262 research outputs found
Role of E-cadherin in the response of tumor cell aggregates to lymphatic, venous and arterial flow: measurement of cell-cell adhesion strength
Defects in the expression or function of the calcium dependent cell-cell adhesion molecule E-cadherin are common in invasive, metastatic carcinomas. In the present study the response of aggregates of breast epithelial cells and breast and colon carcinoma cells to forces imposed by laminar flow in a parallel plate flow channel was examined. Although E-cadherin negative tumor cells formed cell aggregates in the presence of calcium, these were significantly more likely than E-cadherin positive cell aggregates to disaggregate in response to low shear forces, such as those found in a lymphatic vessel or venule (\u3c 3.5 dyn/cm2). E-cadherin positive normal breast epithelial cells and E-cadherin positive breast tumor cell aggregates could not be disaggregated when exposed to shear forces in excess of those found in arteries (\u3e 100 dyn/cm2). E-cadherin negative cancer cells which had been transfected with E-cadherin exhibited large increases in adhesion strength only if the expressed protein was appropriately linked to the cytoskeleton. These results show that E-cadherin negative tumor cells, or cells in which the adhesion molecule is present but is inefficiently linked to the cytoskeleton, are far more likely than E-cadherin positive cells to detach from a tumor mass in response to low shear forces, such as those found in a lymphatic vessel or venule. Since a primary route of dissemination of many carcinoma cells is to the local lymph nodes these results point to a novel mechanism whereby defects in cell-cell adhesion could lead to carcinoma cell dissemination
The role of renin-angiotensin-aldosterone system polymorphisms in phenotypic expression of MYBPC3-related hypertrophic cardiomyopathy
The phenotypic variability of hypertrophic cardiomyopathy (HCM) in patients with identical pathogenic mutations suggests additional modifiers. In view of the regulatory role in cardiac function, blood pressure, and electrolyte homeostasis, polymorphisms in the renin-angiotensin-aldosterone system (RAAS) are candidates for modifying phenotypic expression. In order to investigate whether RAAS polymorphisms modulate HCM phenotype, we selected a large cohort of carriers of one of the three functionally equivalent truncating mutations in the MYBPC3 gene. Family-based association analysis was performed to analyze the effects of five candidate RAAS polymorphisms (ACE, rs4646994; AGTR1, rs5186; CMA, rs1800875; AGT, rs699; CYP11B2, rs1799998) in 368 subjects carrying one of the three mutations in the MYBPC3 gene. Interventricular septum (IVS) thickness and Wigle score were assessed by 2D-echocardiography. SNPs in the RAAS system were analyzed separately and combined as a pro-left ventricular hypertrophy (LVH) score for effects on the HCM phenotype. Analyzing the five polymorphisms separately for effects on IVS thickness and Wigle score detected two modest associations. Carriers of the CC genotype in the AGT gene had less pronounced IVS thickness compared with CT and TT genotype carriers. The DD polymorphism in the ACE gene was associated with a high Wigle score (P=0.01). No association was detected between the pro-LVH score and IVS thickness or Wigle score. In conclusion, in contrast to previous studies, in our large study population of HCM patients with functionally equivalent mutations in the MYBPC3 gene we did not find major effects of genetic variation within the genes of the RAAS system on phenotypic expression of HCM
Genetic Burden of TNNI3K in Diagnostic Testing of Patients With Dilated Cardiomyopathy and Supraventricular Arrhythmias
BACKGROUND: Genetic variants in TNNI3K (troponin-I interacting kinase) have previously been associated with dilated cardiomyopathy (DCM), cardiac conduction disease, and supraventricular tachycardias. However, the link between TNNI3K variants and these cardiac phenotypes shows a lack of consensus concerning phenotype and protein function. METHODS: We describe a systematic retrospective study of a cohort of patients undergoing genetic testing for cardiac arrhythmias and cardiomyopathy including TNNI3K. We further performed burden testing of TNNI3K in the UK Biobank. For 2 novel TNNI3K variants, we tested cosegregation. TNNI3K kinase function was estimated by TNNI3K autophosphorylation assays.RESULTS: We demonstrate enrichment of rare coding TNNI3K variants in DCM patients in the Amsterdam cohort. In the UK Biobank, we observed an association between TNNI3K missense (but not loss-of-function) variants and DCM and atrial fibrillation. Furthermore, we demonstrate genetic segregation for 2 rare variants, TNNI3K-p.Ile512Thr and TNNI3K-p.His592Tyr, with phenotypes consisting of DCM, cardiac conduction disease, and supraventricular tachycardia, together with increased autophosphorylation. In contrast, TNNI3K-p.Arg556_Asn590del, a likely benign variant, demonstrated depleted autophosphorylation. CONCLUSIONS: Our findings demonstrate an increased burden of rare coding TNNI3K variants in cardiac patients with DCM. Furthermore, we present 2 novel likely pathogenic TNNI3K variants with increased autophosphorylation, suggesting that enhanced autophosphorylation is likely to drive pathogenicity.</p
Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus.
