SANDIA REPORT

REFERENCE COPY C.2

SAND2004-4859 Unlimited Release Printed October 2004

Natural Gas Production Problems: Solutions, Methodologies, and Modeling

John C. Lorenz, Scott P. Cooper, Bill W. Arnold, Paul M. Basinski, James M. Herrin, John F. Holland, Russell G. Keefe, Rich Larson, William A. Olsson, Christopher A. Rautman

Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Sandia National Laboratories

LIBRARY DOCUMENT DO NOT DESTROY RETURN TO LIBRARY VAULT

TOTAL PAGES. COPY

SANDIA NATIONAL

LABORATORIES TECHNICAL LIBRARY Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831

Telephone: (865)576-8401 Facsimile: (865)576-5728 E-Mail: <u>reports@adonis.osti.gov</u> Online ordering: <u>http://www.osti.gov/bridge</u>

Available to the public from U.S. Department of Commerce National Technical Information Service 5285 Port Royal Rd Springfield, VA 22161

 Telephone:
 (800)553-6847

 Facsimile:
 (703)605-6900

 E-Mail:
 orders@ntis.fedworld.gov

 Online order:
 http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND 2004-4859 Unlimited Release Printed October-2004

Natural Gas Production Problems: Solutions, Methodologies, and Modeling

Team Members and Authors

John C. Lorenz, Scott P. Cooper, James M. Herrin, and Russell G. Keefe Geophysical Technology Department

> Bill W. Arnold Total System Performance Assessment

> > William A. Olsson Geomechanics Department

John F. Holland Structural Mechanics Engineering Department

Christopher A. Rautman Geotechnology and Engineering Department

> Sandia National Laboratories P.O. Box 5800 Albuquerque, NM 87185-0706

> > Rich Larson Vermejo Park Ranch P.O. Drawer E Raton, NM 87740

LIBRARY DOCUMENT DO NOT DESTROY RETURN TO LIBRARY VAULT

Paul M. Basinski El Paso Production Company Nine Greenway Plaza Houston, TX 77046

Ron Broadhead New Mexico Bureau of Geology and Mineral Resources 801 Leroy Place Socorro NM 87801-4796 Thomas W. Engler Petroleum and Natural Gas Engineering Department New Mexico Institute of Mining and Technology 801 Leroy Place Socorro NM, 87801

> Gus Holm Vermejo Park Ranch P.O. Drawer E Raton, NM 87740

Curt McKinney Devon Energy Corporation 20 North Broadway Oklahoma City, OK 73102-8260

> Connie D. Knight Consulting Geologist Golden, CO 80401

Abstract

Natural gas is a clean fuel that will be the most important domestic energy resource for the first half the 21st century. Ensuring a stable supply is essential for our national energy security. The research we have undertaken will maximize the extractable volume of gas while minimizing the environmental impact of surface disturbances associated with drilling and production. This report describes a methodology for comprehensive evaluation and modeling of the total gas system within a basin focusing on problematic horizontal fluid flow variability. This has been accomplished through extensive use of geophysical, core (rock sample) and outcrop data to interpret and predict directional flow and production trends. Side benefits include reduced environmental impact of drilling due to reduced number of required wells for resource extraction.

These results have been accomplished through a cooperative and integrated systems approach involving industry, government, academia and a multi-organizational team within Sandia National Laboratories. Industry has provided essential in-kind support to this project in the forms of extensive core data, production data, maps, seismic data, production analyses, engineering studies, plus equipment and staff for obtaining geophysical data.

This approach provides innovative ideas and technologies to bring new resources to market and to reduce the overall environmental impact of drilling. More importantly, the products of this research are not be location specific but can be extended to other areas of gas production throughout the Rocky Mountain area. Thus this project is designed to solve problems associated with natural gas production at developing sites, or at old sites under redevelopment.

This page intentionally left blank.

Table of Contents

1.0 Introduction	13
1.1 Purpose of Study	13
1.2 Location and Geologic setting	
1.2.1 Stratigraphy	
1.2.2 Tectonic setting	
1.3 Background	
1.4 Technical Approach	29
1.4.1 Technical Problems with Natural Gas Production	29
1.4.2 Technical Approach	
1.4.3 Why this Approach is Appropriate	
1.4.4 Assessment of Technical Risk	
2.0 Studies Applied to Methodology	
2.1 Fracture Field Work	
2.1.1 Introduction	
2.1.2 Technical Approach	
2.1.3 Previous Work	36
2.1.4 Fracture Data Relative to Specific Rock Units	
2.1.5 Fracture Data Relative to Specific Structures	56
2.1.6 Fracture Data Summary	62
2.1.7 Mechanics of Natural Fracture Variability	62
2.1.8 Discussion/Summary	67
2.2 Core Analyses	68
2.3 Well-log Analyses for Fractures	70
2.3.1 Fracture Orientations from FMI Logs	
2.3.2 Fracture Orientation and Depth	74
2.3.3 Fracture Orientation and Lithology	77
2.3.4 Fracture Aperture	80
2.3.5 Fracture Spacing	82
2.4 Well-log Analyses for Stress	83
2.4.1 Horizontal Stress from ADI Logs	83
2.4.2 Horizontal Stress and Depth	
2.4.3 Relationship Between Horizontal Stress and Fractures	90
2.5 In Situ Stress Conditions during the Formation of Sills and Dikes	91
2.5.1 Background	
2.5.2 Elastic Geomechanical Model	91
2.5.3 Implications for Dikes and Sills in the Raton Basin	94
2.5.4 Depression of the Sill-to-Dike Transition Depth	96
2.5.5 Finite Element Model	99
2.5.5 Conclusions	101
2.6 Mechanical Analysis of the Raton Basin	
2.6.1 Model Description	102
2.6.2 Load History	106
2.6.3 Model Results	109

2.6.4 Future Modeling Efforts	
2.7 Production Analysis	
2.7.1 Production History	
2.7.2 Coalbed Methane	
2.7.3 CBM Resources in the Raton Basin	
2.7.4 CBM Operations in the Vermejo Park Ranch Unit	
2.7.5 Pod-scale Characteristics.	123
2.7.6 Individual Well Production Curve Characteristics	
2.7.7 Resource Potential of the Raton Mesa Region	
2.7.8 Discussion: Vermejo Park Ranch CBM Production	
2.8 Geostatistical Analysis of Well Production	
2.8.1 Estimates of Gas and Water Production	
2.8.2 Stepwise Linear Regression Analysis	
2.8.3 Geostatistical Analysis of Production	
3.0 Synthesis and Conclusions	145
3.1 Raton Basin Tectonics.	
3.1.1 Topography vs. Structure	
3.1.2 Basin Margins.	
3.1.3 Vermejo and Tercio Anticlines	
3.1.4 Other Structures within the Raton Basin	
3.1.5 Timing	
3.1.6 Erosion	
3.1.7 Stresses	
3.2 Implications for Production	
3.3 Environmental Considerations	
4.0 Recommendations for Future Work	
5.0 Acknowledgements	
6.0 References	157
7.0 Appendices	
Appendix A: Advantages and Limitations of Different Method for Assessing	Natural
Fractures in the Raton Basin	
Appendix B: Methodology for Specifying Failure Conditions for Sedimentar	y Rocks189
Appendix C: Calculated Reflection/Transmission Coefficient Curves for Sha	
Basalt	
Appendix D: Raton basin Field Trip Guidebook 2003	
Appendix E: Core Log Reports by C. N. Knight	
Appendix F: Core Logs by R. E. Graichen	
Appendix G: Outcrop Data Logs	

List of Figures

Figure 1: Maps of the Raton Basin	
Figure 2: Geologic column of the Raton Basin	
Figure 3: Outcrop Exposures of the major CBM producing intervals	17
Figure 4: Stratigraphic column of Upper Cretaceous and Paleocene rock units	18
Figure 5: Photograph of the Trinidad Sandstone	20
Figure 6: Stratigraphic column of the northern Raton Basin	21
Figure 7: Raton Basin and major structures	
Figure 8: Diagrammatic cross section.	24
Figure 9: Photograph of the Dakota Sandstone	25
Figure 10: Map of large scale igneous intrusions	26
Figure 11: Tectonic and depositional sequence of the Raton Basin	27
Figure 12: Emplacement conditions of and sill and dike	
Figure 13: Extension and conjugate shear fractures	28
Figure 14: Fracture strike map	34
Figure 15: Pie chart of outcrop fracture data	
Figure 16: Extension fractures	35
Figure 17: Rose diagram of fracture orientations in the Dakota Sandstone	37
Figure 18: Stereonet of fracture orientations in the Dakota Sandstone	
Figure 19: Photograph of Riedel shear steps	38
Figure 20: Photograph of vertical root burrows in the Dakota Sandstone	
Figure 21: Dakota Sandstone "Wall"	38
Figure 22: Rose diagram of fracture orientations in the Dakota Sandstone	40
Figure 23: Photograph of Niobrara limestone	
Figure 24: Rose diagram of fracture orientations in the Niobrara Limestone	41
Figure 25: Diagram of dynamically compatible fracture sets	
Figure 26: Rose diagram of fracture orientations within the Niobrara Limestone	42
Figure 27: Rose diagram of fault orientations within the Niobrara Limestone	43
Figure 28: Map illustrating fracture orientations within the Niobrara Limestone	
Figure 29: Photograph of a Trinidad Sandstone outcrop	
Figure 30: Photograph of Trinidad Sandstone outcrops near Dawson NM	45
Figure 31: Map of fracture orientations across the basin	
Figure 32: Rose diagram of fracture orientations within the Vermejo Formation	47
Figure 33: Rose diagram of fracture orientations within the Vermejo Formation	
Figure 34: Rose diagram of fracture orientations within the Vermejo Formation	
Figure 35: Rose diagram of fault orientations within a coal bed	
Figure 36: Photograph of a fault in a coal bed	
Figure 37: Rose diagram of fracture orientations within the Raton Formation	
Figure 38: Map of fracture orientations across the basin	
Figure 39: Photograph of an igneous sill	
Figure 40: Photograph of parallel sandstone and igneous sill fracture orientations	
Figure 41: Rose diagram of fracture orientations within a sandstone and igneous sill	
Figure 42: Rose diagram of cleat orientations within the Raton Formation	
Figure 43: Photograph of Low-angle thrust plane	
Figure 44: Photograph of thrust planes related to intrusion of an igneous dike	

Figure 45: Photograph of the Morley church	56
Figure 46: Map of fracture orientations across the Morley anticline	
Figure 47: Scan-line of fractures within Vermejo sandstones adjacent to a dike	
Figure 48: Map of fracture orientations around Vermejo Park	
Figure 49: Photograph of thrust within the Trinidad Sandstone	
Figure 50: Photograph of back thrust within the Trinidad Sandstone	
Figure 51: Photograph of minor thrust within the Trinidad Sandstone	
Figure 52: Photograph of Riedel shear steps	
Figure 53: Rose diagram of fracture orientations within the Raton formation	
Figure 54: Stress orientations consistent with observed fracture patterns	
Figure 55: Mohr circles of stress states	
Figure 56: Stress orientations consistent with observed fracture patterns	
Figure 57: States of stress in relation to the failure condition	
Figure 58: Map showing approximate location of wells with detailed geophysical logs	
Figure 59: Orientations of open fractures from FMI logs	
Figure 60: Fracture hydraulic aperture estimated from FMI logs	
Figure 61: Orientations of open fractures from FMI logs	
Figure 62: Fracture hydraulic aperture estimated from FMI logs	
Figure 63: Probability plot of fracture spacing	
Figure 64: Azimuth of the maximum horizontal compressive stress from ADI logs	
Figure 65: Example of irregular uphole stress rotation	
Figure 66: Fracture zone in FMI log	
Figure 67: The three normal stresses plotted against depth	
Figure 68: Depth below which dikes predominate	
Figure 69: Three-layer model	
Figure 70: Vertical stress plotted against depth	
Figure 71: Two-dimensional elastic model	
Figure 72: Region of interest	
Figure 73: Model boundary conditions	
Figure 74: Mesh detail left-hand side of model	104
Figure 75: Soil and foams material model	
Figure 76: Young's moduli	
Figure 77: Mohr-Coulomb failure criteria.	
Figure 78: Laramide thrust loading history	
Figure 79: Post Laramide thrust surface topographies	
Figure 80: Vertical displacement profiles at 40 km.	
Figure 81: Mid-Cretaceous layer extension	
Figure 82: Maximum principal stress orientation	
Figure 83: Maximum compressive stress profiles	
Figure 84: Maximum compressive stress profiles	
Figure 85: Strike and dip angle profiles - maximum.	
Figure 86: Strike and dip angle profiles - maximum 2	
Figure 87: Strike and dip angle profiles - minimum 1	
Figure 88: Strike and dip angle profiles - minimum 2	
Figure 89: Strike and dip angle profiles - minimum 3	
Figure 90: Strike and dip angle profiles - minimum 4	
	•

