232 research outputs found

    Private specificities of CD8 T cell responses control patterns of heterologous immunity

    Get PDF
    CD8 T cell cross-reactivity between viruses can play roles in protective heterologous immunity and damaging immunopathology. This cross-reactivity is sometimes predictable, such as between lymphocytic choriomeningitis virus (LCMV) and Pichinde virus, where cross-reactive epitopes share six out of eight amino acids. Here, however, we demonstrate more subtle and less predictable cross-reactivity between LCMV and the unrelated vaccinia virus (VV). Epitope-specific T cell receptor usage differed between individual LCMV-infected C57BL/6 mice, even though the mice had similar epitope-specific T cell hierarchies. LCMV-immune mice challenged with VV showed variations, albeit in a distinct hierarchy, in proliferative expansions of and down-regulation of IL-7Rα by T cells specific to different LCMV epitopes. T cell responses to a VV-encoded epitope that is cross-reactive with LCMV fluctuated greatly in VV-infected LCMV-immune mice. Adoptive transfers of splenocytes from individual LCMV-immune donors resulted in nearly identical VV-induced responses in each of several recipients, but responses differed depending on the donor. This indicates that the specificities of T cell responses that are not shared between individuals may influence cross-reactivity with other antigens and play roles in heterologous immunity upon encounter with another pathogen. This variability in cross-reactive T cell expansion that is unique to the individual may underlie variation in the pathogenesis of infectious diseases

    Increased Immune Response Variability during Simultaneous Viral Coinfection Leads to Unpredictability in CD8 T Cell Immunity and Pathogenesis

    Get PDF
    T cell memory is usually studied in the context of infection with a single pathogen in naive mice, but how memory develops during a coinfection with two pathogens, as frequently occurs in nature or after vaccination, is far less studied. Here, we questioned how the competition between immune responses to two viruses in the same naive host would influence the development of CD8 T cell memory and subsequent disease outcome upon challenge. Using two different models of coinfection, including the well-studied lymphocytic choriomeningitis (LCMV) and Pichinde (PICV) viruses, several differences were observed within the CD8 T cell responses to either virus. Compared to single-virus infection, coinfection resulted in substantial variation among mice in the size of epitope-specific T cell responses to each virus. Some mice had an overall reduced number of virus-specific cells to either one of the viruses, and other mice developed an immunodominant response to a normally subdominant, cross-reactive epitope (nucleoprotein residues 205 to 212, or NP205). These changes led to decreased protective immunity and enhanced pathology in some mice upon challenge with either of the original coinfecting viruses. In mice with PICV-dominant responses, during a high-dose challenge with LCMV clone 13, increased immunopathology was associated with a reduced number of LCMV-specific effector memory CD8 T cells. In mice with dominant cross-reactive memory responses, during challenge with PICV increased immunopathology was directly associated with these cross-reactive NP205-specific CD8 memory cells. In conclusion, the inherent competition between two simultaneous immune responses results in significant alterations in T cell immunity and subsequent disease outcome upon reexposure. IMPORTANCE: Combination vaccines and simultaneous administration of vaccines are necessary to accommodate required immunizations and maintain vaccination rates. Antibody responses generally correlate with protection and vaccine efficacy. However, live attenuated vaccines also induce strong CD8 T cell responses, and the impact of these cells on subsequent immunity, whether beneficial or detrimental, has seldom been studied, in part due to the lack of known T cell epitopes to vaccine viruses. We questioned if the inherent increased competition and stochasticity between two immune responses during a simultaneous coinfection would significantly alter CD8 T cell memory in a mouse model where CD8 T cell epitopes are clearly defined. We show that some of the coinfected mice have sufficiently altered memory T cell responses that they have decreased protection and enhanced immunopathology when reexposed to one of the two viruses. These data suggest that a better understanding of human T cell responses to vaccines is needed to optimize immunization strategies

    Increasing Number of Individuals Receiving Hepatitis B nucleos(t)ide Analogs Therapy in Germany, 2008–2019

    Get PDF
    Background: Germany is a low prevalence country for hepatitis B virus (HBV) infection with higher prevalence in vulnerable groups. The number of treated chronic hepatitis B (CHB) patients is unknown. We aimed to determine the number of CHB patients treated with nucleos(t)ide analogs (NUCs), the treatment costs within the statutory health insurance (SHI) in Germany and per patient per month. Methods: Data on pharmacy bills of NUCs to patients with SHI between 2008 and 2019 were purchased from Insight Health™ and described. Negative binomial regression was used for trend analysis. Results: Number of patients increased between 2008 and 2019 (4.9% per year) with little changes in treatment options. Overall prescription costs were increasing (6.7% per year on average) until the introduction of tenofovir and entecavir generics in 2017 after which costs decreased by 31% in 2019. Average therapy costs peaked at 498 Euro per patient per month in 2016 and decreased to 214 Euro in 2019. Prescriptions changed from 30 to 90 pills per pack over time. HBV therapy was prescribed to 97% by three medical specialist groups, mainly specialists in internal medicine (63%), followed by hospital-based outpatient clinics (20%) and general practitioners (15%). Contrary to guideline recommendation, adefovir was still prescribed after 2011 for 1–5% of patients albeit with decreasing tendency. Prescriptions per 100,000 inhabitants were highest in Berlin and Hamburg. Conclusion: Our data shows, that the number of treated CHB patients increased steadily, while NUC therapy costs decreased. We recommend continued testing and treatment for those eligible to prevent advanced liver disease and possibly decrease further transmission of HBV.Peer Reviewe

