12 research outputs found

    Reconstructing Native American population history

    Get PDF
    The peopling of the Americas has been the subject of extensive genetic, archaeological and linguistic research; however, central questions remain unresolved. One contentious issue is whether the settlement occurred by means of a single migration or multiple streams of migration from Siberia. The pattern of dispersals within the Americas is also poorly understood. To address these questions at a higher resolution than was previously possible, we assembled data from 52 Native American and 17 Siberian groups genotyped at 364,470 single nucleotide polymorphisms. Here we show that Native Americans descend from at least three streams of Asian gene flow. Most descend entirely from a single ancestral population that we call First American. However, speakers of Eskimog-Aleut languages from the Arctic inherit almost half their ancestry from a second stream of Asian gene flow, and the Na-Dene-speaking Chipewyan from Canada inherit roughly one-tenth of their ancestry from a third stream. We show that the initial peopling followed a southward expansion facilitated by the coast, with sequential population splits and little gene flow after divergence, especially in South America. A major exception is in Chibchan speakers on both sides of the Panama isthmus, who have ancestry from both North and South America. © 2012 Macmillan Publishers Limited. All rights reserved.Fil: Reich, David. Harvard Medical School; Estados Unidos. Massachusetts Institute of Technology; Estados UnidosFil: Patterson, Nick. Massachusetts Institute of Technology; Estados UnidosFil: Campbell, Desmond. Colegio Universitario de Londres; Reino Unido. The University Of Hong Kong; Hong KongFil: Tandon, Arti. Harvard Medical School; Estados Unidos. Massachusetts Institute of Technology; Estados UnidosFil: Mazieres, Stéphane. Colegio Universitario de Londres; Reino UnidoFil: Ray, Nicolas. Universidad de Ginebra; SuizaFil: Parra, Maria V.. Colegio Universitario de Londres; Reino Unido. Universidad de Antioquia; ColombiaFil: Rojas, Winston. Colegio Universitario de Londres; Reino Unido. Universidad de Antioquia; ColombiaFil: Duque, Constanza. Universidad de Antioquia; Colombia. Colegio Universitario de Londres; Reino UnidoFil: Mesa, Natalia. Universidad de Antioquia; Colombia. Colegio Universitario de Londres; Reino UnidoFil: García, Luis F.. Universidad de Antioquia; ColombiaFil: Triana, Omar. Universidad de Antioquia; ColombiaFil: Blair, Silvia. Universidad de Antioquia; ColombiaFil: Maestre, Amanda. Universidad de Antioquia; ColombiaFil: Dib, Juan C.. Fundación Salud Para El Tró Pico; ColombiaFil: Bravi, Claudio Marcelo. Colegio Universitario de Londres; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Universidad Nacional de La Plata. Instituto Multidisciplinario de Biología Celular; ArgentinaFil: Bailliet, Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Universidad Nacional de La Plata. Instituto Multidisciplinario de Biología Celular; ArgentinaFil: Corach, Daniel. Universidad de Buenos Aires; ArgentinaFil: Hünemeier, Tábita. Colegio Universitario de Londres; Reino Unido. Universidade Federal do Rio Grande do Sul; BrasilFil: Bortolini, Maria Cátira. Universidade Federal do Rio Grande do Sul; BrasilFil: Salzano, Francisco M.. Universidade Federal do Rio Grande do Sul; BrasilFil: Petzl Erler, María Luiza. Universidade Federal do Paraná; BrasilFil: Acuña Alonzo, Victor. National Institute Of Anthropology And History; MéxicoFil: Aguilar Salinas, Carlos. Instituto Nacional de la Nutrición Salvador Zubiran; MéxicoFil: Canizales-Quinteros, Samuel. Universidad Nacional Autónoma de México; MéxicoFil: Tusié Luna, Teresa. Universidad Nacional Autónoma de México; MéxicoFil: Riba, Laura. Universidad Nacional Autónoma de México; MéxicoFil: Rodríguez Cruz, Maricela. Umae Hospital de Pediatría Centro Medico Nacional Siglo Xxi; MéxicoFil: Lopez Alarcón, Mardia. Umae Hospital de Pediatría Centro Medico Nacional Siglo Xxi; MéxicoFil: Coral Vazquez, Ramón. Instituto Politécnico Nacional; Méxic

    Reconstructing Native American Population History

    Get PDF
    The peopling of the Americas has been the subject of extensive genetic, archaeological and linguistic research; however, central questions remain unresolved1–5. One contentious issue is whether the settlement occurred via a single6–8 or multiple streams of migration from Siberia9–15. The pattern of dispersals within the Americas is also poorly understood. To address these questions at higher resolution than was previously possible, we assembled data from 52 Native American and 17 Siberian groups genotyped at 364,470 single nucleotide polymorphisms. We show that Native Americans descend from at least three streams of Asian gene flow. Most descend entirely from a single ancestral population that we call “First American”. However, speakers of Eskimo-Aleut languages from the Arctic inherit almost half their ancestry from a second stream of Asian gene flow, and the Na-Dene-speaking Chipewyan from Canada inherit roughly one-tenth of their ancestry from a third stream. We show that the initial peopling followed a southward expansion facilitated by the coast, with sequential population splits and little gene flow after divergence, especially in South America. A major exception is in Chibchan-speakers on both sides of the Panama Isthmus, who have ancestry from both North and South America

    Non-Invasive Biomarkers for Duchenne Muscular Dystrophy and Carrier Detection

    No full text
    Non-invasive biological indicators of the absence/presence or progress of the disease that could be used to support diagnosis and to evaluate the effectiveness of treatment are of utmost importance in Duchenne Muscular Dystrophy (DMD). This neuromuscular disorder affects male children, causing weakness and disability, whereas female relatives are at risk of being carriers of the disease. A biomarker with both high sensitivity and specificity for accurate prediction is preferred. Until now creatine kinase (CK) levels have been used for DMD diagnosis but these fail to assess disease progression. Herein we examined the potential applicability of serum levels of matrix metalloproteinase 9 (MMP-9) and matrix metalloproteinase 2 (MMP-2), tissue inhibitor of metalloproteinases 1 (TIMP-1), myostatin (GDF-8) and follistatin (FSTN) as non-invasive biomarkers to distinguish between DMD steroid naïve patients and healthy controls of similar age and also for carrier detection. Our data suggest that serum levels of MMP-9, GDF-8 and FSTN are useful to discriminate DMD from controls (p < 0.05), to correlate with some neuromuscular assessments for DMD, and also to differentiate between Becker muscular dystrophy (BMD) and Limb-girdle muscular dystrophy (LGMD) patients. In DMD individuals under steroid treatment, GDF-8 levels increased as FSTN levels decreased, resembling the proportions of these proteins in healthy controls and also the baseline ratio of patients without steroids. GDF-8 and FSTN serum levels were also useful for carrier detection (p < 0.05). Longitudinal studies with larger cohorts are necessary to confirm that these molecules correlate with disease progression. The biomarkers presented herein could potentially outperform CK levels for carrier detection and also harbor potential for monitoring disease progression
    corecore