185 research outputs found

    Metabolomics Biomarkers: A Strategy Toward Therapeutics Improvement in ALS

    Get PDF
    Biomarkers research in amyotrophic lateral sclerosis (ALS) holds the promise of improving ALS diagnosis, follow-up of patients, and clinical trials outcomes. Metabolomics have a big impact on biomarkers identification. In this mini-review, we provide the main findings of metabolomics studies in ALS and discuss the most relevant therapeutics attempts that targeted some prominent alterations found in ALS, like glutamate excitotoxicity, oxidative stress, alterations in energetic metabolism, and creatinine levels. Metabolomics studies have reported putative diagnosis or prognosis biomarkers, but discrepancies among these studies did not allow validation of metabolic biomarkers for clinical use in ALS. In this context, we wonder whether metabolomics knowledge could improve ALS therapeutics. As metabolomics identify specific metabolic pathways modified by disease progression and/or treatment, we support that adjuvant or combined treatment should be used to rescue these pathways, creating a new perspective for ALS treatment. Some ongoing clinical trials are already trying to target these pathways. As clinical trials in ALS have been disappointing and considering the heterogeneity of the disease presentation, we support the application of a pharmacometabolomic approach to evaluate the individual response to drug treatments and their side effects, enabling the development of personalized treatments for ALS. We suggest that the best strategy to apply metabolomics for ALS therapeutics progress is to establish a metabolic signature for ALS patients in order to improve the knowledge of patient metabotypes, to choose the most adequate pharmacological treatment, and to follow the drug response and side effects, based on metabolomics biomarkers

    Molecular Imaging of Microglial Activation in Amyotrophic Lateral Sclerosis

    Get PDF
    There is growing evidence of activated microglia and inflammatory processes in the cerebral cortex in amyotrophic lateral sclerosis (ALS). Activated microglia is characterized by increased expression of the 18 kDa translocator protein (TSPO) in the brain and may be a useful biomarker of inflammation. In this study, we evaluated neuroinflammation in ALS patients using a radioligand of TSPO, 18F-DPA-714. Ten patients with probable or definite ALS (all right-handed, without dementia, and untreated by riluzole or other medication that might bias the binding on the TSPO), were enrolled prospectively and eight healthy controls matched for age underwent a PET study. Comparison of the distribution volume ratios between both groups were performed using a Mann-Whitney’s test. Significant increase of distribution of volume ratios values corresponding to microglial activation was found in the ALS sample in primary motor, supplementary motor and temporal cortex (p = 0.009, p = 0.001 and p = 0.004, respectively). These results suggested that the cortical uptake of 18F-DPA-714 was increased in ALS patients during the ‘‘time of diagnosis’’ phase of the disease. This finding might improve our understanding of the pathophysiology of ALS and might be a surrogate marker of efficacy of treatment on microglial activation

    The Relevancy of Data Regarding the Metabolism of Iron to Our Understanding of Deregulated Mechanisms in ALS; Hypotheses and Pitfalls

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease caused by the loss of motor neurons. Its etiology remains unknown, but several pathophysiological mechanisms are beginning to explain motor neuronal death, as well as oxidative stress. Iron accumulation has been observed in both sporadic and familial forms of ALS, including mouse models. Therefore, the dysregulation of iron metabolism could play a role in the pathological oxidative stress in ALS. Several studies have been undertaken to describe iron-related metabolic markers, in most cases focusing on metabolites in the bloodstream due to few available data in the central nervous system. Reports of accumulation of iron, high serum ferritin, and low serum transferrin levels in ALS patients have encouraged researchers to consider dysregulated iron metabolism as an integral part of ALS pathophysiology. However, it appears complicated to suggest a general mechanism due to the diversity of models and iron markers studied, including the lack of consensus among all of the studies. Regarding clinical study reports, most of them do not take into account confusion biases such as inflammation, renal dysfunction, and nutritional status. Furthermore, the iron regulatory pathways, particularly involving hepcidin, have not been thoroughly explored yet within the pathogenesis of iron overload in ALS. In this sense, it is also essential to explore the relation between iron overload and other ALS-related events, such as neuro-inflammation, protein aggregation, and iron-driven cell death, termed ferroptosis. In this review, we point out limits of the designs of certain studies that may prevent the understanding of the role of iron in ALS and discuss the relevance of the published data regarding the pathogenic impact of iron metabolism deregulation in this disease and the therapeutics targeting this pathway

    Respiratory onset in an ALS family with L144F SOD1mutation

    Get PDF
    International audienceFamilial amyotrophic lateral sclerosis (FALS) cases linked to SOD1 mutations may sometimes present with unusual clinical features such as pure lower motor neuron involvement or sensory signs. We describe a FALS pedigree with the L144F SOD1 mutation in which all cases had respiratory involvement as a first symptom. Although atypical clinical features are not rare in ALS families, this is the first pedigree with respiratory-onset in three affected members. This unusual presentation led to delayed diagnosis in the proband and highlights the fact that respiratory-onset can occur in familial ALS cases carrying SOD1 mutation

