82 research outputs found

    IN-SYNC. V. Stellar kinematics and dynamics in the Orion A Molecular Cloud

    Full text link
    The kinematics and dynamics of young stellar populations enable us to test theories of star formation. With this aim, we continue our analysis of the SDSS-III/APOGEE IN-SYNC survey, a high resolution near infrared spectroscopic survey of young clusters. We focus on the Orion A star-forming region, for which IN-SYNC obtained spectra of ∌2700\sim2700 stars. In Paper IV we used these data to study the young stellar population. Here we study the kinematic properties through radial velocities (vrv_r). The young stellar population remains kinematically associated with the molecular gas, following a ∌10 km s−1\sim10\:{\rm{km\:s}}^{-1} gradient along filament. However, near the center of the region, the vrv_r distribution is slightly blueshifted and asymmetric; we suggest that this population, which is older, is slightly in foreground. We find evidence for kinematic subclustering, detecting statistically significant groupings of co-located stars with coherent motions. These are mostly in the lower-density regions of the cloud, while the ONC radial velocities are smoothly distributed, consistent with it being an older, more dynamically evolved cluster. The velocity dispersion σv\sigma_v varies along the filament. The ONC appears virialized, or just slightly supervirial, consistent with an old dynamical age. Here there is also some evidence for on-going expansion, from a vrv_r--extinction correlation. In the southern filament, σv\sigma_v is ∌2\sim2--33 times larger than virial in the L1641N region, where we infer a superposition along the line of sight of stellar sub-populations, detached from the gas. On the contrary, σv\sigma_v decreases towards L1641S, where the population is again in agreement with a virial state.Comment: 14 pages, 13 figures, ApJ accepte

    A galactic-scale origin for stellar clustering

    Full text link
    We recently presented a model for the cluster formation efficiency (CFE), i.e. the fraction of star formation occurring in bound stellar clusters. It utilizes the idea that the formation of stars and stellar clusters occurs across a continuous spectrum of ISM densities. Bound stellar clusters naturally arise from the high-density end of this density spectrum. Due to short free-fall times, these high-density regions can achieve high star formation efficiencies (SFEs) and can be unaffected by gas expulsion. Lower-density regions remain gas-rich and substructured, and are unbound upon gas expulsion. The model enables the CFE to be calculated using galactic-scale observables. I present a brief summary of the model physics, assumptions and caveats, and show that it agrees well with observations. Fortran and IDL routines for calculating the CFE are publicly available at http://www.mpa-garching.mpg.de/cfe.Comment: 4 pages, 1 figure; to appear in The Labyrinth of Star Formation, (eds.) D. Stamatellos, S. Goodwin, and D. Ward-Thompson, Springer, in pres

    A new P-wave tomographic model (cap22) for North America: implications for the subduction and cratonic metasomatic modification history of western Canada and Alaska

    Get PDF
    Our understanding of the present-day state and evolution of the Canadian and Alaskan mantle is hindered by a lack of absolute P-wavespeed constraints that provide complementary sensitivity to composition in conjunction with existing S-wavespeed models. Consequently, cratonic modification, orogenic history of western North America and complexities within the Alaskan Proto-Pacific subduction system remain enigmatic. One challenge concerns the difficulties in extracting absolute arrival-time measurements from often-noisy data recorded by temporary seismograph networks required to fill gaps in continental and global databases. Using the Absolute Arrival-time Recovery Method (AARM), we extract >180,000 new absolute arrival-time residuals from seismograph stations across Canada and Alaska and combine these data with USArray and global arrival-time data from the contiguous US and Alaska. We develop a new absolute P-wavespeed tomographic model, CAP22, spanning North America that significantly improves resolution in Canada and Alaska over previous models. Slow wavespeeds below the Canadian Cordillera sharply abut fast wavespeeds of the continental interior at the Rocky Mountain Trench in southwest Canada. Slow wavespeeds below the Mackenzie Mountains continue farther inland in northwest Canada, indicating Proterozoic-Archean metasomatism of the Slave craton. Inherited tectonic lineaments colocated with this north-south wavespeed boundary suggest that both the crust and mantle may control Cordilleran orogenic processes. In Alaska, fast upper mantle wavespeeds below the Wrangell Volcanic Field favor a conventional subduction related mechanism for volcanism. Finally, seismic evidence for the subducted Kula and Yukon slabs indicate tectonic reconstructions of western North America may require revision

    The effects of supernovae on the dynamical evolution of binary stars and star clusters

