756 research outputs found

    Study of a static screen, jig, spiral, and a compound water cyclone in a placer gold recovery plant

    Get PDF
    During the 1986 mining season both laboratory and field test work were conducted to study the performance efficiencies of a wedge-wire static screen, a Pan-American jig, a Reichert Mark VII spiral, and a 12" compound water cyclone. This work was conducted at EVECO, Inc.'s placer gold operations near Fox, Alaska, and funded by the State of Alaska Department of Natural Resources. The Mineral Industry Research Laboratory of the University of Alaska-Fairbanks perfomed the test work.Funded by the State of Alaska Department of Natural Resources

    Explosive events - swirling transition region jets

    Full text link
    In this paper, we extend our earlier work to provide additional evidence for an alternative scenario to explain the nature of so-called `explosive events'. The bi-directed, fast Doppler motion of explosive events observed spectroscopically in the transition region emission is classically interpreted as a pair of bidirectional jets moving upward and downward from a reconnection site. We discuss the problems of such a model. In our previous work, we focused basically on the discrepancy of fast Doppler motion without detectable motion in the image plane. We now suggest an alternative scenario for the explosive events, based on our observations of spectral line tilts and bifurcated structure in some events. Both features are indicative of rotational motion in narrow structures. We explain the bifurcation as the result of rotation of hollow cylindrical structures and demonstrate that such a sheath model can also be applied to explain the nature of the puzzling `explosive events'. We find that the spectral tilt, the lack of apparent motion, the bifurcation, and a rapidly growing number of direct observations support an alternative scenario of linear, spicular-sized jets with a strong spinning motion.Comment: 9 pages, 3 figures, accepted for publication in Solar Physic

    A framework for the local information dynamics of distributed computation in complex systems

    Full text link
    The nature of distributed computation has often been described in terms of the component operations of universal computation: information storage, transfer and modification. We review the first complete framework that quantifies each of these individual information dynamics on a local scale within a system, and describes the manner in which they interact to create non-trivial computation where "the whole is greater than the sum of the parts". We describe the application of the framework to cellular automata, a simple yet powerful model of distributed computation. This is an important application, because the framework is the first to provide quantitative evidence for several important conjectures about distributed computation in cellular automata: that blinkers embody information storage, particles are information transfer agents, and particle collisions are information modification events. The framework is also shown to contrast the computations conducted by several well-known cellular automata, highlighting the importance of information coherence in complex computation. The results reviewed here provide important quantitative insights into the fundamental nature of distributed computation and the dynamics of complex systems, as well as impetus for the framework to be applied to the analysis and design of other systems.Comment: 44 pages, 8 figure

    How parents perceive and feel about participation in community activities: The comparison between parents of preschoolers with and without autism spectrum disorders

    Get PDF
    The present study compared how parents of preschoolers with and without Autism Spectrum Disorders (ASD) perceived and felt about participation in community activities. A questionnaire survey was conducted with 380 Hong Kong parents of preschoolers with ASD and 214 Hong Kong parents of preschoolers without ASD. The two groups were not different in their willingness and frequency of participation in community activities. However, the psychological processes underneath their willingness were very different. Among the parents of preschoolers with ASD, their willingness was associated with how they perceived the difficulty and importance of the participation and what emotions they experienced during the activities. This pattern of association was not evident among the parents of preschoolers without ASD. Copyright © The Author(s), 2010.published_or_final_versio

    Erasmus Language students in a British University – a case study

    Get PDF
    Students’ assessment of their academic experience is actively sought by Higher Education institutions, as evidenced in the National Student Survey introduced in 2005. Erasmus students, despite their growing numbers, tend to be excluded from these satisfaction surveys, even though they, too, are primary customers of a University. This study aims to present results from bespoke questionnaires and semi-structured interviews with a sample of Erasmus students studying languages in a British University. These methods allow us insight into the experience of these students and their assessment as a primary customer, with a focus on language learning and teaching, university facilities and student support. It investigates to what extent these factors influence their levels of satisfaction and what costs of adaptation if any, they encounter. Although excellent levels of satisfaction were found, some costs affect their experience. They relate to difficulties in adapting to a learning methodology based on a low number of hours and independent learning and to a guidance and support system seen as too stifling. The results portray this cohort’s British University as a well-equipped and well-meaning but ultimately overbearing institution, which may indicate that minimising costs can eliminate some sources of dissatisfaction

    Detector Description and Performance for the First Coincidence Observations between LIGO and GEO

    Get PDF
    For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial change

    Choosing how to choose : Institutional pressures affecting the adoption of personnel selection procedures

    Get PDF
    The gap between science and practice in personnel selection is an ongoing concern of human resource management. This paper takes Oliver´s framework of organizations´ strategic responses to institutional pressures as a basis for outlining the diverse economic and social demands that facilitate or inhibit the application of scientifically recommended selection procedures. Faced with a complex network of multiple requirements, practitioners make more diverse choices in response to any of these pressures than has previously been acknowledged in the scientific literature. Implications for the science-practitioner gap are discussed

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)
    corecore