9 research outputs found

    Shape dependence of two-cylinder Renyi entropies for free bosons on a lattice

    Full text link
    Universal scaling terms occurring in Renyi entanglement entropies have the potential to bring new understanding to quantum critical points in free and interacting systems. Quantitative comparisons between analytical continuum theories and numerical calculations on lattice models play a crucial role in advancing such studies. In this paper, we exactly calculate the universal two-cylinder shape dependence of entanglement entropies for free bosons on finite-size square lattices, and compare to approximate functions derived in the continuum using several different ansatzes. Although none of these ansatzes are exact in the thermodynamic limit, we find that numerical fits are in good agreement with continuum functions derived using the AdS/CFT correspondence, an extensive mutual information model, and a quantum Lifshitz model. We use fits of our lattice data to these functions to calculate universal scalars defined in the thin-cylinder limit, and compare to values previously obtained for the free boson field theory in the continuum.Comment: 7 pages, 5 figures, 1 tabl

    Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences

    Get PDF
    The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & Nemésio 2007; Donegan 2008, 2009; Nemésio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on 18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based researchers who signed it in the short time span from 20 September to 6 October 2016

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Hydrodynamics with triangular point group

    Full text link
    When continuous rotational invariance of a two-dimensional fluid is broken to the discrete, dihedral subgroup D6D_6 - the point group of an equilateral triangle - the resulting anisotropic hydrodynamics breaks both spatial-inversion and time-reversal symmetries, while preserving their combination. In this work, we present the hydrodynamics of such D6D_6 fluids, identifying new symmetry-allowed dissipative terms in the hydrodynamic equations of motion. We propose two experiments - both involving high-purity solid-state materials with D6D_6-invariant Fermi surfaces - that are sensitive to these new coefficients in a D6D_6 fluid of electrons. In particular, we propose a local current imaging experiment (which is present-day realizable with nitrogen vacancy center magnetometry) in a hexagonal device, whose D6D_6-exploiting boundary conditions enable the unambiguous detection of these novel transport coefficients.Comment: 25+12 pages, 7+0 figures, 2+0 tables. v2: fixed typos. v3: revised versio

    Hydrodynamics with triangular point group

    No full text
    When continuous rotational invariance of a two-dimensional fluid is broken to the discrete, dihedral subgroup D6D_6 - the point group of an equilateral triangle - the resulting anisotropic hydrodynamics breaks both spatial-inversion and time-reversal symmetries, while preserving their combination. In this work, we present the hydrodynamics of such D6D_6-symmetric fluids, identifying new symmetry-allowed dissipative terms in the hydrodynamic equations of motion. We propose two experiments - both involving high-purity solid-state materials with D6D_6-invariant Fermi surfaces - that are sensitive to these new coefficients in a D6D_6-invariant electron fluid. In particular, we propose a local current imaging experiment (which is present-day realizable with nitrogen vacancy center magnetometry) in a hexagonal device, whose D6D_6-exploiting boundary conditions enable the unambiguous detection of these novel transport coefficients
    corecore