331 research outputs found

    HI clouds in the proximity of M33

    Full text link
    Neutral hydrogen clouds are found in the Milky Way and Andromeda halo both as large complexes and smaller isolated clouds. Here we present a search for Hi clouds in the halo of M33, the third spiral galaxy of the Local Group. We have used two complementary data sets: a 3^o x 3^o map of the area provided by the Arecibo Legacy Fast ALFA (ALFALFA) survey and deeper pointed observations carried out with the Arecibo telescope in two fields that permit sampling of the north eastern and south-western edges of the HI disc. The total amount of Hi around M33 detected by our survey is 107\sim 10^7 M_{\odot}. At least 50% of this mass is made of HI clouds that are related both in space and velocity to the galaxy. We discuss several scenarios for the origin of these clouds focusing on the two most interesting ones: (a)(a) dark-matter dominated gaseous satellites, (b)(b) debris from filaments flowing into M33 from the intergalactic medium or generated by a previous interaction with M31. Both scenarios seem to fit with the observed cloud properties. Some structures are found at anomalous velocities, particularly an extended HI complex previously detected by Thilker et al. (2002). Even though the ALFALFA observations seem to indicate that this cloud is possibly connected to M33 by a faint gas bridge, we cannot firmly establish its extragalactic nature or its relation to M33. Taking into account that the clouds associated with M33 are likely to be highly ionised by the extragalactic UV radiation, we predict that the total gas mass associated with them is > 5 x 10^7 M_{\odot}. If the gas is steadily falling towards the M33 disc it can provide the fuel needed to sustain a current star formation rate of 0.5 M_{\odot} yr1^{-1}.Comment: 16 pages, 19 figures. Accepted for publication in A&

    Stellar structures in the outer regions of M33

    Full text link
    We present Subaru/Suprime-Cam deep V and I imaging of seven fields in the outer regions of M33. Our aim is to search for stellar structures corresponding to extended HI clouds found in a recent 21-cm survey of the galaxy. Three fields probe a large HI complex to the southeastern (SE) side of the galaxy. An additional three fields cover the northwestern (NW) side of the galaxy along the HI warp. A final target field was chosen further north, at a projected distance of approximately 25 kpc, to study part of the large stellar plume recently discovered around M33. We analyse the stellar population at R > 10 kpc by means of V, I colour magnitude diagrams reaching the red clump. Evolved stellar populations are found in all fields out to 120' (~ 30 kpc), while a diffuse population of young stars (~ 200 Myr) is detected out to a galactocentric radius of 15 kpc. The mean metallicity in the southern fields remains approximately constant at [M/H] = -0.7 beyond the edge of the optical disc, from 40' out to 80'. Along the northern fields probing the outer \hi disc, we also find a metallicity of [M/H] = -0.7 between 35' and 70' from the centre, which decreases to [M/H] = -1.0 at larger angular radii out to 120'. In the northernmost field, outside the disc extent, the stellar population of the large stellar feature possibly related to a M33-M31 interaction is on average more metal-poor ([M/H] = -1.3) and older (> 6 Gyr). An exponential disc with a large scale-length (~ 7 kpc) fits well the average distribution of stars detected in both the SE and NW regions from a galactocentric distance of 11 kpc out to 30 kpc. The stellar distribution at large radii is disturbed and, although there is no clear correlation between the stellar substructures and the location of the HI clouds, this gives evidence for tidal interaction or accretion events.Comment: 13 pages, 13 figures. Accepted for publications in Astronomy and Astrophysics; minor revisions of the tex

    Bar imprints on the inner gas kinematics of M33

    Full text link
    We present measurements of the stellar and gaseous velocities in the central 5' of the Local Group spiral M33. The data were obtained with the ARC 3.5m telescope. Blue and red spectra with resolutions from 2 to 4\AA covering the principal gaseous emission and stellar absorption lines were obtained along the major and minor axes and six other position angles. The observed radial velocities of the ionized gas along the photometric major axis of M33 remain flat at ~22 km s^{-1} all the way into the center, while the stellar velocities show a gradual rise from zero to 22 km s^{-1} over that same region. The central star cluster is at or very close to the dynamical center, with a velocity that is in accordance with M33's systemic velocity to within our uncertainties. Velocities on the minor axis are non-zero out to about 1' from the center in both the stars and gas. Together with the major axis velocities, they point at significant deviations from circular rotation. The most likely explanation for the bulk of the velocity patterns are streaming motions along a weak inner bar with a PA close to that of the minor axis, as suggested by previously published IR photometric images. The presence of bar imprints in M33 implies that all major Local Group galaxies are barred. The non-circular motions over the inner 200 pc make it difficult to constrain the shape of M33's inner dark matter halo profile. If the non-circular motions we find in this nearby Sc galaxy are present in other more distant late-type galaxies, they might be difficult to recognize.Comment: 20 pages, 12 figures, ApJ in pres