Figure 91: Distribution of wells in the Raton Mesa region	119
Figure 92: Cumulative production	120
Figure 93: Idealized production behavior	121
Figure 94: Arrangement of CBM wells operated by El Paso LLC	
Figure 95: Development of CBM program	124
Figure 96: Average monthly gas production	125
Figure 97: Summary of monthly gas and water production from Pod A wells	125
Figure 98: Summary of monthly gas and water production from Pod B wells	126
Figure 99: Summary of monthly gas and water production from Pod C wells	126
Figure 100: Summary of monthly gas and water production from Pod D wells	127
Figure 101: Summary of monthly gas and water production from Pod E wells	127
Figure 102: Example of gas and water production curves from Pod A	129
Figure 103: Gas and water production curves from a single well in Pod A	130
Figure 104: Example of a high gas production well from Pod D	130
Figure 105: An example of high gas, low water production well from Pod D	
Figure 106: Conceptual cross section of Vermejo Park anticline	
Figure 107: Average daily gas production	
Figure 108: Topographic and structural surface of the Trinidad Sandstone	136
Figure 109: Omnidirectional variograms of average daily gas production	140
Figure 110: Polar plots of variogram range of average daily gas production	141
Figure 111: Unconditional simulations of relative average daily gas production	143

1.0 INTRODUCTION

This study is primarily concerned with issues related to domestic natural gas development because unlike crude oil or refined petroleum products, natural gas cannot be easily imported from overseas. To import natural gas it must be liquefied, carried under pressure within cryogenic tankers and unloaded at facilities specifically designed to safely handle this product. Each of these transportation items is extremely expensive and will require significant lead-time to build. There are currently five such facilities in the United States but finding additional communities along the coast that would accept a new facility may be difficult.

Given the limited natural gas resources in Canada, along with their own energy demands, and the fact that Mexico is a net importer of natural gas from the U.S.A., natural gas must be an internally-sourced United States commodity. Small independent gas companies are the primary producers in the U.S.A. yet within their companies they do not have the technical expertise to engage in the type of research we can provide. Nevertheless, demand for natural gas is anticipated by the Energy Information Administration (EIA) to increase by 50% or 10 trillion cubic feet by 2020. It is also important to recognize that besides home heating, natural gas is primarily used to generate electricity. In a statement to the U.S. Chamber of Commerce's National Energy Summit in 2001, Energy Secretary Spencer Abraham cited figures from the EIA showing a 45% increase in demand for electrical power over the next 20 years, but without corresponding increases in domestic production. Without increasing domestic production, natural gas shortages and associated electrical power blackouts can be anticipated and, in fact, have already occurred. Therefore, natural gas has become vital to our national energy security.

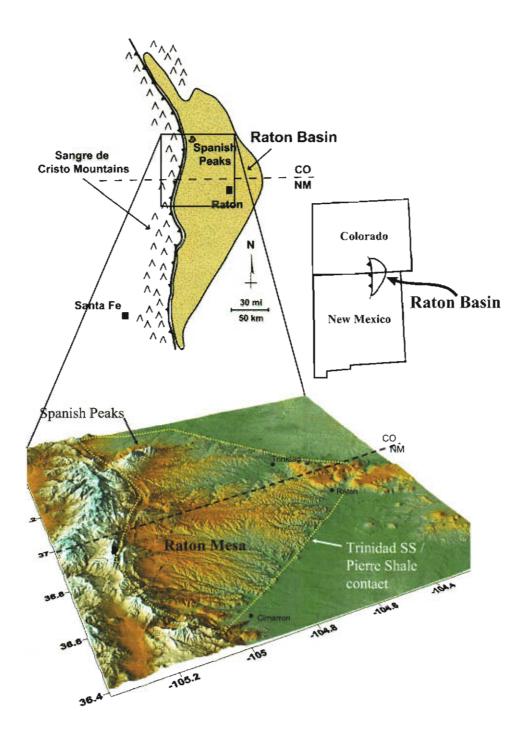
1.1 PURPOSE OF STUDY

The study site is the Raton Basin in northeastern New Mexico and southeastern Colorado. Since commercial production began in late 2000, the Raton Basin has become the second most active coalbed methane field in the U.S. and contains an estimated 18 trillion cubic feet of natural gas.

Much of the natural gas in the Raton Basin is disseminated within numerous thick, naturally fractured, rock (sandstone) layers that do not readily allow fluids, including natural gas, to flow through them. These sandstones are officially described as 'tight' signifying that they are not conducive to fluid movement. The only way these tight sandstones can actually produce natural gas is if the sandstones contain fractures (are naturally broken). These breaks or fractures allow fluid movement within the open areas between the broken sections of rock and create a natural plumbing system enabling fluids to move within the sandstones. Each of these sandstone layers can be a separate resource having its own distinct plumbing system.

The thick, naturally fractured, tight sandstones within the Raton Basin are not being developed because the system of stress-sensitive fractures and stress-controlled fluid flow is very poorly understood. The stress field and fracture orientations and distributions in the basin are complicated by the presence of numerous impermeable, igneous rock units. Stress systems (*in situ* and applied stresses) control both the formation of natural fractures and their response to pressure changes during production; thus understanding the stresses is very important in optimizing resource recovery from this or any other basin. The stress field in combination with

the natural fracture system also controls the directionality of fluid flow. An understanding of this directionality is fundamental for efficient well placement and resource development.


The final product of this work is a systematic approach for the development of 1) an exploration and extraction methodology applicable to many other basins, 2) a model of the Raton Basin, the parameters of which can be easily changed for application to other basins, 3) a thorough understanding of these variables permitting operators to efficiently develop the resource with fewer wells (cheaper) and minimal environmental impact (cleaner), 4) the exploration methodology and model can be designed such that the possible sequestration (i.e. underground storage) of produced liquids and gases (such as CO_2) can be addressed in the development stage of a basin.

1.2 LOCATION AND GEOLOGIC SETTING

The Raton Basin (Figure 1) is located along the Colorado-New Mexico state line. It is an elongate, asymmetric, Laramide-age sedimentary basin. The greater Raton Basin extends over approximately 4,000 mi². The coal section, which is within the Raton Mesa portion of the basin, covers an area of over 2100 square miles (Tyler et al., 1995). The basin is bordered on the west by the Sangre de Cristo Mountains, to the north by the Wet Mountains, to the northeast by the Apishapa Arch, to the east by the Las Animas Arch and to the southeast and south by the Sierra Grande Uplift. The basin was formed during the Laramide orogeny as tectonic activity uplifted the Sangre de Cristo Mountains and created numerous folds and reverse faults across the basin.

The western margin of the basin has numerous thrust faults and is highly deformed. In contrast the eastern limb gently dips, 1-2 degrees, toward the west. The basin is highly asymmetrical with its synclinal axis parallel and near to the Sangre de Cristo uplift. The Raton Mesa part of the basin is defined as the area that contains the stratigraphic units above the Trinidad Sandstone/Pierre Shale contact. The overlying units were deposited in the basin as the basin was subsiding. Deposition into the basin was followed by broad uplift of the entire Rocky Mountain area and subsequent erosion of stratigraphic units.

Tertiary volcanism was common throughout the basin followed by Rio Grande rift extension leading to the western side of the Sangre de Cristo Mountains being dissected by normal faults that down dropped the western portion of these Laramide age mountains into the Rio Grande Rift. Detailed discussion of the tectonic history and stratigraphy of this area are in sections 1.2.1 and 1.2.2.

Figure 1: Maps of the greater Raton Basin (defined structurally) and Raton Mesa (a geographic province within the basin); the latter is the area of coal-bed methane production.

1.2.1 Stratigraphy

Tertiary deposition within the basin was directly tied to ongoing orogenic activity. In Late Cretaceous time the Raton area was the southern extension of the Rocky Mountain Foreland Basin. Formations deposited along what was then the coast of the Western Interior Seaway include the Pierre Shale, Trinidad Sandstone and the Vermejo Formation (Figures 2 and 3). East directed thrusting continued and eventually isolated the Raton Basin from the main foreland basin as evidenced by conglomerates within the Raton Formation. Tectonic activity continued into Paleocene time with the associated deposition of the Poison Canyon Formation. Further activity continued into Eocene time with deposition of the Cuchara, Huerfano and Farasita Formations. It is only within Eocene time that the Sangre de Cristo Mountains became a source of sediment (Merin et al., 1988; Tyler et al., 1995).

Paleocene	Poison Canyon Fm	000
	Raton Fm	
	Vermejo Fm	
Cretaceous		
	Trinidad Ss	
	Pierre Sh	F
	Smokey Hill Marl	
	Fort Hayes Lms	
	Codell Ss Carlile Sh Greenhorn Lms Graneros Sh	
	Dakota Ss Purgatoire Fm	-

Figure 2: Partial geologic column of the Raton Basin area (modified after Dolly and Messier, 1977). Units highlighted in green are those of interest with respect to coal-bed methane production.

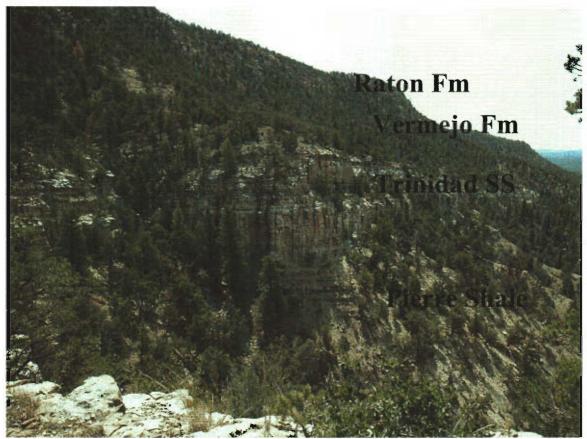


Figure 3: Outcrop exposures of the major coalbed methane producing intervals; Raton and Vermejo Formations along the NE flank of the Vermejo Park anticline.

The youngest deposits preserved within the Basin are preserved only within the Colorado portion of the Basin and consist of the Chuchara, Huerfano, and Farasita formation (Eocene-Oligocene?). Other units, now eroded away, overlaid these formations. This is evidenced by the Spanish Peaks which are an intrusive igneous complex that was buried at least a kilometer below the paleosurface (Johnson, 1968; Hemmerich, 2001) but are now well exposed as resistant mountains (Figure 1). Sills and dikes across the basin are inferred to have been emplaced at reconstructed depths of at least 5,000 ft. The cover removed from the New Mexico portion of the basin may have exceeded 8,000 ft (Hemmerich, 2001). Discordent overlying sediments of the Miocene age Devils Hole Formation contains abundant volcanic detritus much of which is correlative with erosion of these intrusive volcanic rocks. Rock units within the zone of coal-bed methane production interest include the Raton Formation, Vermejo Formation, and the Trinidad Sandstone (Figure 2).

Upper Cretaceous and Tertiary Rocks

Poison Canyon Formation

The Poison Canyon Formation overlies the Raton Formation and at the western edge of the basin it interfingers and truncates the Raton Formation (Pillmore, 1969). At certain locations in the northern and western portions of the basin the Poison Canyon is in unconformable contact with the underlying Pierre Shale (Figures 2 and 3; Dolly and Messier, 1977). This formation is

composed of lenticular coarse-grained arkosic sandstones and micaceous sandy mudstones and varies in thickness from 0 to 2500 ft (0 - 760 m) across the basin.

