curve analysis [38]. A threshold of VI > 4 log10 TCID50 per mL of nasal 
fluid was set because values below this threshold may be misleading and may represent low 
viral titres or insufficient sample collection due to limited nasal secretions. The baseline for 
Type 1 IFN of >1 IU per ml serum had been established previously [39]. For all variables 
additional “appearance” “onset” and lag variables were generated. “Appearance” identifies 
the first appearance of a given variable on a given day. “Onset” identifies the first appearance 
of the variable on a given day above the pre-determined cut-off. Lag variables were generated 
to identify the “appearance” or “onset” of a given variable either 1 day or 2 days prior. 
“Onset of any clinical signs” was defined as the appearance of any of nasal discharge, 
lameness, or lesions on the feet, mouth, tongue. For the purposes of this analysis temperature 
was analysed separately to the other clinical signs. 

Identification of the predictors of the onset of clinical signs was performed using a 
Generalised Linear Mixed Model (GLMM). The onset of clinical signs (as opposed to 
transmission) was chosen as the response variable as it was previously shown that there is a 
significant association between transmission and the onset of clinical signs [19] (see Figure 
1). Onset of clinical signs refers to whether or not the donor cow developed clinical signs on 
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the given day. These clinical observations were confirmed later by detection of live virus 
from the recipient. No subclinical infections were observed. 

Only data up to and including day 8 were used in the statistical analyses as after day 8 data 
was not collected daily. In addition, all donor animals had exhibited clinical signs by day 8. 
To account for the repeated measures structure in the data (i.e. daily sampling) analyses using 
multiple explanatory variables were performed using a GLMM with covariance pattern 
model (Proc Glimmix SAS version 9.3, SAS Institute Inc., Cary, NC). The GLMM was fitted 
with a binomial distribution and a logit link function. The response variable was the presence 
or absence of any clinical signs. Donor was fitted as the sole random effect, other variables 
were fitted as fixed effects. Given the small sample size (n = 8 donors) only single factor 
models were generated. In total 63 variables were analysed. 

Diagnostics were performed and plots of residuals were examined, confirming the goodness-
of-fit of each model. Odds ratios (OR) and their associated 95% confidence intervals were 
estimated in the final models for factors statistically significantly associated with the onset of 
clinical signs. The generalised chi-square/DF (χ

2/DF) was used to compare the fit of different 
models. Unfortunately no significance test of model fit is available, however, the χ2/DF can 
identify models that given their fixed and random effect specifications more (or less) closely 
meet the specified distribution (binomial logit). The closer the χ

2/DF is to unity the better the 
model and data meet the assumed residual distribution. 

Virus in the blood and OPF was measured using both the virus isolation method (from 
heparinised blood samples) and the qRT-PCR method (from serum samples). The 
relationship between the two methods was examined by looking at the temporal trends using 
PROC LOESS (SAS version 9.3). LOESS is a nonparametric method for estimating local 
regression surfaces. In addition, agreement between the two methods was examined using 
Cohen’s kappa (StatXact v.8, Cytel Software Corp, Cambridge, MA, USA). 

Preclinical predictors were identified in the data by examining the virological and 
immunological variables in the time frame surrounding the onset of clinical signs. Data from 
± 4 days from the onset of clinical signs for each donor animal were included. 

Prior to analysis, it was specified that results with p <0.05 would be reported as exhibiting 
formal statistical significance. 

Results 

Associations with transmission 

As previously described [19] there were 28 attempts to transmit the disease from donor to 
recipient animals over the 8 h periods, 8 (29%) of which were successful in transmitting 
disease. Six of these transmissions occurred on either day 4 or day 6 since exposure of the 
donor to the virus. Only one transmission event occurred on each of day 2 and day 8. One 
donor transmitted the disease on two occasions, days 4 and 6 post exposure to the virus. One 
cow failed to transmit FMDV, even though FMDV was detected in the nasal fluid (NF) and 
oesophageal-pharyngeal fluid (OPF), although not the blood. 
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Transmission was significantly associated (Fisher’s exact = 6.16; p = 0.021) with the onset of 
clinical signs (Figure 1). The peak at time 0, illustrates that for most cows transmission 
occurs on the same day as clinical signs appear. Only one transmission event occurred prior 
to the onset of clinical signs. However, this animal showed overt signs the next morning, 
approximately 16 h after the end of the successful challenge period. The clinical signs 
observed were varied: nasal discharge and lesions in the mouth or tongue were the most 
frequently reported “first” signs (Figure 1). 