    The HI distribution in the outskirts of M33 with the ALFALFA survey

    Full text link
    Spiral galaxies appear to be dynamical systems whose disks are still forming at the current epoch and which continue to accrete mass. The presence of extraplanar gas in spirals indicates that galactic halos can contain at least part of the material needed to fuel the star formation activity in their disks. Here we present the analysis of the ALFALFA survey data in the region of M33 aimed at searching high velocity clouds around this Local Group galaxy. We find a varied population of HI clouds with masses ranging between 4 x 10^4 and few times 10^6 M_sun. We also detect an extended HI complex at anomalous velocities, whose extragalactic nature cannot be firmly established. We estimate that the total amount of neutral hydrogen mass associated to these clouds is around 10^7 M_sun.Comment: 3 pages, 2 figures, to appear in the Conference Proceedings "The Evolution of Galaxies through the Neutral Hydrogen Window",eds. R. Minchin & E. Momjia

    Simulations of the flocculent spiral M33: what drives the spiral structure?

    Get PDF
    We perform simulations of isolated galaxies in order to investigate the likely origin of the spiral structure in M33. In our models, we find that gravitational instabilities in the stars and gas are able to reproduce the observed spiral pattern and velocity field of M33, as seen in HI, and no interaction is required. We also find that the optimum models have high levels of stellar feedback which create large holes similar to those observed in M33, whilst lower levels of feedback tend to produce a large amount of small scale structure, and undisturbed long filaments of high surface density gas, hardly detected in the M33 disc. The gas component appears to have a significant role in producing the structure, so if there is little feedback, both the gas and stars organise into clear spiral arms, likely due to a lower combined QQ (using gas and stars), and the ready ability of cold gas to undergo spiral shocks. By contrast models with higher feedback have weaker spiral structure, especially in the stellar component, compared to grand design galaxies. We did not see a large difference in the behaviour of QstarsQ_{stars} with most of these models, however, because QstarsQ_{stars} stayed relatively constant unless the disc was more strongly unstable. Our models suggest that although the stars produce some underlying spiral structure, this is relatively weak, and the gas physics has a considerable role in producing the large scale structure of the ISM in flocculent spirals.Comment: 17 pages, 17 figures, accepted for publication in MNRA

    The population of Young Stellar Clusters throughout the disk of M33

    Full text link
    The properties of young stellar clusters (YSCs) in M33, identified from the center out to about twice the size of the bright star-forming disk,are investigated. We find 915 discrete MIR sources as far as the extent of the warped HI disk, i.e. 16 kpc from the galaxy center. Their surface density has a steep radial decline beyond 4.5 kpc, and flattens out beyond the optical radius at 8.5 kpc. We are able to identify YSCs out to 12 kpc. At large galactocentric radii, the paucity of very luminous clusters and the relevance of hot dust emission become evident from the analysis of the bolometric and MIR luminosity functions. The YSC mass and size are correlated with a log-log slope of 2.09, similar to that measured for giant molecular clouds in M33 and the Milky Way, which represent the protocluster environment. Most of the YSCs in our sample have low extinction and ages between 3 and 10 Myr. In the inner regions of M33 the clusters span a wide range of mass (10^2<M<3 10^5 msun) and luminosity 10^38<L{bol}<3 10^{41}erg/s, while at galactocentric radii larger than 4 kpc we find a deficiency of massive clusters. Beyond 7 kpc, where the Halpha surface brightness drops significantly, the dominant YSC population has M<10^3 msun and a slightly older age (10 Myrs). This implies the occurrence of star formation events about 10 Myr ago as far as 10-12 kpc from the center of M33. The cluster L{FUV}--L{Halpha} relation is non-linear for L{FUV}<10^{39}erg/s, in agreement with randomly sampled models of the IMF which, furthermore, shows no appreciable variation throughout the M33 disk.Comment: Accepted for publication in A&A, 16 pages, 14 figure

    Star-forming dwarf galaxies in the Virgo cluster: the link between molecular gas, atomic gas, and dust