BACKGROUND: Alternative therapies for Staphylococcus aureus bacteremia and endocarditis are needed.
METHODS: We randomly assigned 124 patients with S. aureus bacteremia with or without endocarditis to receive 6 mg of daptomycin intravenously per kilogram of body weight daily and 122 to receive initial low-dose gentamicin plus either an antistaphylococcal penicillin or vancomycin. The primary efficacy end point was treatment success 42 days after the end of therapy.
RESULTS: Forty-two days after the end of therapy in the modified intention-to-treat analysis, a successful outcome was documented for 53 of 120 patients who received daptomycin as compared with 48 of 115 patients who received standard therapy (44.2 percent vs. 41.7 percent; absolute difference, 2.4 percent; 95 percent confidence interval, -10.2 to 15.1 percent). Our results met prespecified criteria for the noninferiority of daptomycin. The success rates were similar in subgroups of patients with complicated bacteremia, right-sided endocarditis, and methicillin-resistant S. aureus. Daptomycin therapy was associated with a higher rate of microbiologic failure than was standard therapy (19 vs. 11 patients, P=0.17). In 6 of the 19 patients with microbiologic failure in the daptomycin group, isolates with reduced susceptibility to daptomycin emerged; similarly, a reduced susceptibility to vancomycin was noted in isolates from patients treated with vancomycin. As compared with daptomycin therapy, standard therapy was associated with a nonsignificantly higher rate of adverse events that led to treatment failure due to the discontinuation of therapy (17 vs. 8, P=0.06). Clinically significant renal dysfunction occurred in 11.0 percent of patients who received daptomycin and in 26.3 percent of patients who received standard therapy (P=0.004).
CONCLUSIONS: Daptomycin (6 mg per kilogram daily) is not inferior to standard therapy for S. aureus bacteremia and right-sided endocarditis. (ClinicalTrials.gov number, NCT00093067 [ClinicalTrials.gov].)
Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.
The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD
Predicting cardiac electrical response to sodium-channel blockade and Brugada syndrome using polygenic risk scores
AIMS: Sodium-channel blockers (SCBs) are associated with arrhythmia, but variability of cardiac electrical response remains unexplained. We sought to identify predictors of ajmaline-induced PR and QRS changes and Type I Brugada syndrome (BrS) electrocardiogram (ECG). METHODS AND RESULTS: In 1368 patients that underwent ajmaline infusion for suspected BrS, we performed measurements of 26 721 ECGs, dose-response mixed modelling and genotyping. We calculated polygenic risk scores (PRS) for PR interval (PRSPR), QRS duration (PRSQRS), and Brugada syndrome (PRSBrS) derived from published genome-wide association studies and used regression analysis to identify predictors of ajmaline dose related PR change (slope) and QRS slope. We derived and validated using bootstrapping a predictive model for ajmaline-induced Type I BrS ECG. Higher PRSPR, baseline PR, and female sex are associated with more pronounced PR slope, while PRSQRS and age are positively associated with QRS slope (P < 0.01 for all). PRSBrS, baseline QRS duration, presence of Type II or III BrS ECG at baseline, and family history of BrS are independently associated with the occurrence of a Type I BrS ECG, with good predictive accuracy (optimism-corrected C-statistic 0.74). CONCLUSION: We show for the first time that genetic factors underlie the variability of cardiac electrical response to SCB. PRSBrS, family history, and a baseline ECG can predict the development of
A Connexin40 Mutation Associated With a Malignant Variant of Progressive Familial Heart Block Type I
Background-Progressive familial heart block type I (PFHBI) is a hereditary arrhythmia characterized by progressive conduction disturbances in the His-Purkinje system. PFHBI has been linked to genes such as SCN5A that influence cardiac excitability but not to genes that influence cell-to-cell communication. Our goal was to explore whether nucleotide substitutions in genes coding for connexin proteins would associate with clinical cases of PFHBI and if so, to establish a genotype-cell phenotype correlation for that mutation. Methods and Results-We screened 156 probands with PFHBI. In addition to 12 sodium channel mutations, we found a germ line GJA5 (connexin40 [Cx40]) mutation (Q58L) in 1 family. Heterologous expression of Cx40-Q58L in connexin-deficient neuroblastoma cells resulted in marked reduction of junctional conductance (Cx40-wild type [WT], 22.2 ± 1.7 nS, n=14; Cx40-Q58L, 0.56 ± 0.34 nS, n=14; P <0.001) and diffuse localization of immunoreactive proteins in the vicinity of the plasma membrane without formation of gap junctions. Heteromeric cotransfection of Cx40-WT and Cx40-Q58L resulted in homogenous distribution of proteins in the plasma membrane rather than in membrane plaques in ̃ 50% of cells; well-defined gap junctions were observed in other cells. Junctional conductance values correlated with the distribution of gap junction plaques. Conclusions-Mutation Cx40-Q58L impairs gap junction formation at cell-cell interfaces. This is the first demonstration of a germ line mutation in a connexin gene that associates with inherited ventricular arrhythmias and emphasizes the importance of Cx40 in normal propagation in the specialized conduction system
Utility of Post-Mortem Genetic Testing in Cases of Sudden Arrhythmic Death Syndrome.
