137 research outputs found

    Intrasession and Between-Visit Variability of Sector Peripapillary Angioflow Vessel Density Values Measured with the Angiovue Optical Coherence Tomograph in Different Retinal Layers in Ocular Hypertension and Glaucoma

    Get PDF
    PURPOSE: To evaluate intrasession and between-visit reproducibility of sector peripapillary angioflow vessel-density (PAFD, %) values in the optic nerve head (ONH) and radial peripapillary capillaries (RPC) layers, respectively, and to analyze the influence of the corresponding sector retinal nerve fiber layer thickness (RNFLT) on the results. METHODS: High quality images acquired with the Angiovue/RTVue-XR Avanti optical coherence tomograph (Optovue Inc., Fremont, USA) on 1 eye of 18 stable glaucoma and ocular hypertension patients were analyzed using the Optovue 2015.100.0.33 software version. Three images were acquired in one visit and 1 image 3 months later. RESULTS: PAFD image quality for all images necessary to calculate reproducibility was sufficient to analysis only in 18 of the 83 participants (21.7%) who were successfully imaged for RNFLT. Intrasession coefficient of variation (CV) ranged between 2.30 and 3.89%, and 3.51 and 5.12% for the peripapillary sectors in the ONH and RPC layers, respectively. The corresponding between-visit CV values ranged between 3.05 and 4.26%, and 4.99 and 6.90%, respectively. Intrasession SD did not correlate with the corresponding RNFLT in any sector in either layer (P>/=0.170). In the ONH layer sector PAFD values did not correlate with the corresponding RNFLT values (P>/=0.100). In contrast, in the RPC layer a significant positive correlation between the corresponding sector PAFD and RNFLT values was found for all but one peripapillary sectors (Pearson-r range: 0.652 to 0.771, P</=0.0046). CONCLUSION: Though in several patients routine use of PAFD measurement may be limited by suboptimal image quality, in the successfully imaged cases (21.7% of the study eyes in the current investigation) reproducibility of sector PAFD values seems to be sufficient for clinical research. In stable patients intrasession variability explains most of the between-visit variability. Sector PAFD variability is independent from sector RNFLT, a marker of glaucoma severity. In the RPC layer sector PAFD and RNFLT show strong to very strong positive correlation

    Relationship between optical coherence tomography sector peripapillary angioflow-density and Octopus visual field cluster mean defect values

    Get PDF
    PURPOSE: To compare the relationship of Octopus perimeter cluster mean-defect (cluster MD) values with the spatially corresponding optical coherence tomography (OCT) sector peripapillary angioflow vessel-density (PAFD) and sector retinal nerve fiber layer thickness (RNFLT) values. METHODS: High quality PAFD and RNFLT images acquired on the same day with the Angiovue/RTVue-XR Avanti OCT (Optovue Inc., Fremont, USA) on 1 eye of 27 stable early-to-moderate glaucoma, 22 medically controlled ocular hypertensive and 13 healthy participants were analyzed. Octopus G2 normal visual field test was made within 3 months from the imaging. RESULTS: Total peripapillary PAFD and RNFLT showed similar strong positive correlation with global mean sensitivity (r-values: 0.6710 and 0.6088, P<0.0001), and similar (P = 0.9614) strong negative correlation (r-values: -0.4462 and -0.4412, P</=0.004) with global MD. Both inferotemporal and superotemporal sector PAFD were significantly (</=0.039) lower in glaucoma than in the other groups. No significant difference between the corresponding inferotemporal and superotemporal parameters was seen. The coefficient of determination (R2) calculated for the relationship between inferotemporal sector PAFD and superotemporal cluster MD (0.5141, P<0.0001) was significantly greater than that between inferotemporal sector RNFLT and superotemporal cluster MD (0.2546, P = 0.0001). The R2 values calculated for the relationships between superotemporal sector PAFD and RNFLT, and inferotemporal cluster MD were similar (0.3747 and 0.4037, respectively, P<0.0001). CONCLUSION: In the current population the relationship between inferotemporal sector PAFD and superotemporal cluster MD was strong. It was stronger than that between inferotemporal sector RNFLT and superotemporal cluster MD. Further investigations are necessary to clarify if our results are valid for other populations and can be usefully applied for glaucoma research