Raton Formation

The Raton Formation underlies the Poison Canyon Formation and overlies the Vermejo Formation (Figure 2). It varies in thickness from 0 - 2075 ft (0 - 630 m) across the basin (Dolly and Meissner, 1977). It is composed of a variety of sandstones, siltstones, mudstones, conglomerates, coals and carbonaceous shales associated with a fluvial depositional type of environment. Pillmore and Flores (1987) divide the formation into three lithofacies; Upper Coal Zone, Barren Series, and the Lower Coal Zone (Figure 4). Coal seams in the Raton Formation are thinner, more numerous, and less continuous than those of the underlying Vermejo Formation. Maximum seam thickness is 8 feet, but typical average thickness is only 1.5 feet. The coal-bearing zones of the Raton may contain up to 50 individual seams with a net thickness of more than 80 feet (24 m). Additional data on the coal beds is provided in Section 2.08 (Production).

AGE	FORMATION NAME	GENERAL DESCRIPTION		
ш	Poison Canyon Formation	Sandstone: Coarse to conglomeratic; beds 15-50 ft thick; interbeds of yellow-weathering, clayey sandstone. Thickens to west at expense of underlying Raton Formation		
PALEOCENE		Formation intertongues with Poison Canyon Formation to the west	S.	
PALE		Upper Coal Zone: Very fine grained sandstone, siltstone, and mudstone with carbonaceous shale and thick coal beds	J	
	Raton Formation	Barren Series: Mostly very fine grained sandstone with minor mudstone, siltstone, carbonaceous shale, and thin coal beds		
S		Lower Coal Zone: Same as upper coal zone; coal beds mostly thin and discontinuous; conglomeratic sandstone at base; locally absent		K-T Boundary
CRETACEOUS	Vermejo Formation	Sandstone: Fine- to medium-grained; also mudstone, carbonaceous shale, extensive, thick coal beds. Local sills		
	Trinidad Sandstone	Sandstone: Fine- to medium-grained; contains casts of Ophiomorpha		
UPPER	Pierre Shale	Shale: Silty in upper 300 ft; grades up to fine- grained sandstone; contains limestone concretions		

Figure 4: Generalized stratigraphic section of the rock units discussed within this report and located on the Raton Mesa (modified from Pillmore and Flores, 1987).

The Upper Coal Zone ranges in thickness from 590 to 1100 ft (180 - 335 m). Flood plains and swamps were the environments of deposition for this unit. Therefore it contains sequences of crevasse-splay sandstones, mudstones, siltstones and shales along with carbonaceous shales and coals. Lenticular coal beds range in thickness from 3 to 6 ft (1 - 2 m; Pillmore and Flores, 1987).

The Barren Series varies in thickness from 600 ft (180 m) in the western side of the basin to 180 ft (55 m) on the eastern side. A series of fluvial and flood plain environments were the environments of deposition. There are numerous lenticular fluvial channel sandstones as well as mudstones and siltstones associated with the flood plain. Thin coal seams and limited carbonaceous shales can also be found within the Barren Series.

The Lower Coal Zone was deposited on an alluvial plain containing numerous fluvial channels, crevasse splays, and flood plain deposits. The thickness of this zone ranges from 300 ft (90 m) in the western portions of the basin to 100 ft (30 m) in the eastern sections. A basal conglomeratic sandstone is observed in parts of the basin ranging in thickness from 0 to 50 ft (0 to 15 m). The K-T boundary, evidenced by an iridium layer, is found near the contact of the Lower Coal Zone with the overlying Barren series (Pillmore and Flores, 1987).

Vermejo Formation

The Vermejo Formation ranges in thickness from 380 ft (115 m) to 0 ft, the thickest sections are along the western side of the basin. It was deposited landward of the Trinidad Sandstone in fluvial, deltaic and back-barrier environments. As expected from deposition within these paleoenvironments the Vermejo Formation is composed of alternating beds of sandstone, siltstone, shale, carbonaceous shale, and coal. The Vermejo Formation was also found to intertongue with the Trinidad sandstone in the area between Cimarron and Dawson along the southwestern edge of the Raton Mesa. This suggests some relative change in shoreline transgression and possible sea level change during deposition.

Individual coal beds within the Vermejo Formation can be as much as 14 feet thick, however typical coal bed thickness is 2.5 feet (1 m). Individual coal beds within the Vermejo Formation can be as thick as 14 ft (4 m). The Vermejo Formation can contain as many as 25 coal beds with a net thickness exceeding 40 feet (12 m). Additional data on Vermejo Formation coal beds is provided in Section 2.08 (Production).

Trinidad Sandstone

The Trinidad Sandstone is a laterally extensive tabular fine-grained sandstone that was deposited as the leading eastward edge of the prograding coastline of the Cretaceous Interior Seaway (Pillmore and Mayberry, 1976; Billingsley, 1977). It was deposited in barrier and delta type environments as evidenced by the numerous trace fossils, mainly *Ophiomorpha* (Figure 5) with some limited *Diplocraterion*.

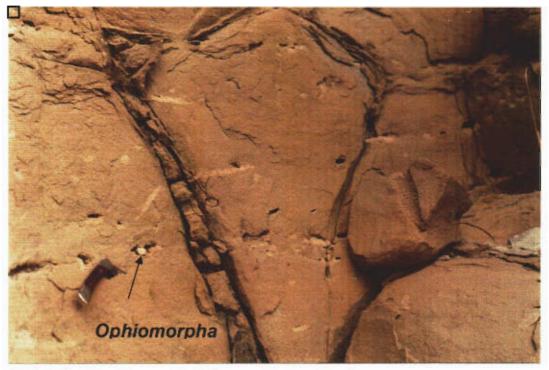


Figure 5: Trinidad Sandstone with Ophiomorpha trace fossils.

Pierre Shale

The Pierre Shale is dark shale that coarsens and becomes siltier at the gradational contact with the overlying Trinidad Sandstone. The shale is 1300 - 2900 ft (550 - 580 m) thick and was deposited over a wide area within the Cretaceous Interior Seaway (Pillmore and Mayberry, 1976; Billingsley, 1977).

Underlying Rock Units

Below the previously described units, which are the primary units of interest for this report, is a thick Mesozoic and Paleozoic section. The entire stratigraphic column is shown in Figure 6. Some of the lower formations may be of interest concerning hydrocarbon production. For example the Dakota Sandstone is a proven tight gas reservoir in the San Juan Basin to the west of the Raton Basin.

	RECENT	ALLUVIUM, DUNES,		0 - 200'
CENOZOIC	PLEISTOCENE	LANDSLIDES, SOIL ZONES OGALLALA FM	00.000	200 - 500'
	MIOCENE	DEVILS HOLE FM VOLCANIC INTRUSIONS, PLUGS, DIKES, SILLS INTRUDES ENTIRE SECTION	00000	0 - 1500'
	OLIGOCENE (?)	FARASITA FM	0000	0 - 1200'
	PALEOCENE	HUERFANO FM		0 - 2000'
		CUCHARA FM		0 - 5000'
		POISON CANYON FM		0 - 2500'
		RATON FM		0 - 2075
		VERMEJO FM	2000	0 - 360'
		TRINIDAD SS		0 - 255
MESOZOIC	CRETACEOUS	PIERRE SH		1300 - 2900
lõ,		SMOKY HILL MARL	and the second	900'
Ш	∞ ⊡]	. FT HAYES LS		0 - 55
Σ		CARLILE SH GREENHORN LS GRANEROS SH		165 -225' 20 - 70 175 - 400'
1.1		DAKOTA SS PURGATOIRE PM	ಕ್ಷಕ್ಷ	8:18
	JURASSIC	MORRISON ENTRADA WANAKAH	XXXXXXX	150 480
. 5	TRIASSIC	DOCKUM GROUP		0 - 1200'
		BERNAL'EM. GLORIETA 35 YESO PM		0 - 125 10 - 20 0 - 200 200 - 400
PALEOZOIC	PERMIAN	SANGRE DE CRISTO FM		700 - 5300'
	PENNSYLVANIAN	MAGDALENA GROUP		4000 - 5000
	MISSISSIPPIAN	TEREPRO FM		40.50
	DEVONIAN	ESPIRITU SANTO FM		25
		MARC GNEISS METAQUARTZITE GROUP		7000" ? 5000' ?
	PRE-CAMBRIAN			

Figure 6: Generalized stratigraphic column of the northern Raton Basin (Dolly and Meissner, 1977; Johnson and Finn, 2001).

1.2.2 Tectonic Setting

The greater Raton Basin (Figure 7), located along the Colorado-New Mexico state line, it is an elongate, asymmetric, Laramide-age sedimentary basin, with an aerial extent of approximately 4,000 mi². The coal section, which is within the Raton Mesa portion of the basin, covers an area of over 2100 square miles (Tyler et al., 1995). The basin is bordered on the west by the Sangre de Cristo Mountains, to the north by the Wet Mountains, to the northeast by the Apishapa Arch, to the east by the Las Animas Arch and to the southeast and south by the Sierra Grande Uplift (Figure 7; Baltz, 1965). An intrabasinal arch known as the Cimarron Arch separates the northern Raton Basin from the shallower Las Vegas sub basin.

The axis of the present-day Raton Basin, the La Veta Syncline, trends roughly north-south and parallel to the Sangre de Cristo mountain range. The syncline bifurcates near the southern end of the Wet Mountains with the eastern axis named the Delcarbon Syncline (Close, 1988).

The depositional character (rock type and isopach thickness lines) of Paleozoic rock units in the basin indicates that an ancestral basin was formed in conjunction with the formation of the Ancestral Rockies during the Early Pennsylvanian. Baltz (1965) notes that this orogeny, which culminated in Late Pennsylvanian and Early Permian, was the most significant tectonic event, in the basin, from the Precambrian to the Late Cretaceous. While this paleobasin did not have the same orientation as the present-day Raton Basin (Read and Wood, 1947; Brill, 1952; Baltz, 1965: Woodward, 1984) this orogenic event did create the structural fabric that influenced the formation of geologic structures and subsequent sedimentation during the Laramide orogeny.

In Early Cretaceous time the Raton Basin was part of the regionally extensive Rocky Mountain geosyncline and accumulated over 3,500 ft (1060 m) of sediment primarily related to the Cretaceous Interior Seaway. During the initial phase of uplift in the Late Cretaceous the San Luis uplift was rising and providing the sediment source for the Trinidad Sandstone and Vermejo Formations (Baltz, 1965).

The major tectonic features of the present day Raton Basin were formed during the Laramide orogeny. The Laramide orogeny occurred over the time interval from Late Cretaceous to Early Tertiary (70 - 35 mya). The typical style of Laramide deformation includes basement-involved thrusts and sediment-filled forelands Dickenson et al., 1988). These Laramide-style deformation structures and syntectonic sedimentation are recorded in the Sangre de Cristo Mountains, and Culebra Range (a section of the Sangre de Cristo Mountains) and the Raton Basin (Figure 8). The eastern margins of the Sangre de Cristo Mountains have numerous high-angle reverse thrust faults that transposed Precambrian rocks over the Paleozoic section. These thrusts were primarily directed from the west toward the east. Overturned beds of Dakota Sandstone at the western edge of the Raton Basin in Vermejo Park Ranch suggest these thrusts cut the Cretaceous section and loaded the western margins of the basin (Figure 9). Subsequent erosion has removed traces of the overlying fault in this area. Numerous down dropped blocks break the western side of the Sangre de Cristo Mountains. These form the eastern edge of the Rio Grande Rift Valley. Underlying the fill of the San Luis Valley are the remnants of the Sangre de Cristo Mountains, as they existed prior to rifting approximately 27 mya. The deeper portions of the San Luis Valley have approximately 21,000 ft (6400 m) of Tertiary sediments overlying the remaining and buried Cretaceous, Paleozoic and Precambrian rock units (Brister and Gries, 1994; Kluth and Schaftenaar, 1994).

Igneous rocks intruded the Raton Basin complex during the mid- to late Tertiary. These intrusives are in the forms of stocks, laccoliths, sills and dikes (Figure 10). The densest area of intrusive activity centers on the Spanish Peaks. However, numerous dikes and sills are found throughout the basin (Figure 10) (Johnson, 1961; Johnson 1968).

