86 research outputs found

    Quantum probes for complex systems

    Get PDF
    Quantum probing is a fairly wide topic deepening its roots into many fields as it can borrow tools from, and be applied to, many-body physics, open quantum systems theory, quantum information and quantum thermodynamics. Its wide range of applicability, i.e. the diverse systems under investigations and their specific properties, contributes in making a general theory of quantum probing a rather challenging, if not impossible, task. Despite the need to specialize the probing technique to the various physical systems, we have identified a leitmotiv in our probing approach. Specifically, we will consider a perturbation potential acting as the source of the probing procedure, in most cases this will be an impurity in the complex environment acting as quantum probe. We will generally quantify the information exchange between the probe and its environment, and explore the connection to the concept of non-Markovian, i.e. memoryless, quantum dynamics. This thesis aims at discussing probing protocols for atomic systems confined in optical lattices, both fermionic and bosonic species, as well as trapped ions. The systems inquired can be currently implemented in the field of ultra cold atoms, where they have attracted interest as ideal candidates for quantum simulators and quantum technologies. We will show how to design protocols in which these cold many-body systems act as an environment to a quantum probe, often designed as an impurity atom. Exploiting tools from open quantum systems theory we will discuss how to detect, from the dynamics of the probe, the characteristics of the complex environment. The key idea is to use the quantum probe as read-out device, the properties of the environment are then inferred trough measurements performed exclusively on the probe. Quantities of interest will be related to the environment energy spectrum, equilibrium properties and temperature. The quantum probing paradigm will also allow us to investigate critical phenomena such as phase transitions and orthogonality catastrophe. Finally, we will show how the memory effects induced in the reduced dynamics of an immersed quantum probe can witness, to some extent, the character of the excitations of the environment hinting to a natural link between non-Markovianity and localisation phenomena

    Efficient Neural Network Implementations on Parallel Embedded Platforms Applied to Real-Time Torque-Vectoring Optimization Using Predictions for Multi-Motor Electric Vehicles

    Get PDF
    The combination of machine learning and heterogeneous embedded platforms enables new potential for developing sophisticated control concepts which are applicable to the field of vehicle dynamics and ADAS. This interdisciplinary work provides enabler solutions -ultimately implementing fast predictions using neural networks (NNs) on field programmable gate arrays (FPGAs) and graphical processing units (GPUs)- while applying them to a challenging application: Torque Vectoring on a multi-electric-motor vehicle for enhanced vehicle dynamics. The foundation motivating this work is provided by discussing multiple domains of the technological context as well as the constraints related to the automotive field, which contrast with the attractiveness of exploiting the capabilities of new embedded platforms to apply advanced control algorithms for complex control problems. In this particular case we target enhanced vehicle dynamics on a multi-motor electric vehicle benefiting from the greater degrees of freedom and controllability offered by such powertrains. Considering the constraints of the application and the implications of the selected multivariable optimization challenge, we propose a NN to provide batch predictions for real-time optimization. This leads to the major contribution of this work: efficient NN implementations on two intrinsically parallel embedded platforms, a GPU and a FPGA, following an analysis of theoretical and practical implications of their different operating paradigms, in order to efficiently harness their computing potential while gaining insight into their peculiarities. The achieved results exceed the expectations and additionally provide a representative illustration of the strengths and weaknesses of each kind of platform. Consequently, having shown the applicability of the proposed solutions, this work contributes valuable enablers also for further developments following similar fundamental principles.Some of the results presented in this work are related to activities within the 3Ccar project, which has received funding from ECSEL Joint Undertaking under grant agreement No. 662192. This Joint Undertaking received support from the European Union’s Horizon 2020 research and innovation programme and Germany, Austria, Czech Republic, Romania, Belgium, United Kingdom, France, Netherlands, Latvia, Finland, Spain, Italy, Lithuania. This work was also partly supported by the project ENABLES3, which received funding from ECSEL Joint Undertaking under grant agreement No. 692455-2

    Theory of superdiffusive spin transport in noncollinear magnetic multilayers

    Full text link
    Ultrafast demagnetization induced by femtosecond laser pulses in thin metallic layers is caused by the outflow of spin-polarized hot electron currents describable by the superdiffusive transport model. These laser-generated spin currents can cross the interface into another magnetic layer and give rise to magnetization dynamics in magnetic spin valves with noncollinear magnetizations. To describe ultrafast transport and spin dynamics in such nanostructures we develop here the superdiffusive theory for general noncollinear magnetic multilayers. Specifically, we introduce an Al/Ni/Ru/Fe/Ru multilayer system with noncollinear Ni and Fe magnetic moments and analyze how the ultrafast demagnetization and spin-transfer torque depend on the noncollinearity. We employ ab initio calculations to compute the spin- and energy-dependent transmissions of hot electrons at the interfaces of the multilayer. Taking into account multiple electron scattering at interfaces and spin mixing in the spacer layer we find that the laser-induced demagnetization of the Ni layer and magnetization change of the Fe layer strongly depend on the angle between their magnetizations. Similarly, the spin-transfer torques on the Ni and Fe layers and the total spin momentum absorbed in the Ni and Fe layer are found to vary markedly with the amount of noncollinearity. These results suggest that changing the amount of noncollinearity in magnetic multilayers one can efficiently control the hot electron spin transport, which may open a way toward achieving fast, laser-driven spintronic devices.Comment: 14 pages, 9 figure

    On the Benefits of Using Object-Oriented Programming for the Objective Evaluation of Vehicle Dynamic Performance in Concurrent Simulations