    Clonal exhaustion as a mechanism to protect against severe immunopathology and death from an overwhelming CD8 T cell response

    Get PDF
    The balance between protective immunity and immunopathology often determines the fate of the virus-infected host. How rapidly virus is cleared is a function of initial viral load, viral replication rate, and efficiency of the immune response. Here, we demonstrate, with three different inocula of lymphocytic choriomeningitis virus (LCMV), how the race between virus replication and T cell responses can result in different disease outcomes. A low dose of LCMV generated efficient CD8 T effector cells, which cleared the virus with minimal lung and liver pathology. A high dose of LCMV resulted in clonal exhaustion of T cell responses, viral persistence, and little immunopathology. An intermediate dose only partially exhausted the T cell responses and resulted in significant mortality, and the surviving mice developed viral persistence and massive immunopathology, including necrosis of the lungs and liver. This suggests that for non-cytopathic viruses like LCMV, hepatitis C virus, and hepatitis B virus, clonal exhaustion may be a protective mechanism preventing severe immunopathology and death

    Cytomegalovirus-Driven Adaptive-Like Natural Killer Cell Expansions Are Unaffected by Concurrent Chronic Hepatitis Virus Infections

    Get PDF
    Adaptive-like expansions of natural killer (NK) cell subsets are known to occur in response to human cytomegalovirus (CMV) infection. These expansions are typically made up of NKG2C+ NK cells with particular killer-cell immunoglobulin-like receptor (KIR) expression patterns. Such NK cell expansion patterns are also seen in patients with viral hepatitis infection. Yet, it is not known if the viral hepatitis infection promotes the appearance of such expansions or if effects are solely attributed to underlying CMV infection. In sizeable cohorts of CMV seropositive hepatitis B virus (HBV), hepatitis C virus (HCV), and hepatitis delta virus (HDV) infected patients, we analyzed NK cells for expression of NKG2A, NKG2C, CD57, and inhibitory KIRs to assess the appearance of NK cell expansions characteristic of what has been seen in CMV seropositive healthy individuals. Adaptive-like NK cell expansions observed in viral hepatitis patients were strongly associated with CMV seropositivity. The number of subjects with these expansions did not differ between CMV seropositive viral hepatitis patients and corresponding healthy controls. Hence, we conclude that adaptive-like NK cell expansions observed in HBV, HCV, and/or HDV infected individuals are not caused by the chronic hepatitis infections per se, but rather are a consequence of underlying CMV infection

    Interpreting T-Cell Cross-reactivity through Structure: Implications for TCR-Based Cancer Immunotherapy

    Get PDF
    Immunotherapy has become one of the most promising avenues for cancer treatment, making use of the patient\u27s own immune system to eliminate cancer cells. Clinical trials with T-cell-based immunotherapies have shown dramatic tumor regressions, being effective in multiple cancer types and for many different patients. Unfortunately, this progress was tempered by reports of serious (even fatal) side effects. Such therapies rely on the use of cytotoxic T-cell lymphocytes, an essential part of the adaptive immune system. Cytotoxic T-cells are regularly involved in surveillance and are capable of both eliminating diseased cells and generating protective immunological memory. The specificity of a given T-cell is determined through the structural interaction between the T-cell receptor (TCR) and a peptide-loaded major histocompatibility complex (MHC); i.e., an intracellular peptide-ligand displayed at the cell surface by an MHC molecule. However, a given TCR can recognize different peptide-MHC (pMHC) complexes, which can sometimes trigger an unwanted response that is referred to as T-cell cross-reactivity. This has become a major safety issue in TCR-based immunotherapies, following reports of melanoma-specific T-cells causing cytotoxic damage to healthy tissues (e.g., heart and nervous system). T-cell cross-reactivity has been extensively studied in the context of viral immunology and tissue transplantation. Growing evidence suggests that it is largely driven by structural similarities of seemingly unrelated pMHC complexes. Here, we review recent reports about the existence of pMHC hot-spots for cross-reactivity and propose the existence of a TCR interaction profile (i.e., a refinement of a more general TCR footprint in which some amino acid residues are more important than others in triggering T-cell cross-reactivity). We also make use of available structural data and pMHC models to interpret previously reported cross-reactivity patterns among virus-derived peptides. Our study provides further evidence that structural analyses of pMHC complexes can be used to assess the intrinsic likelihood of cross-reactivity among peptide-targets. Furthermore, we hypothesize that some apparent inconsistencies in reported cross-reactivities, such as a preferential directionality, might also be driven by particular structural features of the targeted pMHC complex. Finally, we explain why TCR-based immunotherapy provides a special context in which meaningful T-cell cross-reactivity predictions can be made