Associations between air sample and transmission could only be tested on days in which 
transmission was attempted as air samples were not recorded daily (Table 2). Data were 
recorded as the total amount (TCID50) of airborne FMDV per animal per challenge period 
(8 h). Data were available for only 26 transmission days, 2 days were missing. The total 
amount of virus in the air ranged from 3–4.5 TCID50, therefore values for airborne virus were 
treated as either detected or not detected. A positive air sample was statistically significantly 
associated with transmission of FMDV (Table 2). 

Cut-off levels 

Receiver Operating Characteristic (ROC) curve analysis was used to determine the best cut-
off for the virological variables measured in this study (Figure 2). The cut-off chosen was one 
that maximized the sum of the sensitivity and specificity. The cut-off value for each variable 
is shown in Figure 2. The cut-off values for blood VI, blood qRT-PCR, OPF VI and OPF 
qRT-OCR were 2.4 log10 TCID/mL, 4.6 log10 copies/mL, 5.0 log10 TCID50/mL and 6.5 log10 
copies/ml respectively. 

Predictors of transmission and the onset of clinical signs 

Table 3 contains the final GLMM models for the onset of clinical signs. Of the 63 factors 
tested, 18 were significant at p < 0.05. All the factors identified were significant risk factors 
(odds ratio > 1). Only single factor models are presented as the limited data restricted the 
power to create multivariate models. High levels of virus in OPF and nasal fluid are 
significant risk factors for the onset of clinical signs, particularly the onset of levels above the 
cut-off for both OPF and nasal fluid. High levels of virus in the blood were also significant 
risk factors for the onset of clinical signs (Table 3). However, unlike OPF and nasal fluid 
there may be a lag between levels of virus in the blood and the onset of clinical signs. 
Significant associations were also found with Type 1 IFN levels >1 where the onset of 
clinical signs was associated with Type 1 IFN levels >1 (Table 3). 

VI vs qRT-PCR measurements 

The pattern of virus detection with time (days) was similar for both the qRT-PCR and the 
virus isolation (VI) methods (Figure 3). Interestingly, virus in the OPF was always detected 
or not on a given day by both methods (Cohen’s kappa measure of agreement 1.00 (95% CIs 
1.00-1.00)). However, agreement for detection of virus in the blood was lower (Cohen’s 
kappa 0.77 (95% CIs 0.62-0.93)). In general, in the blood low levels of virus were detected 
early post infection using the VI method when there was no virus detected using the qRT-
PCR method. This may represent cell-associated virus. Viral genomes were detected using 
the qRT-PCR method late in study period, after there was no longer any virus detected using 
the VI method. 
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Pre-clinical predictors 

Figure 4 is a violin plot representing the appearance of various predictors with reference to 
the time (days) since the onset of clinical signs. The thicker the line the more data within a 
given category are within the time frame specified. Very early in the infectious process OPF 
VI and OPF qRT-PCR were detectable whereas virus was not detected in the blood and nasal 
fluid until 2–3 days before the onset of clinical signs. Antibodies were not detected until 2–3 
days after the onset of clinical signs. 

In summary, virus is first detectable in the OPF, but detection of virus in the blood and nasal 
fluid may also be good candidates for preclinical indicators. Interestingly, the donor that did 
not transmit in this study never had any measurable amount of virus in the blood. However, 
virus was detectable in the OPF and nasal fluid. 

Temperature 

A change in temperature was significantly associated with the onset of clinical signs 
(GLMM, p < 0.05). On the day that clinical signs appear temperature increases by an average 
of 1 °C (Figure 5). Average temperature on the day that clinical signs appear was 39.6 °C 
(95% CIs, 38.9 °C-40.2 °C) whereas the day before it was 38.6 °C (95% CIs, 38.3 °C-
38.8 °C). 

Discussion 

Previous analysis of the experimental data used in this study showed that transmission was 
associated with onset of clinical signs [19]. In this study we further characterize this 
relationship and look for predictors of the onset of clinical signs as a proxy for transmission, 
thus increasing the statistical power to identify indicators of infectiousness. This is important 
because experiments with large animals held in high containment facilities are challenging 
and, inevitably, it is only feasible to use a low number of replicates. Despite this, we were 
able to identify factors significantly associated with different stages of FMDV infection. 
However, the association between transmission and the onset of clinical signs implies that 
relying on the detection of clinical infections will not facilitate the removal of infected 
animals before they become infectious, so preclinical diagnosis is required to achieve this. 