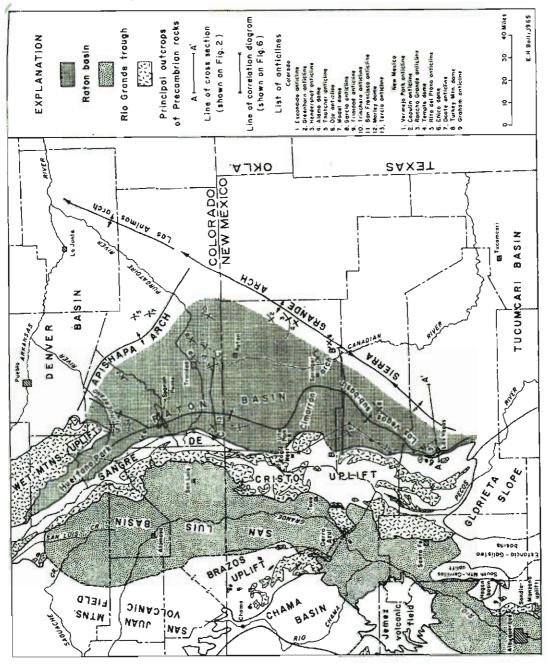


Figure 7: Raton Basin and major structures in southeastern Colorado and northeastern New Mexico (Baltz, 1965).

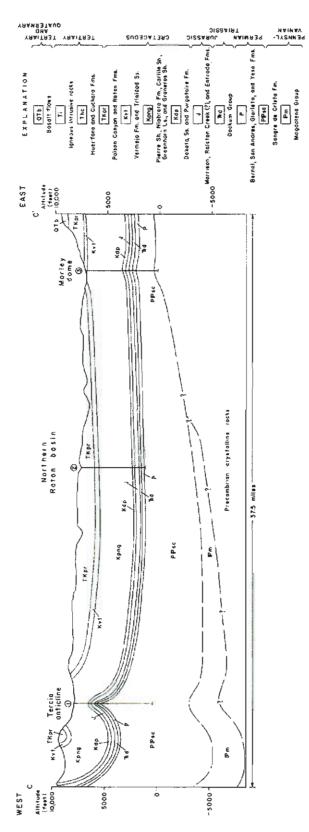
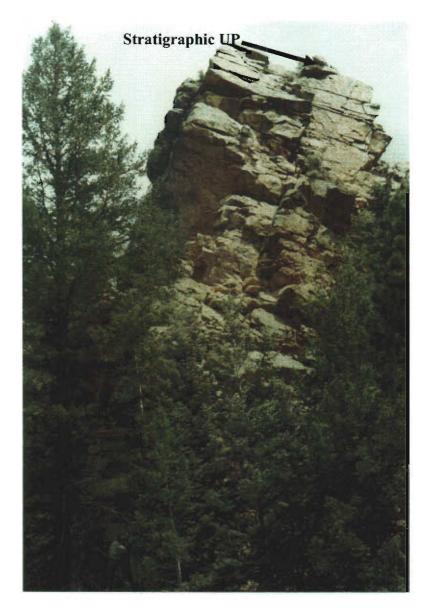



Figure 8: Diagrammatic cross section through the Raton Basin near and parallel to the New Mexico - Colorado state line.

Figure 9: Overturned beds of Cretaceous age Dakota Sandstone are evidence for an overlying thrust fault at the western margin of the Raton Basin on the Vermejo Park Ranch. Note people in lower left edge of photograph for scale.

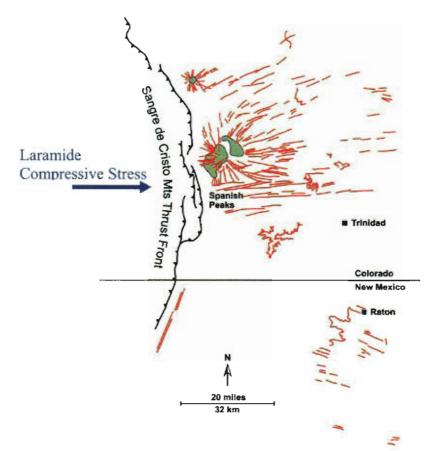
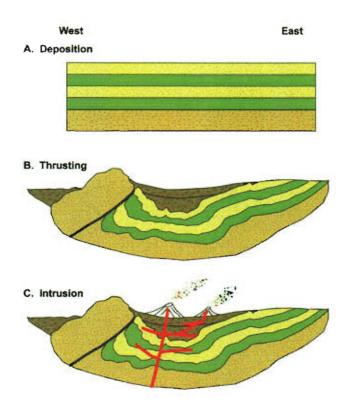



Figure 10: Map of larger scale intrusions within the Raton Basin. Due to the map scale numerous small dikes and sills are not shown. Volcanic intrusions are paleostress indicators.

A geologic sequence of events (deposition, coupled tectonism with deposition, and volcanic intrusion) from the Late Cretaceous to the present-day has combined to make the Raton basin a complex system. Figure 11 illustrates, in a simplified manner, the progressive sequence seen in the basin for the units above the Dakota Sandstone.

The igneous intrusions, late in the evolution of the basin, indicate that stresses within the basin were in a state of flux. Specifically, the vertical stress was either the maximum or intermediate stress during formation of the dikes, but was the minimum stress during formation of the sills (Figure 12).

Figure 11: Simplified tectonic and depositional sequence of the Raton Basin. A) Initial deposition of sediments. B) Uplift and eastward thrusting of the Sangre de Cristo Mountains forms the basin. Syntectonic deposition also occurred within the basin at this time. C) Intrusion of magma into this geologic system formed laccoliths, stocks, dikes, and sills.

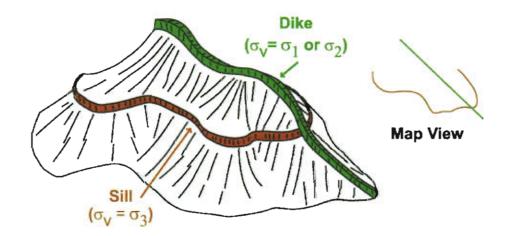


Figure 12: Emplacement conditions/requirements of a sill compared to a dike show that stresses were variable and changing across the basin during the period of igneous intrusion.

1.3 BACKGROUND

Fracture terminology

For simplicity, breaks in rock will be described as either extension fractures or shear fractures within this report, consistent with the terminology used within the petroleum industry. Extension fractures (also termed joints, or tensile fractures or dilation fractures or Mode I fractures: Pollard and Aydin, 1988), have displacements perpendicular to the fracture surfaces. Shear fractures have some displacement parallel to the fracture surface (also termed Mode II or Mode III fractures depending on displacement relative to the fracture front: Pollard and Aydin, 1988). Both extension and shear fractures can be formed in laboratory compression tests with specific orientations with respect to the applied stress. Extension fractures form perpendicular to the least compressive stress (σ_3), parallel to maximum compressive stress (σ_1) and bisect the acute angle between the conjugate shear fractures (Peng and Johnson, 1972; Long et al., 1997; Figure 13).

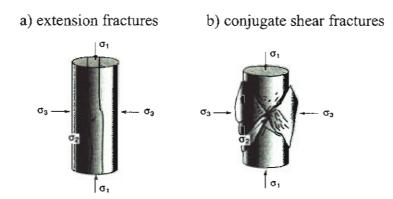


Figure 13: Extension and conjugate shear fractures as observed and created in laboratory compression tests (σ_1 – maximum principal stress; σ_2 – intermediate principal stress; σ_3 – minimum principal stress) (modified from Weijermars, 1997).

Fractures, fracture networks and faults can influence permeability and therefore fluid flow within an aquifer or petroleum reservoir (Lorenz and Finley, 1989; Lorenz and Finley, 1991; Teufel and Farrell, 1992). Permeability anisotropy has been observed in reservoirs with low matrix permeability and a well developed, open fracture system (Elkins and Skov, 1960; Lorenz and Finley, 1989; Teufel and Farrell, 1992), with the highest permeability parallel to the fractures. Significant interaction between the fracture surface and the matrix allows better drainage of the rock matrix. This matrix/fracture interaction could allow for a substantial increase in recoverable hydrocarbon reserves. This is also true for cleats in coal which are in many cases extension fractures.

In contrast, mineralized fractures and deformation bands (small-displacement faults, characterized by cataclasis and/or pore reduction through compaction) are typically characterized by significant permeability reduction (Nelson, 1985; Antonellini and Aydin, 1994; Antonellini et al., 1994). Where fractures are mineralized or the rock is cut by deformation bands, the rock matrix is more permeable than the bands, so the rock is most permeable parallel to, and between, fractures and deformation bands. Therefore, within a given rock volume containing mineralized

fractures and/or deformation bands there will be an overall permeability decrease and possible reservoir compartmentalization.

Partially mineralized fractures may still have some permeability. However, there could be a significant reduction in the interaction between the remaining open fracture fluid pathway and the rock matrix (Nelson, 1985). Either mineralized or partially mineralized fractures could have the effect of decreasing the total amount of recoverable reserves.

Reasonable predictions of permeability anisotropy require an understanding of controls on the distribution and orientation of such features. As will be discussed in this report and as previous work shows (Cooper et al., 2001; Lorenz and Cooper, 2001; Lorenz and Cooper, 2002) these features can have predictable orientations with regard to large-scale structures such as the Sangre de Cristo thrust front and local structures such as anticlines.

1.4 TECHNICAL PROBLEM AND APPROACH

1.4.1 The Technical Problems with Natural Gas Production

Unlike crude oil or refined petroleum products, natural gas cannot be easily imported from overseas. To import natural gas it must be liquefied, carried under pressure within cryogenic tankers and unloaded at facilities specifically designed to safely handle this product. Each of these transportation items is extremely expensive and will require significant lead-time to build. Finding additional communities along the coast that would accept such a facility may also be difficult.

Given the limited natural gas resources in Canada, along with their own energy demands, and the fact that Mexico is a net importer of natural gas from the U.S.A., natural gas must be an internally sourced United States commodity. Small independent gas companies are the primary producers in the U.S.A. yet within their companies they do not have the technical expertise to engage in extensive research. Nevertheless, demand for natural gas is anticipated by the Energy Information Administration (EIA) to increase by 50% or 10 trillion cubic feet by 2020. It is important to recognize that besides home heating, natural gas is primarily used to generate electricity. In a statement to the U.S. Chamber of Commerce's National Energy Summit, Energy Secretary Spencer Abraham cited figures from the EIA showing a 45% increase in demand for electrical power over the next 20 years, but without corresponding increases in domestic production. Without increasing domestic production, natural gas shortages and associated electrical power blackouts can be anticipated and, in fact, have already occurred. Therefore, natural gas has become vital to our national energy security.

Since commercial production began in late 2000, the Raton Basin has become the second most active coalbed methane field in the U.S. and contains an estimated 18 trillion cubic feet of natural gas. Much of the natural gas in the Raton Basin is disseminated within numerous thick, naturally fractured, rock (sandstone) layers that do not readily allow fluids, including natural gas, to flow through them. These sandstones are officially described as 'tight' signifying that they are not conducive to fluid movement. The only way these tight sandstones can actually produce

natural gas is if the sandstones contain fractures (are naturally broken). These breaks or fractures allow fluid movement within the open areas between the broken sections of rock and create a natural plumbing system enabling fluids to move within the sandstones. Each of these sandstone layers can be a separate resource having its own distinct plumbing system.

The thick, naturally fractured, tight sandstones within the Raton Basin are not being developed because the system of stress-sensitive fractures and stress-controlled fluid flow is very poorly understood. The stress field and fracture orientations and distributions in the basin are complicated by the presence of numerous impermeable, volcanic rock units. Stress systems (*in situ* and applied stresses) control both the formation of natural fractures and their response to pressure changes during production; thus understanding the stresses is very important in optimizing resource recovery from this or any other basin. The stress field in combination with the natural fracture system also controls the directionality of fluid flow. An understanding of this directionality is fundamental for efficient well-placement and resource development.