    Interpreting T-Cell Cross-reactivity through Structure: Implications for TCR-Based Cancer Immunotherapy

    Get PDF
    Immunotherapy has become one of the most promising avenues for cancer treatment, making use of the patient’s own immune system to eliminate cancer cells. Clinical trials with T-cell-based immunotherapies have shown dramatic tumor regressions, being effective in multiple cancer types and for many different patients. Unfortunately, this progress was tempered by reports of serious (even fatal) side effects. Such therapies rely on the use of cytotoxic T-cell lymphocytes, an essential part of the adaptive immune system. Cytotoxic T-cells are regularly involved in surveillance and are capable of both eliminating diseased cells and generating protective immunological memory. The specificity of a given T-cell is determined through the structural interaction between the T-cell receptor (TCR) and a peptide-loaded major histocompatibility complex (MHC); i.e., an intracellular peptide–ligand displayed at the cell surface by an MHC molecule. However, a given TCR can recognize different peptide–MHC (pMHC) complexes, which can sometimes trigger an unwanted response that is referred to as T-cell cross-reactivity. This has become a major safety issue in TCR-based immunotherapies, following reports of melanoma-specific T-cells causing cytotoxic damage to healthy tissues (e.g., heart and nervous system). T-cell cross-reactivity has been extensively studied in the context of viral immunology and tissue transplantation. Growing evidence suggests that it is largely driven by structural similarities of seemingly unrelated pMHC complexes. Here, we review recent reports about the existence of pMHC “hot-spots” for cross-reactivity and propose the existence of a TCR interaction profile (i.e., a refinement of a more general TCR footprint in which some amino acid residues are more important than others in triggering T-cell cross-reactivity). We also make use of available structural data and pMHC models to interpret previously reported cross-reactivity patterns among virus-derived peptides. Our study provides further evidence that structural analyses of pMHC complexes can be used to assess the intrinsic likelihood of cross-reactivity among peptide-targets. Furthermore, we hypothesize that some apparent inconsistencies in reported cross-reactivities, such as a preferential directionality, might also be driven by particular structural features of the targeted pMHC complex. Finally, we explain why TCR-based immunotherapy provides a special context in which meaningful T-cell cross-reactivity predictions can be made

    real world effectiveness and safety of glecaprevir pibrentasvir for the treatment of patients with chronic hcv infection a meta analysis

    Get PDF
    Abstract Background and Aims Glecaprevir/pibrentasvir is approved for treating adults infected with hepatitis C virus (HCV) genotypes 1–6. In clinical trials, glecaprevir/pibrentasvir was associated with high rates of sustained virologic response at post-treatment Week 12 (SVR12) and was well tolerated. A systematic review and meta-analysis of the real-world effectiveness and safety of glecaprevir/pibrentasvir were undertaken. Methods Real-world studies reporting SVR12 in adults with HCV infection (N≥20) treated with glecaprevir/pibrentasvir were identified in journal publications from January 1, 2017, to February 25, 2019, and congress presentations through April 14, 2019. Random-effects meta-analysis was used to determine SVR12 rates using data from ≥2 cohorts; intention-to-treat (ITT) analyses included patients treated with glecaprevir/pibrentasvir who had SVR12 data available, discontinued early, or were lost to follow-up; modified ITT (mITT) analyses excluded those with non-virologic failure. Naive pooling was used to calculate adverse event (AE) rates. Results Overall, 12,531 adults were treated with glecaprevir/pibrentasvir (18 cohorts). Of patients with post-treatment Week 12 data, SVR12 rates were 96.7% (95% CI, 95.4–98.1) in the ITT population (n=8,583, 15 cohorts) and 98.1 % (95% CI, 97.1–99.2) in the mITT population (n=7,001, 14 cohorts). SVR12 rates were ≥95% across subgroups (HCV genotype, cirrhosis status, treatment history, treatment duration, on-label treatment, and subgroups of interest). AEs were reported in 17.7% (1,271/7,199) of patients (8 cohorts). Serious AEs were reported in 1.0% (55/5,522) of patients (6 cohorts). The most frequent AEs were pruritus, fatigue, and headache. AE-related treatment discontinuations were reported in 0.6% (33/5,595) of patients (6 cohorts). Conclusions Consistent with clinical trials, real-world evidence indicates that glecaprevir/pibrentasvir is a well-tolerated and highly effective pangenotypic treatment for a broad range of HCV-infected patients
    corecore