    Get PDF
    We present 12^{12}CO(1-0) and 12^{12}CO(2-1) observations of a sample of 20 star-forming dwarfs selected from the Herschel Virgo Cluster Survey, with oxygen abundances ranging from 12 + log(O/H) ~ 8.1 to 8.8. CO emission is observed in ten galaxies and marginally detected in another one. CO fluxes correlate with the FIR 250 μ\mum emission, and the dwarfs follow the same linear relation that holds for more massive spiral galaxies extended to a wider dynamical range. We compare different methods to estimate H2 molecular masses, namely a metallicity-dependent CO-to-H2 conversion factor and one dependent on H-band luminosity. The molecular-to-stellar mass ratio remains nearly constant at stellar masses <~ 109^9 M_{\odot}, contrary to the atomic hydrogen fraction, MHI_{HI}/M_*, which increases inversely with M_*. The flattening of the MH2_{H_2}/M_* ratio at low stellar masses does not seem to be related to the effects of the cluster environment because it occurs for both HI-deficient and HI-normal dwarfs. The molecular-to-atomic ratio is more tightly correlated with stellar surface density than metallicity, confirming that the interstellar gas pressure plays a key role in determining the balance between the two gaseous components of the interstellar medium. Virgo dwarfs follow the same linear trend between molecular gas mass and star formation rate as more massive spirals, but gas depletion timescales, τdep\tau_{dep}, are not constant and range between 100 Myr and 6 Gyr. The interaction with the Virgo cluster environment is removing the atomic gas and dust components of the dwarfs, but the molecular gas appears to be less affected at the current stage of evolution within the cluster. However, the correlation between HI deficiency and the molecular gas depletion time suggests that the lack of gas replenishment from the outer regions of the disc is lowering the star formation activity.Comment: 19 pages, 11 figures, accepted for publication in Astronomy & Astrophysic

    Star formation in M33: Spitzer photometry of discrete sources

    Full text link
    Combining the relative vicinity of the Local Group spiral galaxy M33 with the Spitzer images, we investigate the properties of infrared (IR) emission sites and assess the reliability of the IR emission as a star formation tracer. The mid- and far-IR emission of M33 was obtained from IRAC and MIPS images from the Spitzer archive. We compared the photometric results for several samples of three known types of discrete sources (HII regions, supernovae remnants and planetary nebulae) with theoretical diagnostic diagrams, and derived the spectral energy distribution (from 3.6 to 24 micron) of each type of object. Moreover, we generated a catalogue of 24 micron sources and inferred their nature from the observed and theoretical colours of the known type sources. We estimated the star formation rate in M33 both globally and locally, from the IR emission and from the Halpha emission line. The colours of the typical IR emissions of HII regions, supernovae remnants and planetary nebulae are continuous among the different samples, with overlapping regions in the diagnostic diagrams. The comparison between the model results and the colours of HII regions indicates a dusty envelope at relatively high temperatures ~600 K, and moderate extinction Av < 10. The 24 micron sources IR colours follow the regions observationally defined by the three classes of known objects but the majority of them represent HII regions. The derived total IR luminosity function is in fact very similar to the HII luminosity function observed in the Milky Way and in other late type spirals. Even though our completeness limit is 5x10^37 ergs s-1, in low density regions we are able to detect sources five times fainter than this, corresponding to the faintest possible HII region. [abridged]Comment: 19 pages, 18 figures (low resolution), accepted for publication by A&A; corrected typo

    Very Luminous Carbon Stars in the Outer Disk of the Triangulum Spiral Galaxy

    Full text link
    Stars with masses in the range from about 1.3 to 3.5 Mo pass through an evolutionary stage where they become carbon stars. In this stage, which lasts a few Myr, these stars are extremely luminous pulsating giants. They are so luminous in the near-infrared that just a few of them can double the integrated luminosity of intermediate-age (0.6 to 2 Gyr) Magellanic Cloud clusters at 2.2 microns. Astronomers routinely use such near-infrared observations to minimize the effects of dust extinction, but it is precisely in this band that carbon stars can contribute hugely. The actual contribution of carbon stars to the outer disk light of evolving spiral galaxies has not previously been morphologically investigated. Here we report new and very deep near-IR images of the Triangulum spiral galaxy M33=NGC 598, delineating spectacular arcs of carbon stars in its outer regions. It is these arcs which dominate the near-infrared m=2 Fourier spectra of M33. We present near-infrared photometry with the Hale 5-m reflector, and propose that the arcs are the signature of accretion of low metallicity gas in the outer disk of M33.Comment: 4 pages, 4 figures. Revised version submitted to A&A Letter
    corecore