Current pre-drill fracture detection technologies emphasize the use of expensive 3D seismic surveys, and analytical techniques that use seismic attribute analysis. The proposed work seeks to develop a system that, in a three-stage process, will allow gas explorationists to predict fractures 'pre-drill' in poorly explored basins using only a very few boreholes combined with modern fracture analysis logs and 2D seismic surveys that are less expensive (by a factor of 10) and less damaging to the environment. This project provides an alternate method of fracture prediction that is amenable to the limited budgets of independent oil and gas operators.

The large whole-core data set made available by industry underpins this study. It will be integrated with geophysical logs and field data (note: core refers to long cylindrical rock samples retrieved from boreholes).

1.4.2 Technical Approach

The technical approach can be subdivided according to five project objectives.

- 1. Develop a correlation between fractures and rock type. Thorough rock and fracture descriptions are used to quantify field sites and core along with fracture analysis using state of the art geophysical tools (e.g. Formation MicroScanner and Dipole Sonic Imaging).
- 2. Evaluate rock types in the subsurface via conventional geophysical data. Emphasis has been placed on determining the rock types most likely to contain fractures because these will be the rock units most likely to contain producible natural gas reserves.
- 3. Geomechanical and numerical modeling of the current and past stress history of the basin was accomplished through reconstruction of the geologic stress history and available in-situ stress data. The Sandia-developed large deformation, nonlinear finite element code JAS3D (Blanford et al., 2001) will be used for the geomechanical modeling. This code has been successfully used for various oil & gas applications, including, for example, regional-scale modeling of stresses in the area of the Courthouse Branch point of the Moab Fault, Utah. Models of this type require a constitutive model for each of the rock layers used with an appropriate set of material parameters for those layers. This modeling will provide control on the regional orientation and distribution of fractures (i.e. the reservoir plumbing system) and whether the plumbing system is likely to be damaged during production.
- 4. Integrate 1, 2 and 3 above to produce a conceptual model of the orientation of the various

fracture systems and the number of fractures within the basin and to predict where undrilled fracture trends are likely to be present.

5. Pre-drill fracture prediction. The success of new wells in intercepting predicted fracture trends would serve as a basis for extrapolating this work to other basins.

1.4.3 Why this Approach is Appropriate

A significant volume of the vast natural-gas resource base in the United States is currently uneconomic to produce, even at current gas prices in excess of \$5 per million cubic feet. Current exploration and development in the Raton Basin is focused exclusively on coalbed methane. The thick sections of gas-saturated sandstones that are also present in the basin are not being developed because the system of fracture-controlled permeability is so poorly understood. In order to produce this much-needed gas resource in an effective and prudent manner with minimal environmental impact, a comprehensive grasp of the total in-situ gas system is required, and can best be realized through an assisted, cooperative, and integrated effort that incorporates scientific and technical expertise not available even to sizeable independent producers such as El Paso Production or private land holders such as Vermejo Park Ranch.

1.4.4 Assessment of Technical Risks

The Raton basin, like other Rocky Mountain basins, is a complex geological system. An understanding of the components of the system will never be complete in a mathematical sense, because geological databases are always incomplete and limited relative to the size of a geological system. However, a solid understanding of the important components and interactions of the Raton system is within the grasp of this project because of the multi-faceted, complementary approaches used during implementation of the project. The main risk in any similar endeavor is that industry partners might suffer a reversal where they could no longer be able to contribute data and corporate knowledge.

2.0 STUDIES APPLIED TO METHODOLOGY

2.1 OUTCROP FRACTURE DATA

2.1.1 Introduction

Study of fractures in sandstones and limestones and cleats in coals within the Raton Basin of Colorado and New Mexico indicates a NW-SE to NE-SW primary fracture orientation (Figure 14). However, closer inspection of the data shows that there is significant variability and complexity within these fracture and cleat patterns. These observations will be used as focal points for discussion in the following sections.

2.1.2 Technical Approach

The questions of fracture origins, orientations, distributions, intensities, and effects on reservoirs within the Raton Basin were addressed through a combination of outcrop and subsurface studies. This section addresses the outcrop study. Outcrops of Dakota Sandstone, Niobrara Limestone, Trinidad Sandstone, Vermejo Formation, Raton Formation, Poison Canyon Formation and certain igneous sills and dikes across the Raton Basin were located and assessed for their contribution to fracture characterization and interpretations of fracture origin. While fracture characteristics were recorded from all these lithologies the Trinidad Sandstone was the most cited single unit. This is primarily because it has the most consistent lithologic characteristics. It is laterally continuous, tabular, and composed of the same material across the basin. The other coal bearing units of production interest (Vermejo, and Raton Formations) are composed of laterally discontinuous fluvial sandstones and were the second most recorded formations (Figure 15).

The outcrops studied were on private and public lands. A number of sites were on the Vermejo Park Ranch. The Ranch has had little concentrated research with regard to fracture interpretation done prior to this study. In other parts of the basin numerous outcrops that may have contributed to the study were inaccessible due to location on private lands (the majority of the basin is privately owned). Other outcrops were inaccessible due to steep topography or cover (which is common on the higher elevations of the basin). Fracture characteristics such as orientation, spacing, length, mineralization, surface ornamentation, and geometric relationships to local structure were noted, though not all criteria were displayed at each outcrop. These data were amassed in field notes and distilled into the rose diagrams and descriptions presented in this section. Raw data and location information for each site are available in Appendix D. In addition to the subsurface and outcrop studies, a literature search was made in order to provide the background for a synthesis of the fractures within the context of the local and regional structures and tectonics. Parts of this synthesis are detailed in previous and following sections.

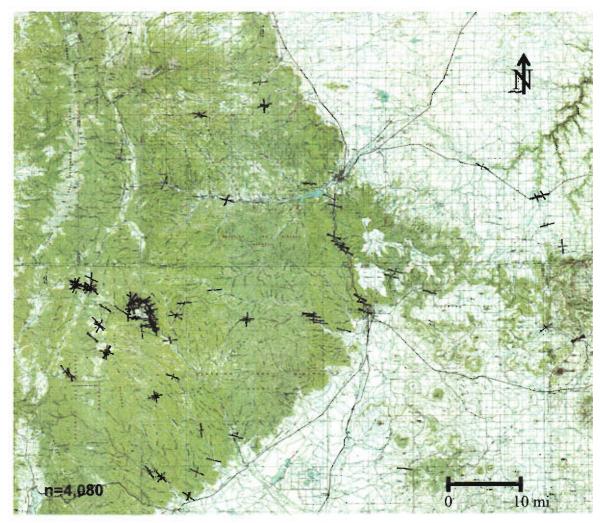


Figure 14: Map of fracture orientations across the Raton Basin (n=4,080).

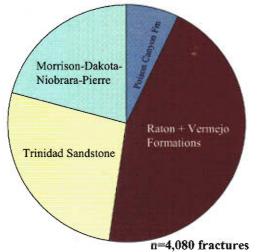


Figure 15: Majority of the outcrop fracture data are from the Trinidad Sandstone and the Vermejo-Raton interval.

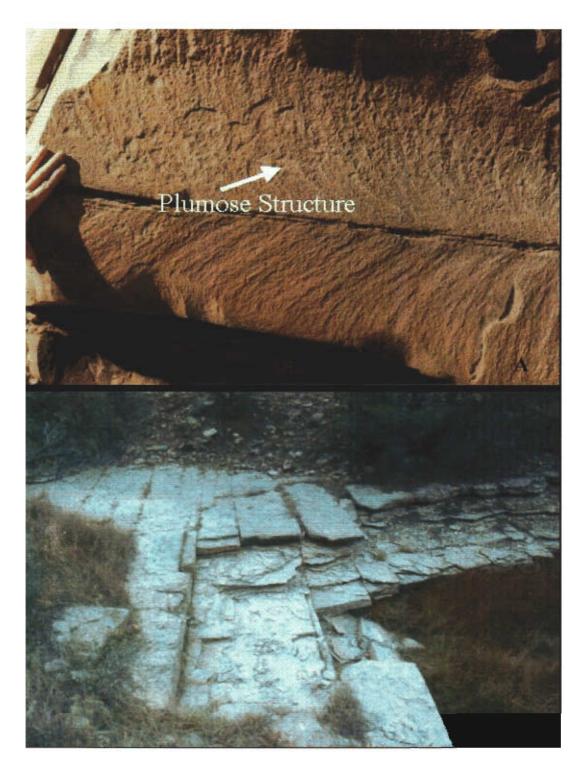


Figure 16: A. Formation of fractures in extension is evidenced by plumose structure. This example is from the Vermejo formation. B. Many of these fractures are parallel in strike.

2.1.3 Previous Work

Numerous workers have described the stratigraphy, igneous rock units and emplacement, structure, fractures and coal beds and production potential of the Raton Basin, these include but are not limited to; Baltz, 1965; Billingsley, 1977; Brister and Gries, 1994, Brill, 1954; Carter, 1956; Close, 1988; Close and Dutcher, 1990; Dolly and Meissner, 1977; Flores, 1987; Flores and Tur, 1982; Flores and Pillmore; 1987; Flores and Bader, 1999; Harbour and Dixon, 1959; Hemborg, 1998; Hemmerich, 2001; Hoffman and Brister, 2003; Johnson, 1961; Johnson, 1968; Johnson and Wood, 1956; Johnson and Finn, 2001; Jurich and Adams, 1984; Knopf, 1936; Lee, 1917; Merry and Larsen, 1982; Merrin et al., 1988, Muller, 1986; Ode, 1957; Penn and Lindsey, 1996; Pillmore, 1969, 1976, 1991; Pillmore and Flores, 1984, 1987; Pillmore and Hatch, 1976; Pillmore and Mayberry, 1976; Read and Wood, 1947; Rose et al., 1986; Scott et al., 1990; Speer, 1976; Stevens et al., 1975; Strum, 1985; Tremain, 1980; Wood et al., 1957; Woodward, 1984; Woodward 1987; Woodward, 1995; (numerous maps have been draw of areas within the basin, please refer to the bibliography for a listing). All of these workers helped broaden the geologic understanding of the basin and the scope of this project. Nevertheless one particular worker stands out. Charles Pillmore spent the majority of his career working within the Raton Basin and is acknowledged here for his detailed and dedicated research.

Given the volume of work described above it is interesting to note that very little work has been done to characterize natural fractures within the basin. Close (1988) has provided the most detailed study of coal cleat orientation and an initial review of fractures within the sandstone units. To summarize some of Close's observations; coal face cleats are everywhere near perpendicular to the Sangre de Cristo thrust front, fractures in sandstones parallel cleat orientations, and igneous dikes intruded pre-existing fractures. Close (1988), also notes that a detailed field check of fracture orientations should be carried out when looking at new production sites.

Our study concentrated on fractures in sandstones. Fractures were found, in many cases, to parallel the strike of face cleats in coals. Extensions fractures were also found to be nearly perpendicular to the thrust front. Conjugate shear fractures (not previously described in the Raton Basin) were also observed. These shear fractures are oriented such that the stresses required to form them are consistent with tectonic loading from the Sangre de Cristo Mountains. Local structures were found have significant control on fracture orientations. Fracture orientations around local structures were found to be more complex than the hypothesis that all face cleats and fractures are perpendicular to the thrust front. Also present-day in situ stresses from well logs indicate a 90° rotation in the maximum horizontal compressive stress from the Laramide E-W compression associated with the Sangre de Cristo thrust to N-S. This rotation in stresses was previously inferred by changes in igneous dike emplacement over time (Muller, 1986; Close and Dutcher, 1990). Close and Dutcher further recognize that the stress rotation may be related to Rio Grande Rift extension along the western side of the present day Sangre de Cristo Mountains. The orientation of present day stresses relative to the natural fracture pattern has great implications with regard to production. Specifically, induced hydraulic fractures (used to enhance production) will be oriented perpendicular to and cut across the regional natural fracture set. The N-S maximum horizontal compressive stress state may close some of the natural fractures if the normal stress across the fracture plane is too large.