    Impact of organised programs on colorectal cancer screening

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>Colorectal cancer (CRC) screening has been shown to decrease CRC mortality. Organised mass screening programs are being implemented in France. Its perception in the general population and by general practitioners is not well known.</p> <p>Methods</p> <p>Two nationwide observational telephone surveys were conducted in early 2005. First among a representative sample of subjects living in France and aged between 50 and 74 years that covered both geographical departments with and without implemented screening services. Second among General Practionners (Gps). Descriptive and multiple logistic regression was carried out.</p> <p>Results</p> <p>Twenty-five percent of the persons(N = 1509) reported having undergone at least one CRC screening, 18% of the 600 interviewed GPs reported recommending a screening test for CRC systematically to their patients aged 50–74 years. The odds ratio (OR) of having undergone a screening test using FOBT was 3.91 (95% CI: 2.49–6.16) for those living in organised departments (referent group living in departments without organised screening), almost twice as high as impact educational level (OR = 2.03; 95% CI: 1.19–3.47).</p> <p>Conclusion</p> <p>CRC screening is improved in geographical departments where it is organised by health authorities. In France, an organised screening programs decrease inequalities for CRC screening.</p

    Documenting the Recovery of Vascular Services in European Centres Following the Initial COVID-19 Pandemic Peak: Results from a Multicentre Collaborative Study

    Get PDF
    Objective: To document the recovery of vascular services in Europe following the first COVID-19 pandemic peak. Methods: An online structured vascular service survey with repeated data entry between 23 March and 9 August 2020 was carried out. Unit level data were collected using repeated questionnaires addressing modifications to vascular services during the first peak (March – May 2020, “period 1”), and then again between May and June (“period 2”) and June and July 2020 (“period 3”). The duration of each period was similar. From 2 June, as reductions in cases began to be reported, centres were first asked if they were in a region still affected by rising cases, or if they had passed the peak of the first wave. These centres were asked additional questions about adaptations made to their standard pathways to permit elective surgery to resume. Results: The impact of the pandemic continued to be felt well after countries’ first peak was thought to have passed in 2020. Aneurysm screening had not returned to normal in 21.7% of centres. Carotid surgery was still offered on a case by case basis in 33.8% of centres, and only 52.9% of centres had returned to their normal aneurysm threshold for surgery. Half of centres (49.4%) believed their management of lower limb ischaemia continued to be negatively affected by the pandemic. Reduced operating theatre capacity continued in 45.5% of centres. Twenty per cent of responding centres documented a backlog of at least 20 aortic repairs. At least one negative swab and 14 days of isolation were the most common strategies used for permitting safe elective surgery to recommence. Conclusion: Centres reported a broad return of services approaching pre-pandemic “normal” by July 2020. Many introduced protocols to manage peri-operative COVID-19 risk. Backlogs in cases were reported for all major vascular surgeries

    OCT Angiography (OCTA) in Retinal Diagnostics

    Get PDF
    Optical coherence tomography angiography (OCTA) is an imaging modality which can be applied in ophthalmology to provide detailed visualization of the perfusion of vascular networks in the eye. Compared to previous state of the art dye-based imaging, such as fluorescein angiography, OCTA is non-invasive, time-efficient, and it allows for the examination of retinal vasculature in 3D. These advantages of the technique combined with the good usability in commercial devices led to a quick adoption of the new modality in the clinical routine. However, the interpretation of OCTA data is not without problems: Commonly observed image artifacts and the quite involved algorithmic details of OCTA signal construction can make the clinical assessment of OCTA exams challenging. In this article we describe the technical background of OCTA and discuss the data acquisition process, common image visualization techniques, as well as limitations and sources of artifacts of the modality. Examples of clinical cases underline the increasing importance of the OCTA technology in ophthalmology and its relation to dye-based angiography
    corecore