    Get PDF
    Assessing passenger cars’ dynamic performance is a critical aspect for car industries, due to its impact on the overall vehicle safety evaluation and the subjective nature of the involved handling and comfort metrics. Accordingly, ISO standards, such as ISO 4138 and ISO 3888, define several specific driving tests to assess vehicle dynamics performance objectively. Consequently, proper evaluation of the dynamic behaviour requires measuring several physical quantities, including accelerations, speed, and linear and angular displacements obtained after instrumenting a vehicle with multiple sensors. This experimental activity is highly demanding in terms of hardware costs, and it is also significantly time-consuming. Several approaches can be considered for reducing vehicle development time. In particular, simulation software can be exploited to predict the approximate behaviour of a vehicle using virtual scenarios. Moreover, motion platforms and detail-scalable numerical vehicle models are widely implemented for the purpose. This paper focuses on a customized simulation environment developed in C++, which exploits the advantages of object-oriented programming. The presented framework strives to perform concurrent simulations of vehicles with different characteristics such as mass, tyres, engine, suspension, and transmission systems. Within the proposed simulation framework, we adopted a hierarchical and modular representation. Vehicles are modelled by a 14 degree-of-freedom (DOF) full-vehicle model, capable of capturing the dynamics and complemented by a set of scalable-detail models for the remaining sub-systems such as tyre, engine, and steering system. Furthermore, this paper proposes the usage of autonomous virtual drivers for a more objective evaluation of vehicle dynamic performances. Moreover, to further evaluate our simulator architecture’s efficiency and assess the achieved level of concurrency, we designed a benchmark able to analyse the scaling of the performances with respect to the number of different vehicles during the same simulation. Finally, the paper reports the proposed simulation environment’s scalability resulting from a set of different and varying driving scenarios

    Doxorubicin Hydrochloride-Loaded Nonionic Surfactant Vesicles to Treat Metastatic and Non-Metastatic Breast Cancer

    Get PDF
    Doxorubicin hydrochloride (DOX) is currently used to treat orthotropic and metastatic breast cancer. Because of its side effects, the use of DOX in cancer patients is sometimes limited; for this reason, several scientists tried designing drug delivery systems which can improve drug therapeutic efficacy and decrease its side effects. In this study, we designed, prepared, and physiochemically characterized nonionic surfactant vesicles (NSVs) which are obtained by self-assembling different combinations of hydrophilic (Tween 20) and hydrophobic (Span 20) surfactants, with cholesterol. DOX was loaded in NSVs using a passive and pH gradient remote loading procedure, which increased drug loading from ∼1 to ∼45%. NSVs were analyzed in terms of size, shape, size distribution, zeta potential, long-term stability, entrapment efficiency, and release kinetics, and nanocarriers having the best physiochemical parameters were selected for further in vitro tests. NSVs with and without DOX were stable and showed a sustained drug release up to 72 h. In vitro studies, with MCF-7 and MDA MB 468 cells, demonstrated that NSVs, containing Span 20, were better internalized in MCF-7 and MDA MB 468 cells than NSVs with Tween 20. NSVs increased the anticancer effect of DOX in MCF-7 and MDA MB 468 cells, and this effect is time and dose dependent. In vitro studies using metastatic and nonmetastatic breast cancer cells also demonstrated that NSVs, containing Span 20, had higher cytotoxicity than NSVs with Tween 20. The resulting data suggested that DOX-loaded NSVs could be a promising nanocarrier for the potential treatment of metastatic breast cancer

    Association between preoperative evaluation with lung ultrasound and outcome in frail elderly patients undergoing orthopedic surgery for hip fractures: study protocol for an Italian multicenter observational prospective study (LUSHIP)

    Get PDF
    Hip fracture is one of the most common orthopedic causes of hospital admission in frail elderly patients. Hip fracture fixation in this class of patients is considered a high-risk procedure. Preoperative physical examination, plasma natriuretic peptide levels (BNP, Pro-BNP), and cardiovascular scoring systems (ASA-PS, RCRI, NSQIP-MICA) have all been demonstrated to underestimate the risk of postoperative complications. We designed a prospective multicenter observational study to assess whether preoperative lung ultrasound examination can predict better postoperative events thanks to the additional information they provide in the form of "indirect" and "direct" cardiac and pulmonary lung ultrasound signs

    Economic consequences of investing in anti-HCV antiviral treatment from the Italian NHS perspective : a real-world-based analysis of PITER data

    Get PDF
    OBJECTIVE: We estimated the cost consequence of Italian National Health System (NHS) investment in direct-acting antiviral (DAA) therapy according to hepatitis C virus (HCV) treatment access policies in Italy. METHODS: A multistate, 20-year time horizon Markov model of HCV liver disease progression was developed. Fibrosis stage, age and genotype distributions were derived from the Italian Platform for the Study of Viral Hepatitis Therapies (PITER) cohort. The treatment efficacy, disease progression probabilities and direct costs in each health state were obtained from the literature. The break-even point in time (BPT) was defined as the period of time required for the cumulative costs saved to recover the Italian NHS investment in DAA treatment. Three different PITER enrolment periods, which covered the full DAA access evolution in Italy, were considered. RESULTS: The disease stages of 2657 patients who consecutively underwent DAA therapy from January 2015 to December 2017 at 30 PITER clinical centres were standardized for 1000 patients. The investment in DAAs was considered to equal €25 million, €15 million, and €9 million in 2015, 2016, and 2017, respectively. For patients treated in 2015, the BPT was not achieved, because of the disease severity of the treated patients and high DAA prices. For 2016 and 2017, the estimated BPTs were 6.6 and 6.2 years, respectively. The total cost savings after 20 years were €50.13 and €55.50 million for 1000 patients treated in 2016 and 2017, respectively. CONCLUSIONS: This study may be a useful tool for public decision makers to understand how HCV clinical and epidemiological profiles influence the economic burden of HCV
    • …
    corecore