7 research outputs found

    A targeted next-generation sequencing assay for the molecular diagnosis of genetic disorders with orodental involvement.

    Get PDF
    BACKGROUND: Orodental diseases include several clinically and genetically heterogeneous disorders that can present in isolation or as part of a genetic syndrome. Due to the vast number of genes implicated in these disorders, establishing a molecular diagnosis can be challenging. We aimed to develop a targeted next-generation sequencing (NGS) assay to diagnose mutations and potentially identify novel genes mutated in this group of disorders. METHODS: We designed an NGS gene panel that targets 585 known and candidate genes in orodental disease. We screened a cohort of 101 unrelated patients without a molecular diagnosis referred to the Reference Centre for Oro-Dental Manifestations of Rare Diseases, Strasbourg, France, for a variety of orodental disorders including isolated and syndromic amelogenesis imperfecta (AI), isolated and syndromic selective tooth agenesis (STHAG), isolated and syndromic dentinogenesis imperfecta, isolated dentin dysplasia, otodental dysplasia and primary failure of tooth eruption. RESULTS: We discovered 21 novel pathogenic variants and identified the causative mutation in 39 unrelated patients in known genes (overall diagnostic rate: 39%). Among the largest subcohorts of patients with isolated AI (50 unrelated patients) and isolated STHAG (21 unrelated patients), we had a definitive diagnosis in 14 (27%) and 15 cases (71%), respectively. Surprisingly, COL17A1 mutations accounted for the majority of autosomal-dominant AI cases. CONCLUSIONS: We have developed a novel targeted NGS assay for the efficient molecular diagnosis of a wide variety of orodental diseases. Furthermore, our panel will contribute to better understanding the contribution of these genes to orodental disease. TRIAL REGISTRATION NUMBERS: NCT01746121 and NCT02397824.journal articleresearch support, non-u.s. gov't2016 Feb2015 10 26importe

    La pérennité des traitements de chirurgie plastique parodontale

    No full text
    STRASBOURG-Medecine (674822101) / SudocSudocFranceF

    Impact of Molar Furcations on Photodynamic Therapy Outcomes: A 6-Month Split-Mouth Randomized Clinical Trial

    No full text
    International audienceThe effectiveness of adjunctive photodynamic treatment (PDT) to non-surgical periodontal therapy has been shown to depend on initial periodontal status. As molar furcation involvement impairs healing response to non-surgical periodontal therapy, the aim of this study was to evaluate the impact of furcation involvement on PDT outcomes. Thirty-six patients suffering from severe chronic periodontitis were included in a 6-month split-mouth randomized clinical trial. PDT applications used the toluidine blue O and a light-emitting diode (LED) with a red spectrum. Repeated PDT applications were performed in addition to non-surgical periodontal treatment at baseline and at 3-months. Pocket probing depth (PPD), plaque index, bleeding on probing, and clinical attachment level were recorded at baseline, and again at 3- and 6-months. Furcation sites of molars were compared to other sites of molars and non-molars. Multilevel analysis showed no PDT effect in molar furcation sites while an additional significant reduction (odds ratio = 0.67) of pockets with PPD > 5 mm in other sites at 3-months was measured. PPD reduction appeared delayed in molar furcation sites treated with PDT. There is no additional apparent benefit to use PDT in molar furcation sites for the reduction of pockets with PPD > 5 mm contrary to other sites

    A targeted next-generation sequencing assay for the molecular diagnosis of genetic disorders with orodental involvement

    No full text
    International audienceBackground Orodental diseases include several clinically and genetically heterogeneous disorders that can present in isolation or as part of a genetic syndrome. Due to the vast number of genes implicated in these disorders, establishing a molecular diagnosis can be challenging. We aimed to develop a targeted next-generation sequencing (NGS) assay to diagnose mutations and potentially identify novel genes mutated in this group of disorders. Methods We designed an NGS gene panel that targets 585 known and candidate genes in orodental disease. We screened a cohort of 101 unrelated patients without a molecular diagnosis referred to the Reference Centre for Oro-Dental Manifestations of Rare Diseases, Strasbourg, France, for a variety of orodental disorders including isolated and syndromic amelogenesis imperfecta (AI), isolated and syndromic selective tooth agenesis (STHAG), isolated and syndromic dentinogenesis imperfecta, isolated dentin dysplasia, otodental dysplasia and primary failure of tooth eruption. Results We discovered 21 novel pathogenic variants and identified the causative mutation in 39 unrelated patients in known genes (overall diagnostic rate: 39%). Among the largest subcohorts of patients with isolated AI (50 unrelated patients) and isolated STHAG (21 unrelated patients), we had a definitive diagnosis in 14 (27%) and 15 cases (71%), respectively. Surprisingly, COL17A1 mutations accounted for the majority of autosomal-dominant AI cases. Conclusions We have developed a novel targeted NGS assay for the efficient molecular diagnosis of a wide variety of orodental diseases. Furthermore, our panel will contribute to better understanding the contribution of these genes to orodental disease. Trial registration numbers NCT01746121 and NCT0239782

    A targeted next-generation sequencing assay for the molecular diagnosis of genetic disorders with orodental involvement

    No full text
    corecore