All immunological and virological variables measured (with the exception of total FMDV-
specific antibodies) were positively associated with onset of clinical signs. This result is not 
surprising given that they were chosen a priori as useful measures of the transmission of 
FMDV [19]. It does appear that onset of clinical signs only occur when virus levels exceed 
thresholds. This will surely be a useful measure for monitoring animals in further research 
programs and possibly in the field. 

Air sample results were not included in previous analysis of this data [19] because problems 
associated with including missing data in an ordination analysis. This study, however, has 
shown that there is a significant association between virus detected in the air and transmission 
of FMDV. This does not mean that virus in the air is a vehicle of transmission in this study. 
We believe, however, that it is a marker for transmission. We note that the initial designs of 
this transmission study included an indirect transmission element (data not shown). Although 
airborne virus was detected in the air during the challenge periods no transmission occurred 
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by this indirect route so further attempts at indirect transmission were not done. With such a 
small sample size the confidence limits are large, however, this possibly suggests that this is 
not a major route for disease spread between cattle, even though it appears to be an indicator 
of when an animal is infectious. Though the lack of airborne transmission might be due to the 
properties of this particular strain of virus as there was only a limited number of documented 
cases of airborne spread [40,41]. Planned future research will include more rigorous air 
sampling as these results suggest that air sampling shows great promise as a predictor of 
transmission and may also prove to be useful to detect preclinical infection. Hand held 
devices have been developed and their feasibility for monitoring shedding of FMDV in cattle 
is being tested [42]. 

Temperature was a good indicator of the onset of clinical signs and of transmission [19]. 
However, elevated temperatures do not occur early in the course of infection. Temperature is, 
of course, a non-specific clinical sign as such would have limited utility as a pre-clinical 
screening tool. 

For OPF there was no difference between the two methods of virus detection. The levels 
recorded using qRT-PCR tended to be higher at the peak but for both methods there was 
perfect agreement with respect to detection of virus. Measurement of virus in the blood using 
the VI method resulted (in some cases) in low levels of virus being detected earlier. Virus 
was detectable by qRT-PCR (in some cases) even when it was not using the VI method, but 
this always occurred later in the course of infection. It is unknown whether the virus detected 
by qRT-PCR at these stages is inactivated or at such a low concentration that it is unable to 
be detected by virus isolation. 

This analysis has confirmed the close association between the onset of clinical signs and the 
transmission of FMDV from an infected bovine reported previously [19]. In addition, we 
have identified predictors of clinical signs, namely virus present in the OPF, blood or nasal 
fluid but, importantly, only above a measured threshold. We also find that transmission is 
strongly associated with detectable levels of virus in the air although this need not imply that 
air-borne spread is itself a major route of transmission. 

It has been argued that early detection of FMDV infection was critical to effective control of 
outbreaks and could help remove the need for pre-emptive culling [19]. As clinical signs 
appear very close to the onset of infectiousness these are not ideal indicators. Here, we report 
that the detection of virus in OPF provides the earliest indication; however, this is unlikely to 
be practicable in the field. Alternatively, detection of virus in the blood or nasal fluid is 
possible days before the appearance of clinical signs. In terms of early detection of infection, 
the VI method performs best but, in contrast to PCR methods, is not a good basis for a rapid 
penside test. In future work, given that we have demonstrated that virus can be detected early 
in the course of infection in OPF samples and nasal swabs, we intend to explore the 
possibility of developing more sensitive air sampling methods as the most obviously 
practicable approach to mass screening. 
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Figure 1 Onset of clinical signs. The time (in days) since transmission when clinical signs 
appear for donors with successful transmission events (n = 8 transmission events for n = 7 
donors). The bars for each donor (bold lines) are colour coded with the first clinical sign(s) 
reported for each donor. 

Figure 2 Threshold identification by Receiver Operator Curves (ROC) analysis. 
Receiver Operator Curves (top graph) and estimated cut-off (bottom graph) for (A) Blood VI, 
(B) Blood qRT-PCR, (C) OPF VI and (D) OPF qRT-PCR. The cut-off is defined as the value 
that maximizes the sensitivity + specificity. 

Figure 3 Virus isolation (VI) vs qRT-PCR. Nonparametric regression comparing the two 
methods of virus detection (virus isolation and qRT-PCR) in both the OPF (A) and Blood 
(B). qRT-PCR is shown in pink and virus isolation method is shown in blue. The predicted 
line and 95% confidence intervals were done using PROC LOESS (SAS version 9.3). 
Smoothing parameter was 1.0 for OPF both VI and qRT-PCR and Blood qRT-PCR 
smoothing parameter for Blood VI was 0.67. 