2.1.4 Fracture Data Relative to Specific Rock Units

Dakota Sandstone - eastern Raton Basin

Fractures at two locations within the Dakota sandstone on the eastern margin of the basin have a conjugate geometry, with a NW-SE bisector to the acute angle (Figures 17 and 18). Field data provides limited evidence of shearing along these fractures. This interpretation is supported by fracture surface information such as the presence of Riedel shear steps/surfaces and a lack of plumose structure (Figure 19). Some of the shear steps and surfaces in this area may be altered due to numerous root casts in a number of the sandstones (Figure 20). These data combined with data from the Niobrara Limestone provide a kinematic analysis of fracture formation in this part of the basin and is discussed in the following Niobrara Limestone section of this report.

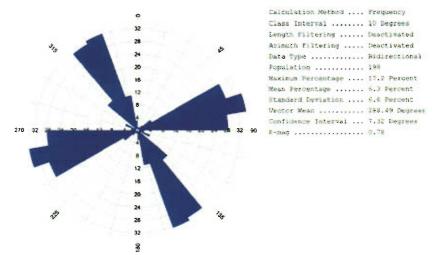
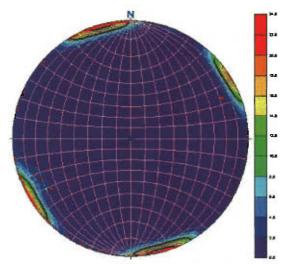
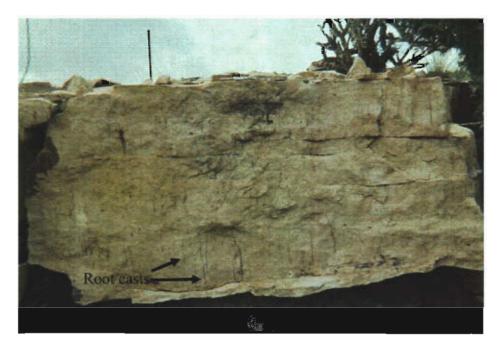
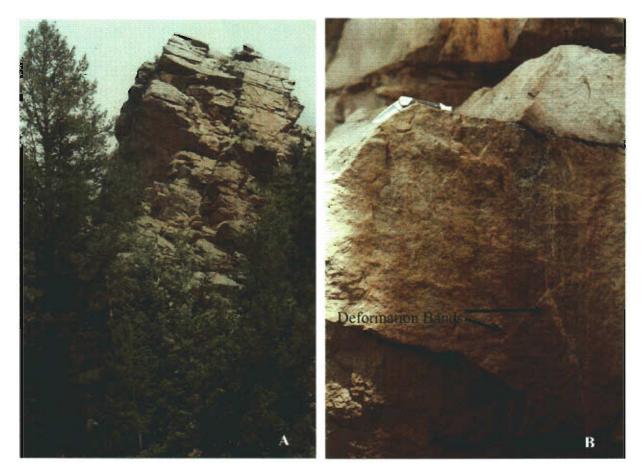
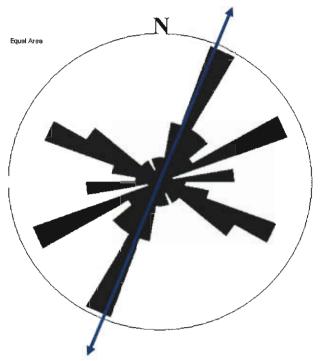



Figure 17: Rose diagram of fractures in the Dakota Sandstone near mileposts 374 and 375 on highway 160; n = 198.

Figure 18: Pole to plane stereonet of fracture orientations within the Dakota Sandstone near mile markers 374 and 375 on Hwy 160; n=198. These data show the majority of fractures have near vertical dips and conjugate strikes.

Figure 19: Riedel shear steps within the Dakota Sandstone near mile marker 374 on Hwy 160. The surface feature on this fracture plane indicates incipient right lateral movement.

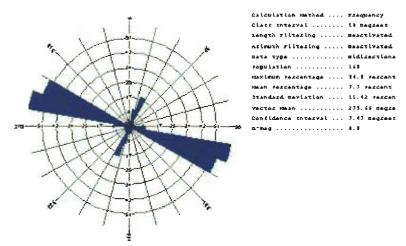




Figure 20: Vertical root traces shown in this photograph may inhibit/alter the formation of shear steps as seen in Figure 19.

Dakota Sandstone - western Raton Basin

Exposures of the Dakota Sandstone along the western margin of basin are visible along what is locally called "The Wall". The outcrops contain near vertical to overturned beds of Dakota Sandstone (Figure 21). Deformation bands were observed within some of these sandstones. Deformation bands typically form in high porosity sandstones suggesting they formed early before the Dakota Sandstone was altered to its current low-porosity, well-cemented state. Bed-parallel stylolite surfaces and well developed bed-normal shear planes are also common at this location. The Dakota Sandstone at these locations is highly fractured with variable fracture orientations (Figure 22). However, once the bedding is rotated to horizontal many of the fractures strike parallel or perpendicular to the strike of the folded "Wall". This suggests that the fractures are genetically related to the formation of the fold along the western margin of the basin.

Figure 21: Photograph A shows an overturned portion Dakota Sandstone "Wall" along the western margin of the Raton Basin. Photograph B highlights deformation bands within the Dakota sandstone at this location. Deformation bands were also observed within the Raton Formation along the "Little Wall".


Figure 22: Rose diagram of fracture strikes from the Dakota Sandstone Wall (Figure 21) on the Vermejo Park Ranch (n=81). Fracture orientations are rotated back to horizontal. Strike of the folded "Wall" of Dakota Sandstone is shown as the blue arrow.

Niobrara Limestone - eastern Raton Basin

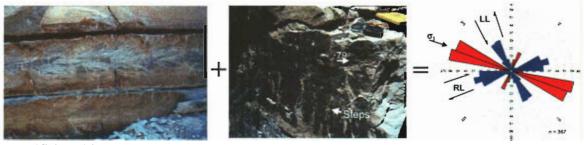

Fractures in the Fort Hayes Member of the Niobrara Limestone, located within ten miles of the previously described Dakota Sandstone outcrops on the eastern margins of the Raton Basin (Figures 17, 18, 19 and 20), have a more uniform extension-fracture pattern. Plumose structures are observed on the surfaces of the Niobrara fractures indicating these are extension fractures (Figure 23). Fractures were found to curve near intersections with normal faults, indicating stress reorientations near the faults. The main lobe of the Niobrara Limestone rose diagram (Figure 24) bisects the acute angle of the two nearby Dakota Sandstone fracture sets. This indicates these two seemingly dissimilar fracture patterns (extension fractures in the Niobrara and conjugate shear fractures in the Dakota) could most easily be interpreted as dynamically compatible fracture sets formed in a single stress regime, where was ESE and equal to $_1$ (Figure 25). Since the orientation of is nearly perpendicular to the Sangre de Cristo thrust front, this suggests horizontal tectonic loading by the thrust over 70 miles to the west. A geomechanical analysis of this hypothesis is provided in Section 2.2.

Figure 23: Plume structure on fracture surface within the Fort Hayes member of the Niobrara Limestone along Hwy 160 between mile markers 365 and 366.

Figure 24: Rose diagram of fractures within the Niobrara Limestone between milepost 365 and 366 on highway 160 (n=168). Note that the major fracture set strikes NW-SE and actually would bisect the acute angle of the fractures observed within the Dakota Sandstone (Figure 25).

Niobrara Limestone

Dakota Sandstone

Figure 25: Diagram illustrating that these two sets of fractures are dynamically compatible. Comparison of fracture orientations and type within the Fort Hayes Member of the Niobrara Limestone (red) and Dakota Sandstone (blue), Highway 160 (n = 367) fits a kinematic interpretation wherein the maximum compressive stress was in the horizontal plane.

Fractures within the Niobrara Limestone south of Springer, NM have a conjugate geometry with one set oriented NW-SE and the other NE-SW (Figure 26). Interestingly, normal faults within this unit have a slightly dispersed N-S orientation that bisects the obtuse angle of the fracture sets (compare Figures 26 and 27). One hypothesis under consideration is that the fractures and faults formed under the same stress regime, where σ_H was E-W and equal to σ_1 . Under these conditions the faults formed as reverse faults striking normal to σ_1 . During the onset of Rio Grande Rift extension these faults would have been reactived as normal faults. Figure 28 highlights the relationship wherein the extension fracture set (Figure 24) and the acute bisector of the conjugate facture set (Figure 26) strike roughly perpendicular to the Sangre de Cristo thrust front.

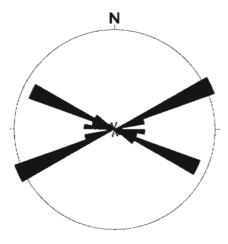


Figure 26: Rose diagram of fractures within the Niobrara Limestone south of Springer, NM. Ring equals 30%, n = 44.

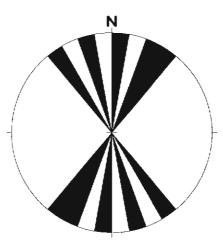


Figure 27: Rose diagram of faults within the Niobrara Limestone south of Springer, NM. Ring equals 20%, n = 5. Note the partial radial pattern and that this pattern bisects the obtuse angle of the fractures shown in Figure 26.

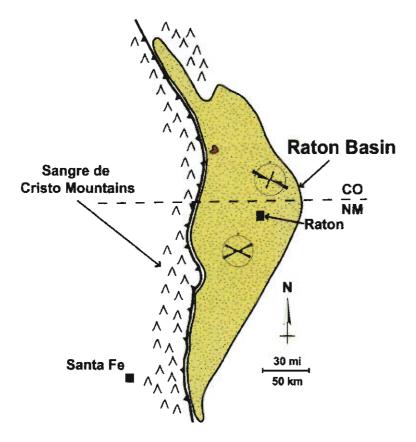


Figure 28: Rose diagrams of fracture orientations within the Niobrara Limestone.

Trinidad Sandstone

Fractures within the Trinidad sandstone along the eastern margins of the Raton Basin were found to be highly ordered, with the majority of fractures striking perpendicular to the Sangre de Cristo thrust front. Units that are thicker, such as a 15 m thick unit in the railroad cut near the southern edge of Trinidad Lake, typically have a very tightly constrained fracture pattern (Figure 29).

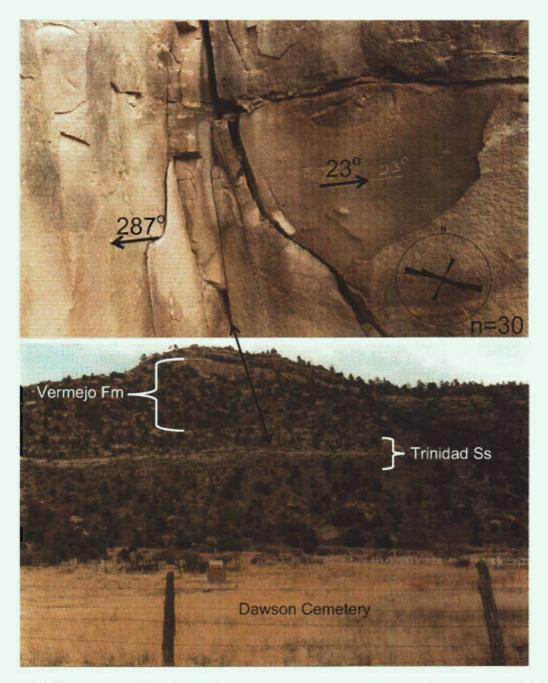



Figure 29: Photograph and rose diagram of fractures in a 15+ meter thick sandstone in a railroad cut near the SE corner of Trinidad Lake. Ring equals 60%, n = 25. Fracture orientations within this unit are highly ordered.

A second example of tightly constrained fracture orientations within the Trinidad Sandstone along the eastern edge of the basin is shown in Figure 30. Again these fractures are near normal to the Sangre de Cristo thrust front. Numerous other sites along this margin of the Raton Mesa were documented to also have this characteristic (Figure 31).

Figure 30: Fractures within the Trinidad sandstone near the Dawson Cemetery on the south eastern margins of the Raton Mesa show a distinct fracture patterns that is near normal to the Sangre de Cristo thrust front. Note that the fracture striking 23° terminates at the intersection of the fracture striking 287°. This relationship indicates the 23° striking fracture is younger than the 287° striking throughgoing fracture.