    Full text link
    In this chapter I review the effects of supernovae explosions on the dynamical evolution of (1) binary stars and (2) star clusters. (1) Supernovae in binaries can drastically alter the orbit of the system, sometimes disrupting it entirely, and are thought to be partially responsible for `runaway' massive stars - stars in the Galaxy with large peculiar velocities. The ejection of the lower-mass secondary component of a binary occurs often in the event of the more massive primary star exploding as a supernova. The orbital properties of binaries that contain massive stars mean that the observed velocities of runaway stars (10s - 100s km s−1^{-1}) are consistent with this scenario. (2) Star formation is an inherently inefficient process, and much of the potential in young star clusters remains in the form of gas. Supernovae can in principle expel this gas, which would drastically alter the dynamics of the cluster by unbinding the stars from the potential. However, recent numerical simulations, and observational evidence that gas-free clusters are observed to be bound, suggest that the effects of supernova explosions on the dynamics of star clusters are likely to be minimal.Comment: 16 pages, to appear in the 'Handbook of Supernovae', eds. Paul Murdin and Athem Alsabti. This version replaces an earlier version that contained several typo

    The Gaia -ESO Survey : Empirical determination of the precision of stellar radial velocities and projected rotation velocities

    Get PDF
    Context. The Gaia-ESO Survey (GES) is a large public spectroscopic survey at the European Southern Observatory Very Large Telescope. Aims. A key aim is to provide precise radial velocities (RVs) and projected equatorial velocities (v sin i) for representative samples of Galactic stars, which will complement information obtained by the Gaia astrometry satellite. Methods. We present an analysis to empirically quantify the size and distribution of uncertainties in RV and v sin i using spectra from repeated exposures of the same stars. Results. We show that the uncertainties vary as simple scaling functions of signal-to-noise ratio (S/N) and v sin i, that the uncertainties become larger with increasing photospheric temperature, but that the dependence on stellar gravity, metallicity and age is weak. The underlying uncertainty distributions have extended tails that are better represented by Student's t-distributions than by normal distributions. Conclusions. Parametrised results are provided, which enable estimates of the RV precision for almost all GES measurements, and estimates of the v sin i precision for stars in young clusters, as a function of S/N, v sin i and stellar temperature. The precision of individual high S/N GES RV measurements is 0.22-0.26 kms-1, dependent on instrumental configuration.Peer reviewedFinal Accepted Versio

    The Gaia-ESO Survey: Dynamical analysis of the L1688 region in Ophiuchus

    Get PDF
    The Gaia ESO Public Spectroscopic Survey (GES) is providing the astronomical community with high-precision measurements of many stellar parameters including radial velocities (RVs) of stars belonging to several young clusters and star-forming regions. One of the main goals of the young cluster observations is to study their dynamical evolution and provide insight into their future, revealing whether they will eventually disperse to populate the field rather than evolve into bound open clusters. In this paper we report the analysis of the dynamical state of L1688 in the ρ Ophiuchi molecular cloud using the dataset provided by the GES consortium. We performed the membership selection of the more than 300 objects observed. Using the presence of the lithium absorption and the location in the Hertzspung-Russell diagram, we identify 45 already known members and two new association members. We provide accurate RVs for all 47 confirmed members. A dynamical analysis, after accounting for unresolved binaries and errors, shows that the stellar surface population of L1688 has a velocity dispersion σ ~ 1.14 ± 0.35 km s-1 that is consistent with being in virial equilibrium and is bound with a ~80% probability. We also find a velocity gradient in the stellar surface population of ~1.0 km s-1 pc-1 in the northwest-southeast direction, which is consistent with that found for the pre-stellar dense cores, and we discuss the possibility of sequential and triggered star formation in L1688

    GMC Collisions as Triggers of Star Formation. III. Density and Magnetically Regulated Star Formation

    Get PDF
    We study giant molecular cloud (GMC) collisions and their ability to trigger star cluster formation. We further develop our three dimensional magnetized, turbulent, colliding GMC simulations by implementing star formation sub-grid models. Two such models are explored: (1) Density-Regulated, i.e., fixed efficiency per free-fall time above a set density threshold; (2) Magnetically- Regulated, i.e., fixed efficiency per free-fall time in regions that are magnetically supercritical. Variations of parameters associated with these models are also explored. In the non-colliding simulations, the overall level of star formation is sensitive to model parameter choices that relate to effective density thresholds. In the GMC collision simulations, the final star formation rates and efficiencies are relatively independent of these parameters. Between non-colliding and colliding cases, we compare the morphologies of the resulting star clusters, properties of star-forming gas, time evolution of the star formation rate (SFR), spatial clustering of the stars, and resulting kinematics of the stars in comparison to the natal gas. We find that typical collisions, by creating larger amounts of dense gas, trigger earlier and enhanced star formation, resulting in 10 times higher SFRs and efficiencies. The star clusters formed from GMC collisions show greater spatial sub-structure and more disturbed kinematics
    • 

    corecore