Figure 4 Indicators of the onset of clinical signs. A Violin plot of the appearance and onset 
of the immunological and virological variables tested in this study in relation to the onset of 
clinical signs. 

Figure 5 Temperature. Mean and 95% CIs for temperature (°C) in relation to the time (in 
days) since the onset of clinical signs. 
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Table 1 List of virological, immunological and environmental variables generated in this 
study and included in statistical analysis. 

Variable Description 
OPF VI Quantity of live virus in oropharyngeal fluid (OPF) (log10 TCID50/mL) 
OPF qRT-PCR Quantity of FMDV genome copies in OPF (log10 copies/mL) 
Blood VI Quantity of live virus in the blood (log10 TCID50/mL) 
Blood qRT-PCR Quantity of FMDV genome copies in blood (log10 copies/mL) 
IFN Type-1 interferon in serum (IU/mL) 
Nasal fluid VI Quantity of live virus in the nasal fluid (log10 TCID50/mL) 
Antibodies FMDV-specific antibodies detected in serum (titre/mL) 
Air sample Total airborne FMDV per animal per challenge period 
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Table 2 GLMM air sampling.  

 Transmission Estimated effect se p odds 95% CI 
Air sample no yes 0.948 0.821 0.021 19.9 1.65-240 

positive 2 5 

negative 17 2 

Odds ratios and 95% CI for the association between a FMDV virus detected in the air and the 
transmission of FMDV. 
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Table 3 GLMM Onset of clinical signs. 

Variable Estimated effect se p odds 95% CI χ2/DF 
OPF VI       

>5.0 log10 TCID50/mL 1.918 0.791 0.020 6.81 1.38-33.6 1.01 
<5.0 log10 TCID50/mL - -     

Onset OPF VI > CT       
yes 2.410 0.974 0.016 11.1 1.59-77.9 1.02 
no - -     

OPF qRT-PCR       
>6.5 log10 copies/mL 2.670 1.021 0.013 14.4 1.83-114 0.99 
<6.5 log10 copies/mL - -     

Onset OPF qRT-
PCR > CT 

      

yes 2.254 0.916 0.017 9.53 1.53-59.4 1.02 
no - -     

Blood VI       
>2.4 log10 TCID50/mL 2.681 0.867 0.004 14.6 2.53-84.4 1.11 
<2.4 log10 TCID50/mL - -     

Appear -1D blood VI > 0       
yes 3.325 0.994 0.002 27.8 3.83-202 1.08 
no - -     

Appear -2D blood VI > 0       
yes 1.990 0.938 0.038 7.31 1.12-47.6 1.08 
no - -     

Onset blood VI > CT       
yes 2.503 0.953 0.011 12.2 1.82-82.0 1.15 
no - -     

Onset -1D blood VI > CT       
yes 4.502 1.173 0.003 90.2 8.69-936 1.11 
no - -     

Blood qRT-PCR       
>4.6 log10 copies/mL 3.122 1.063 0.005 22.7 2.67-193 1.02 
<4.6 log10 copies/mL - -     

Appear -1D blood qRT-
PCR > 0 

      

yes 3.325 0.994 0.001 27.8 3.83-202 1.08 
no - -     

Onset blood qRT-
PCR > CT 

      

yes 2.600 0.925 0.006 13.5 2.13-85.2 1.06 
no - -     

Onset -1D blood qRT 
PCR > CT 

      

yes 3.212 1.038 0.003 24.8 3.12-197 1.12 
no - -     
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Nasal fluid VI       
>4 log10 TCID50/mL 1.829 0.777 0.023 6.23 1.31-29.7 1.03 
<4 log10 TCID50/mL - -     

Appear of nasal fluid 
VI > 0 

      

yes 2.917 0.927 0.002 18.5 2.91-118 1.06 
no - -     

Onset nasal fluid VI > CT       
yes 2.511 0.972 0.012 12.3 1.77-85.6 1.02 
no - -     

Type 1 IFN       
>1 IU/mL 1.575 0.762 0.044 4.83 1.04-22.4 1.03 
<1 IU/mL - -     

Onset Type 1 IFN > CT       
yes 4.06 1.092 0.0004 57.9 6.56-52.0 1.06 
no - -     

Odds ratios and 95% CI for the significant (p < 0.05) estimated effects in the final generalised 
linear models. CT, estimated cut-off from ROC analysis. 
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