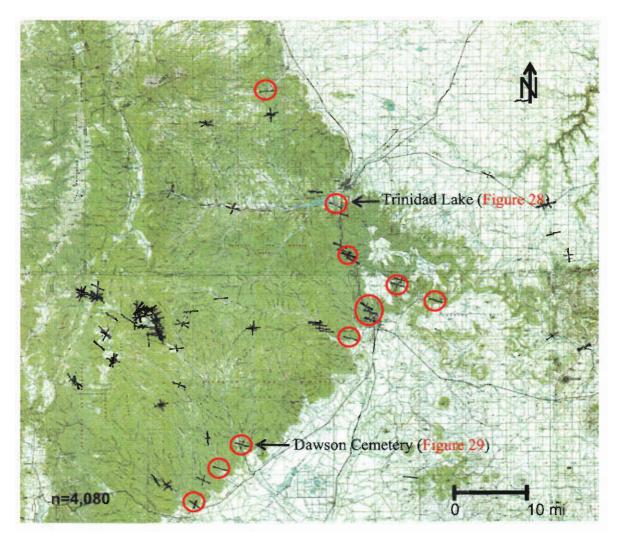
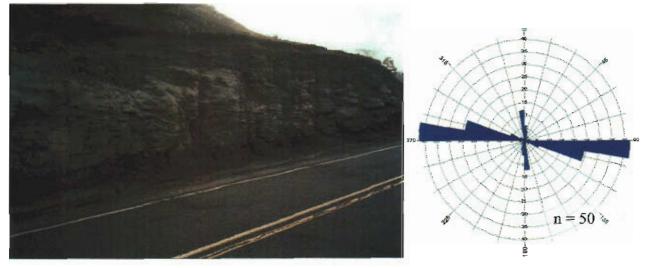



Figure 31: Map of fracture orientations across the basin. Some of the Trinidad Sandstone outcrop sites are located in red with the examples from Figures 29 and 30 highlighted.

In summary, fractures within the Trinidad Sandstone along the eastern margins of the Raton Mesa show a pattern wherein the primary (oldest throughgoing) fracture set is nearly perpendicular to the Sangre de Cristo thrust front. A younger secondary fracture set is typically perpendicular to the primary fracture set and may be related to stress relief due to unloading and/or to Rio Grande Rift extension. These characteristics were found at sites away from secondary structures such as faults, folds and igneous intrusives.

Vermejo and Raton Formations

Fractures in Vermejo Formation sandstones along the eastern margins of the Raton Mesa were found to be similar to those recorded in the Trinidad Sandstone; wherein there is one primary fracture trend that is nearly perpendicular to the Sangre de Cristo thrust front (Figure 32). This characteristic is clear only in areas east of the La Veta syncline and where there are no secondary structures such as faults and folds. Several examples of the fracture orientations along the eastern margin are illustrated in the following figures. Face cleats in coals were also found to be nearly parallel to fractures in the adjoining sandstones (Figure 33).

Figure 32: A) Uniform set of fractures within fluvial sandstones of the Vermejo Formation on Hwy 555 west of Raton, NM. B) Rose diagram illustrating fracture orientations at this site.

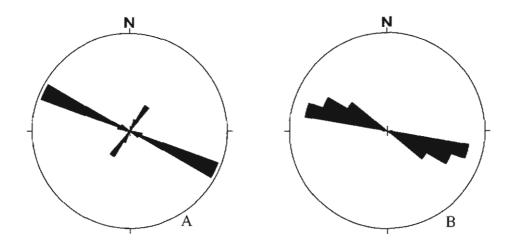
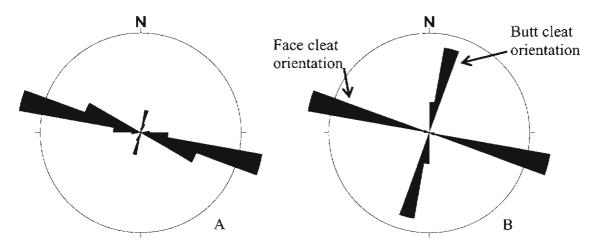



Figure 33: A) Rose diagram of fracture orientations within the Vermejo Formation at the Raton Overlook on the west side of Raton, NM (n=64). B) Rose diagram of face cleat orientation in a coal bed (n=26) directly underlying the sandstone shown in A. Note the near parallel strike of the fractures in the sandstone and the cleats in the coal.

Throughgoing fractures and face cleats on a frontage road two miles south of Trinidad are oriented WNW-ESE; similar to those shown in Figure 33. Fractures at this site are very ordered (Figure 34 A). Cross fractures and butt cleats are normal to the primary fracture and face cleat trends (Figure 34B).

Figure 34: A) Rose diagram of fracture orientations in Vermejo sandstones on frontage road 2 miles south of Trinidad, CO. Ring equals 40%, n = 55. B) Rose Diagram of cleat orientations in Vermejo coals on frontage road 2 miles south Trinidad, CO. Ring equals 40%, n = 49.

Dip-slip slickensided faults within coals were also recorded at this location. A rose diagram of the orientation of these faults (Figure 35) shows a diverse distribution pattern. These faults have dip angles between 40° to 60°. One "spoke" of the rose diagram is notably longer, indicating some faults are parallel in nature. Significantly, this set of parallel faults is also parallel to the face cleat trend in the same coals (compare Figures 34 and 35). The other faults, those with a more diverse distribution, are interpreted to be related to compaction. Figure 36 highlights one location where the fault in the coal directly underlies a slump in the overlying sandstone. The slump is similar to ball and pillow sedimentary structures commonly associated with softsediment density differences (loading). Close inspection shows that coal beds are deflected upward and downward along these slumps, suggestive of early compaction. Shales from below also fill in the area of displacement (Figure 36).

Fractures and cleats within the Raton Formation along the eastern margins of the Raton Mesa show similar trends to those described within the Vermejo Formation. Examples from the Raton Formation along Hwy 12 west of Trinidad, CO show a primary WNW set of fractures and a NNE secondary fracture set (Figure 37 A and B).

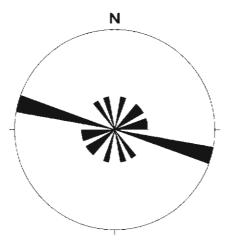


Figure 35: Slickensided faults in coal on frontage road 2 miles south of Trinidad., CO. Ring equals 30%, n = 10.

Figure 36: Slickensided fault in coal two miles south of Trinidad, CO. Fault at this location is located below a slump in the overlying sandstone. Underlying shale is squeezed into the fault plane and dislocation area near the point of the arrow. These relationships suggest the fault is related to early compaction.

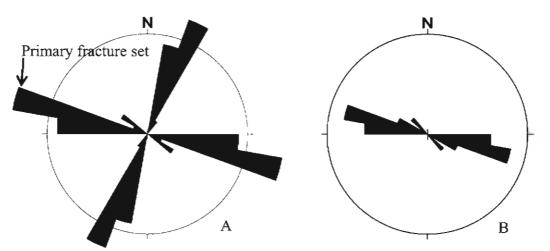
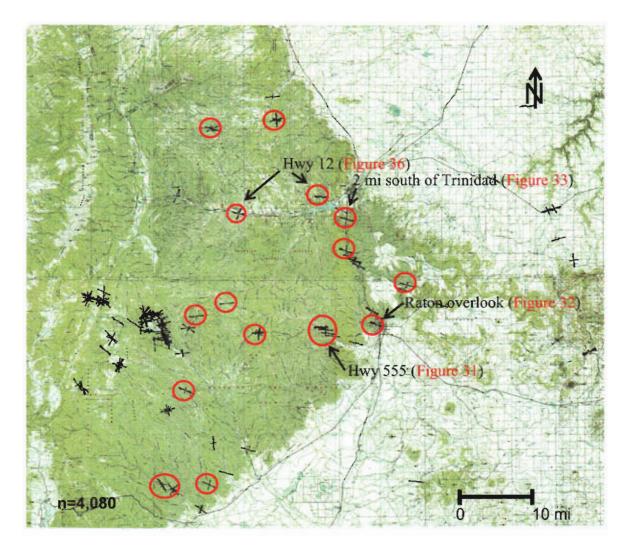



Figure 37: A) Rose diagram of primary throughgoing and secondary fracture orientations within Raton Fm sandstones near milepost 50 on Highway 12, n = 33. B) Rose diagram of the primary (oldest throughgoing) fracture set within Raton Formation sandstones on Hwy 12 near the intersection with county road 21.6, n=38.

In summary the oldest throughgoing fracture sets within the Vermejo and Raton Formations along the eastern margin of the Raton Mesa typically strike WNW and are parallel to face cleats within adjoining coals. This relationship is true only for those sites on the eastern side of the mesa and those sites at a distance from secondary structures such as faults, folds and igneous intrusions. A map of some typical Vermejo and Raton Formation locations and rose diagrams highlights this type of orientation characteristic (Figure 38).

Figure 38: Map of fracture orientations across the basin. Some of the Vermejo and Raton Formation outcrop sites are located in red with examples from Figures 32, 33, 34, and 37 are highlighted.

Igneous rock units

Valdez sills

A site near Valdez CO, milepost 50 on Highway 12 west of Trinidad, provides an interesting comparison of fracture orientation within sandstones, an igneous sill and cleats within a coal bed (Figure 39). Extension fracture orientation is well constrained within a series of 10-30 cm thick sandstones above an igneous sill. Interestingly there is some parallelism between fracture orientation in these sandstones and the underlying sill (Figure 40). A comparison of the rose diagrams shows a slightly more distributed pattern and an extra set of fractures that strike NW-SE within the sill (Figure 41). The parallel nature of fractures in these differing rock units can be very apparent in the outcrop. Cleats within coals at this location have a more diverse pattern than the sandstones or the sill (Figure 42). In part this is due to different orientations of face cleats also having associated butt cleats at near right angles to the face cleat. It is also possible the diverse cleat pattern is due to compaction.

Figure 39: Photograph of a portion of the outcrop at milepost 50 on Highway 12 west of Trinidad, CO. Sandstones overlie an igneous sill and a coal bed at this site.

Figure 40: This photograph, oriented with the viewer looking straight down, illustrates the parallel nature of fractures in a sandstone and an igneous sill. The upper red colored rock unit is a sandstone. The intersection of two fractures forms a wedge pointing toward the top of the photograph within this unit. The dark colored wedge in the rock below the first wedge is within an igneous sill. Note the parallel nature of fractures within these two very different units, and the repetitive nature of these fractures.

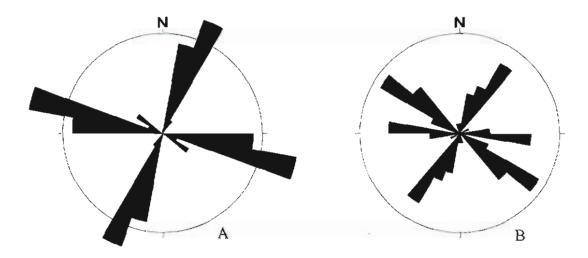
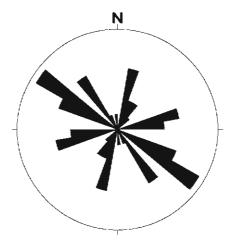



Figure 41: A) Rose diagram of fracture orientations within the sandstones, ring equals 20%, n = 33. B) Rose diagram of fracture orientations within the igneous sill, ring equals 20%, n = 49. There is a parallel relationship between many of the fractures within these two units of differing composition and age.

Figure 42: Rose diagram of cleat orientations within a Raton Formation coal bed underlying the sandstones and igneous sill of Figure 40, ring equals 20%, n=32.

Walsenburg dike

Evidence for high horizontal compressive stresses normal to dike walls during intrusion is present in a small borrow pit on the north side of the Walsenburg dike half a mile west of where the road north out of town cuts the dike. Thin sandstone beds contain small thrust planes that dip towards and away from the dike at shallow angles (less than 30 degrees). The thrust planes have dip-slip slickenlines that trend normal to the dike walls (Figures 43 and 44). These thrust planes suggest that the maximum compressive stress in the strata next to the dike was normal to the dike at the time of intrusion, despite the fact that the strike of the dike indicates that this was the orientation of the minimum regional compressive stress. This indicates that the opening of the dike added considerable stress to the surrounding rock.