    Lithium carbonate in amyotrophic lateral sclerosis patients homozygous for the C-allele at SNP rs12608932 in UNC13A: protocol for a confirmatory, randomized, group-sequential, event-driven, double-blind, placebo-controlled trial

    Full text link
    BackgroundGiven the large genetic heterogeneity in amyotrophic lateral sclerosis (ALS), it seems likely that genetic subgroups may benefit differently from treatment. An exploratory meta-analysis identified that patients homozygous for the C-allele at SNP rs12608932, a single nucleotide polymorphism in the gene UNC13A, had a statistically significant survival benefit when treated with lithium carbonate. We aim to confirm the efficacy of lithium carbonate on the time to death or respiratory insufficiency in patients with ALS homozygous for the C-allele at SNP rs12608932 in UNC13A. MethodsA randomized, group-sequential, event-driven, double-blind, placebo-controlled trial will be conducted in 15 sites across Europe and Australia. Patients will be genotyped for UNC13A; those homozygous for the C-allele at SNP rs12608932 will be eligible. Patients must have a diagnosis of ALS according to the revised El Escorial criteria, and a TRICALS risk-profile score between -6.0 and -2.0. An expected number of 1200 patients will be screened in order to enroll a target sample size of 171 patients. Patients will be randomly allocated in a 2:1 ratio to lithium carbonate or matching placebo, and treated for a maximum duration of 24 months. The primary endpoint is the time to death or respiratory insufficiency, whichever occurs first. Key secondary endpoints include functional decline, respiratory function, quality of life, tolerability, and safety. An interim analysis for futility and efficacy will be conducted after the occurrence of 41 events. DiscussionLithium carbonate has been proven to be safe and well-tolerated in patients with ALS. Given the favorable safety profile, the potential benefits are considered to outweigh the burden and risks associated with study participation. This study may provide conclusive evidence about the life-prolonging potential of lithium carbonate in a genetic ALS subgroup

    Inhibition of beta-Glucocerebrosidase Activity Preserves Motor Unit Integrity in a Mouse Model of Amyotrophic Lateral Sclerosis

    Get PDF
    Recent metabolomic reports connect dysregulation of glycosphingolipids, particularly ceramide and glucosylceramide, to neurodegeneration and to motor unit dismantling in amyotrophic lateral sclerosis at late disease stage. We report here altered levels of gangliosides in the cerebrospinal fluid of amyotrophic lateral sclerosis patients in early disease stage. Conduritol B epoxide is an inhibitor of acid beta-glucosidase, and lowers glucosylceramide degradation. Glucosylceramide is the precursor for all of the more complex glycosphingolipids. In SOD1G86R mice, an animal model of amyotrophic lateral sclerosis, conduritol B epoxide preserved ganglioside distribution at the neuromuscular junction, delayed disease onset, improved motor function and preserved motor neurons as well as neuromuscular junctions from degeneration. Conduritol B epoxide mitigated gene dysregulation in the spinal cord and restored the expression of genes involved in signal transduction and axonal elongation. Inhibition of acid beta-glucosidase promoted faster axonal elongation in an in vitro model of neuromuscular junctions and hastened recovery after peripheral nerve injury in wild type mice. Here, we provide evidence that glycosphingolipids play an important role in muscle innervation, which degenerates in amyotrophic lateral sclerosis from the early disease stage. This is a first proof of concept study showing that modulating the catabolism of glucosylceramide may be a therapeutic target for this devastating disease.PMC550791

    1H-NMR-Based Metabolomic Profiling of CSF in Early Amyotrophic Lateral Sclerosis

    Get PDF
    Background: Pathophysiological mechanisms involved in amyotrophic lateral sclerosis (ALS) are complex and none has identified reliable markers useful in routine patient evaluation. The aim of this study was to analyze the CSF of patients with ALS by 1 H NMR (Nuclear Magnetic Resonance) spectroscopy in order to identify biomarkers in the early stages of the disease, and to evaluate the biochemical factors involved in ALS. Methodology: CSF samples were collected from patients with ALS at the time of diagnosis and from patients without neurodegenerative diseases. One and two-dimensional 1 H NMR analyses were performed and metabolites were quantified by the ERETIC method. We compared the concentrations of CSF metabolites between both groups. Finally, we performed principal component (PCA) and discriminant analyses. Principal Findings: Fifty CSF samples from ALS patients and 44 from controls were analyzed. We quantified 17 metabolites including amino-acids, organic acids, and ketone bodies. Quantitative analysis revealed significantly lower acetate concentrations (p = 0.0002) in ALS patients compared to controls. Concentration of acetone trended higher (p = 0.015), and those of pyruvate (p = 0.002) and ascorbate (p = 0.003) were higher in the ALS group. PCA demonstrated that the pattern of analyzed metabolites discriminated between groups. Discriminant analysis using an algorithm of 17 metabolites reveale
    • 

    corecore