66 research outputs found

    Which patellofemoral joint imaging features are associated with patellofemoral pain? Systematic review and meta-analysis

    Get PDF
    Objectives: To review the association between patellofemoral joint (PFJ) imaging features and patellofemoral pain (PFP). Design: A systematic review of the literature from AMED, CiNAHL, Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, PEDro, EMBASE and SPORTDiscus was undertaken from their inception to September 2014. Studies were eligible if they used magnetic resonance imaging (MRI), computed tomography (CT), ultrasound (US) or x-ray (XR) to compare PFJ features between a PFP group and an asymptomatic control group in people < 45 years of age. A pooled meta-analysis was conducted and data was interpreted using a best evidence synthesis. Results: Forty studies (all moderate to high quality) describing 1,043 people with PFP and 839 controls were included. Two features were deemed to have a large standardised mean difference (SMD) based on meta-analysis: an increased MRI bisect offset at 0° knee flexion under load (0.99; 95% CI: 0.49, 1.49) and an increased CT congruence angle at 15° knee flexion, both under load (1.40 95% CI: 0.04, 2.76) and without load (1.24; 95% CI: 0.37,2.12). A medium SMD was identified for MRI patella tilt and patellofemoral contact area. Limited evidence was found to support the association of other imaging features with PFP. A sensitivity analysis showed an increase in the SMD for patella bisect offset at 0° knee flexion (1.91; 95% CI: 1.31,2.52) and patella tilt at 0° knee flexion (0.99; 95% CI: 0.47,1.52) under full weight bearing. Conclusion: Certain PFJ imaging features were associated with PFP. Future interventional strategies may be targeted at these features

    Transient solutions to nonlinear acousto-magneto-mechanical coupling for axisymmetric MRI scanner design

    Get PDF
    In this work, we simulate the coupled physics describing a Magnetic Resonance Imaging (MRI) scanner by using a higher order finite element discretisation and a Newton‐Raphson algorithm. To apply the latter, a linearisation of the non‐linear system of equations is necessary and we consider two alternative approaches. In the first, the non‐linear approach, there is no approximation from a physical standpoint and the linearisation is performed about the current solution. In the second, the linearised approach, we realise that the MRI problem can be described by small dynamic fluctuations about a dominant static solution and linearise about the latter. The linearised approach permits solutions in the frequency domain and provides a computationally efficient way to solve this challenging problem, as it allows the tangent stiffness matrix to be inverted independently of time or frequency. We focus on transient solutions to the coupled system of equations and address the following two important questions; 1) How good is the agreement between the computationally efficient linearised approach compared with the intensive non‐linear approach? and 2) Over what range of MRI operating conditions can the linearised approach be expected to provide acceptable results for outputs of interest in an industrial context for MRI scanner design? We include a set of academic and industrially relevant examples to benchmark and illustrate our approach

    <I. Zur PhÀnomenologie Heideggers> Heideggers Destruktion des Subjekts

    Get PDF

    Modelling the Effects of Deforestation on Stream Flows in Arror River Basin-Kenya

    No full text
    Abstract. Like other developing countries, forest conversion to agricultural land has been a common practice in Kenya for the last four decades. Apart from illegal logging, the main cause is the growing population. For most developing countries where majority rely on agriculture for food production, conversion of forests into agricultural land is likely to occur. Kenya is one among such countries and is where the study basin is located. Knowledge of hydrological studies is crucial for proper planning and decision making of limited water resources in river basins. Even in regions where data is limited, changes in land use is a concern to many basin communities over the globe including Arror inhabitants since it has an impact on stream flows. Despite Arror downstream communities’ claims on reducing river flows, scientific proof on this is lacking. Such kind of belief/claim can result to conflicts (Downstream vs. Upstream water users). The main objective of this thesis was therefore to determine the effect of land use changes on Arror basin hydrology, focusing on the impact of deforestation since it has been the main land use change for the last four decades. The overall intention of the study is to verify the downstream basin’s inhabitant’s hypothetical thinking and also create an information foundation base for other future studies in the basin. Based on the lessons learned in this study, several recommendations have been highlighted, including land satellite rainfall data to augment the rainfall data obtained from the relatively sparse rain gauge network in the basin

    Dignité, Gloire à Marie

    No full text
    • 

    corecore