BACKGROUND: Sudden arrhythmic death syndrome (SADS) describes a sudden death with negative autopsy and toxicological analysis. Cardiac genetic disease is a likely etiology. OBJECTIVES: This study investigated the clinical utility and combined yield of post-mortem genetic testing (molecular autopsy) in cases of SADS and comprehensive clinical evaluation of surviving relatives. METHODS: We evaluated 302 expertly validated SADS cases with suitable DNA (median age: 24 years; 65% males) who underwent next-generation sequencing using an extended panel of 77 primary electrical disorder and cardiomyopathy genes. Pathogenic and likely pathogenic variants were classified using American College of Medical Genetics (ACMG) consensus guidelines. The yield of combined molecular autopsy and clinical evaluation in 82 surviving families was evaluated. A gene-level rare variant association analysis was conducted in SADS cases versus controls. RESULTS: A clinically actionable pathogenic or likely pathogenic variant was identified in 40 of 302 cases (13%). The main etiologies established were catecholaminergic polymorphic ventricular tachycardia and long QT syndrome (17 [6%] and 11 [4%], respectively). Gene-based rare variants association analysis showed enrichment of rare predicted deleterious variants in RYR2 (p = 5 × 10(-5)). Combining molecular autopsy with clinical evaluation in surviving families increased diagnostic yield from 26% to 39%. CONCLUSIONS: Molecular autopsy for electrical disorder and cardiomyopathy genes, using ACMG guidelines for variant classification, identified a modest but realistic yield in SADS. Our data highlighted the predominant role of catecholaminergic polymorphic ventricular tachycardia and long QT syndrome, especially the RYR2 gene, as well as the minimal yield from other genes. Furthermore, we showed the enhanced utility of combined clinical and genetic evaluation
Recommended from our members
Natural gas production problems : solutions, methodologies, and modeling.
Natural gas is a clean fuel that will be the most important domestic energy resource for the first half the 21st centtuy. Ensuring a stable supply is essential for our national energy security. The research we have undertaken will maximize the extractable volume of gas while minimizing the environmental impact of surface disturbances associated with drilling and production. This report describes a methodology for comprehensive evaluation and modeling of the total gas system within a basin focusing on problematic horizontal fluid flow variability. This has been accomplished through extensive use of geophysical, core (rock sample) and outcrop data to interpret and predict directional flow and production trends. Side benefits include reduced environmental impact of drilling due to reduced number of required wells for resource extraction. These results have been accomplished through a cooperative and integrated systems approach involving industry, government, academia and a multi-organizational team within Sandia National Laboratories. Industry has provided essential in-kind support to this project in the forms of extensive core data, production data, maps, seismic data, production analyses, engineering studies, plus equipment and staff for obtaining geophysical data. This approach provides innovative ideas and technologies to bring new resources to market and to reduce the overall environmental impact of drilling. More importantly, the products of this research are not be location specific but can be extended to other areas of gas production throughout the Rocky Mountain area. Thus this project is designed to solve problems associated with natural gas production at developing sites, or at old sites under redevelopment
Identification of a Sudden Cardiac Death Susceptibility Locus at 2q24.2 through Genome-Wide Association in European Ancestry Individuals
Sudden cardiac death (SCD) continues to be one of the leading causes of mortality worldwide, with an annual incidence estimated at 250,000–300,000 in the United States and with the vast majority occurring in the setting of coronary disease. We performed a genome-wide association meta-analysis in 1,283 SCD cases and >20,000 control individuals of European ancestry from 5 studies, with follow-up genotyping in up to 3,119 SCD cases and 11,146 controls from 11 European ancestry studies, and identify the BAZ2B locus as associated with SCD (P = 1.8×10−10). The risk allele, while ancestral, has a frequency of ∼1.4%, suggesting strong negative selection and increases risk for SCD by 1.92–fold per allele (95% CI 1.57–2.34). We also tested the role of 49 SNPs previously implicated in modulating electrocardiographic traits (QRS, QT, and RR intervals). Consistent with epidemiological studies showing increased risk of SCD with prolonged QRS/QT intervals, the interval-prolonging alleles are in aggregate associated with increased risk for SCD (P = 0.006)
- …