This dike and numerous dikes within the basin are cut with myriad fractures. These fractures are typically of three sets, 1) oriented vertically, parallel to the fracture walls, 2) oriented vertically but normal to the fracture walls, and 3) oriented horizontal to sub-horizontal, normal to the fracture walls. Various phases of mineralization and extensive weathering along the fractures suggest that the fractures in the dikes formed a well connected plumbing system that allowed the percolation of mineralizing and weathering fluids, and that may have allowed the escape of much of the natural gas in the basin, leading to its present-day underpressured condition.

Figure 43: Low-angle thrust plane shown here has slickenline lineations striking perpendicular to the wall of the igneous dike. View is looking down (map view).

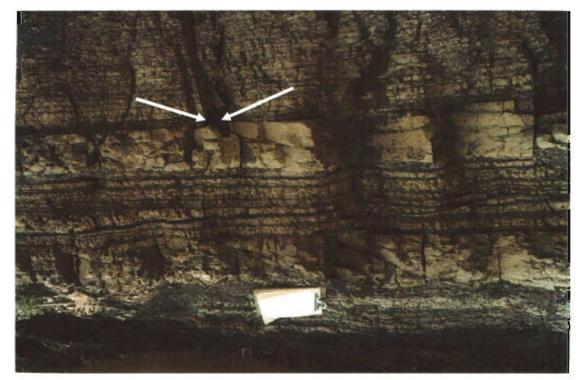
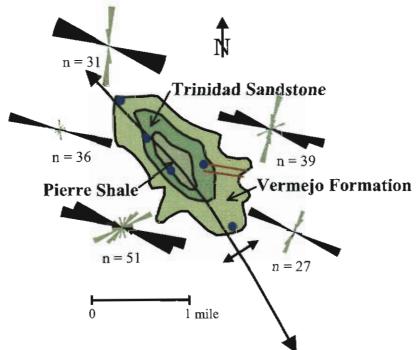


Figure 44: The thrust planes shown here indicate that the maximum compressive stress was normal to the dike at the time of intrusion. White arrows point in the direction and intersection point of two of the low angle thrust planes.


2.1.5 Fracture Data relative to Specific Structures

Morley anticline

Morley, Colorado is a coal-mining ghost town (Figure 45) situated at the center of a small-scale anticline on Interstate 25. A WNW primary extension fracture set is observed across the anticline. Base map after R.B. Johnson (1969) and modified from field observations is shown in Figure 46.

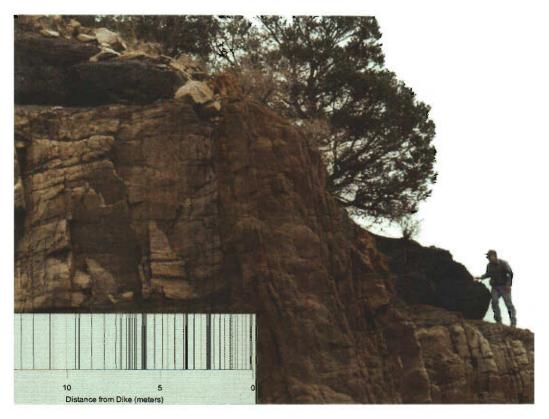

Figure 45: Photograph of the Morley church ruins; a small remnant of the mining town at the Morley anticline.

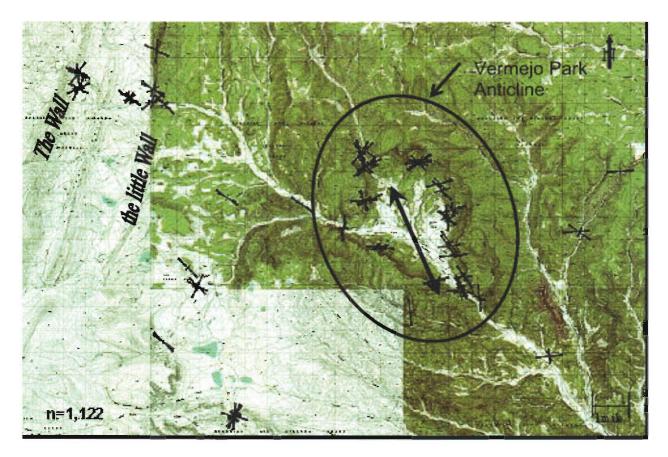
Figure 46: West-northwest oriented fractures are highlighted in black and are interpreted to predate fractures related to intrusion of Morley Dome. Red lines in the southeastern quadrant of the dome are igneous dikes. Gray cross fractures with variable strikes are probably related to the formation of the anticline.

The WNW oriented fractures in Figure 46 are the oldest set of fractures as determined by fracture cross-cutting relationships. Thus the WNW set of extension fractures are interpreted to predate the formation of the Morley dome because their orientations do not change regardless of position around the structure.

Two igneous dikes were also recorded in the southeastern quadrant of the dome (Figures 46 and 47). Fracture measurements in the sandstones adjacent to one of the dikes shows that there is an increase in fracture intensity with increased proximity to the dike. The interpretation is that intrusion of the dike (in a process similar to hydraulic fracturing of a production well) created a facture damage zone in the sandstones.

Figure 47: Scan-line of fractures within Vermejo Sandstones immediately adjacent to an igneous dike. Fracture intensity and number of fractures swarms increase with increased proximity to the dike.

Vermejo Park Anticline


Several sets of fractures are present in the Trinidad Sandstone around the Vermejo anticline (Figure 48). Some of these are interpreted to be related to eastward thrusting of the Sangre de Cristo thrust front, others are related to the formation of the Vermejo anticline, others are related to bending beds near the thrust front, to the irregular shape of the thrust and possibly east-west extension associated with the Rio Grande rift system.

There is an early though not always dominant set of approximately east-west striking extension fractures. These have been overprinted to varying degrees around the anticline by a strong south-southeast striking fracture set. Locally this younger set is the most obvious set of fractures, obscuring the earlier fractures. Fractures of both sets occur locally as very closely spaced swarms in the outcrops above the Vermejo Park Ranch headquarters buildings, suggestive of incipient faulting.

Several faults cut the Trinidad sandstone around the anticline. East-northeast striking normal faults were mapped in Spring Canyon on the northwestern edge of the anticline. We believe that these are not slump-block faults because they occur deep in the throat of the canyon and are locally cemented by sparry calcite crystals up to a centimeter in length. Blocks of this calcite up to 20 centimeters across occur in scree slopes, marking areas where faulting must be present but obscure, especially in the finer-grained deposits. Obscured, more recent slump blocks, trending east-west, are present on the southern margin of the anticline. Strata in these blocks did not maintain coherency, and the blocks are poorly defined, and these may be true, recent gravitational slumps.

A thrust within the Trinidad Sandstone places lower *Ophiomorpha* burrow bearing sandstone against upper non-*Ophiomorpha* bearing sandstone. The thrust has approximately 10-15m of vertical offset (Figure 49). It is filled with gouge and some calcite, and the adjacent strata in the hanging wall displays small back-thrust shear planes (Figure 50). Four to five miles north of this location in Spring Canyon a similar but smaller thrust was recorded (Figure 51).

Horizontally oriented conjugate fractures (i.e., plan-view X's) are present in the Raton Formation conglomerate on the eastern end of the anticline (Figures 52 and 53). At this site the more brittle quartzose Raton Formation conglomerate allowed the formation of conjugate shear fractures because of the different mechanical response to the same compressive stresses than less brittle rock units. With regard to conductivity, conjugate fracture systems are better connected and should provide a better reservoir plumbing system. The orientation of this conjugate system suggests significant east-west (to WNW-ESE) compression, probably during formation of the anticline or immediately prior to it. The previously described thrust faults in the Trinidad Sandstone (Figures 49, 50 and 51) and their orientations are also consistent with the high east-west compressive stresses suggested by the conjugate fractures found in the Raton Conglomerate.

Figure 48: Fracture map close-up of area around the Vermejo Park Ranch Headquarters. Fractures in this area show a variety of orientations.



Figure 49: Photograph of a thrust within the Trinidad Sandstone along main road at the west side of the Vermejo Park Anticline.

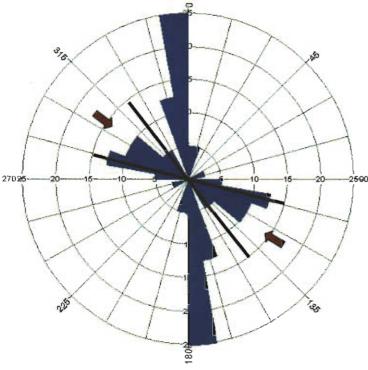

Figure 50: Photograph of back thrust, striking parallel to the thrust fault but dipping east to intersect it.

Figure 51: Photograph of minor thrust fault within Trinidad sandstone near Spring Canyon on the northwest rim of the Vermejo anticline and 4-5 miles to north of the thrust in Figure 49. Orientation and sense of motion are similar.

Figure 52: Steps instead of plumose structures on fracture surfaces indicate an origin in shear rather than extension. Horizontal steps (like those shown above) indicate strike-slip movement.

Calculation Method	Frequency
Class Interval	10 Degrees
Length Filtering	Deactivated
Azimuth Filtering	Deactivated
Data Type	Bidirectional
Population	40
Maximum Percentage	25.0 Percent
Mean Percentage	8.3 Percent
Standard Deviation	6.2 Percent
Vector Mean	311.39 Degrees
Confidence Interval	19.66 Degrees
R-mag	0.7

Figure 53: Conjugate shear fracture system within the Raton Conglomerate, n=40. This strikeslip system is displayed as an X in plan view and on the rose diagram above. Black lines and red arrows added to highlight the conjugate system and orientation of maximum compressive stress. The north-south lobe is a younger extensional fracture set superimposed on the conjugate shear fracture system.

2.1.6 Fracture Data Summary

The data show (Appendix G, Figures 31, 38, and 48) that there is a general E-W to WNW-ESE orientation to fractures and face cleats. This is most obvious along the eastern margins of the Raton Mesa within Trinidad Sandstone, Vermejo and Raton Formation outcrops. Some Dakota Sandstone outcrops on the eastern Margins of the basin have conjugate shear fractures, with a WNW-ESE bisector to the acute angle, indicative of horizontal shortening. Niobrara limestone outcrops have extension fractures striking WNW-ESE. Discussion of how these two differing fracture sets can be formed in the same area and under the same tectonic regime is discussed in section 2.1.7 "Mechanics of Natural Fracture Variability - Example 1".

Fractures nearer to the western margins of the Raton Basin typically have a more complex fracture system. Many of these varied fracture sets are found near local structures such as the Vermejo anticline. Some of these fractures have fracture characteristics indicative of shearing. Extension fracture sets were also recorded that are parallel and perpendicular to the axis of the fold and others are perpendicular (striking WNW-ESE) to the Sangre de Cristo thrust front. Fracture sets near the synclinal axis and along the tilted monoclinal fold at the western margin are parallel and perpendicular to the fold directions.

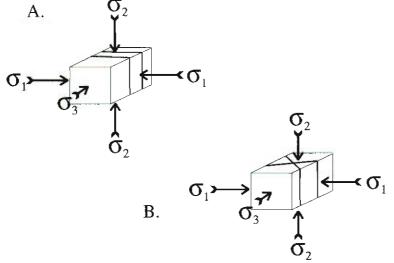
Extension fractures, roughly oriented E-W, are common in outcrops across the basin and yet subsurface data, in the form of cores and petrophysical logs, indicate that in the deeper part of the basin the common fracture set consists of east-west striking conjugate shear fractures whose acute angle bisector is vertical. The subsurface data are discussed in the sections of this report concerning well and core data (Sections 2.2 and 2.3). Through the use of Mohr-Coulomb failure criteria, we show in the following section (Example 2) how differences in rock strength and burial depth could create these differing fracture patterns within the same tectonic regime.

2.1.7 Mechanics of Natural Fracture Variability

Example 1: Niobrara Limestone and Dakota Sandstone - eastern basin

In the eastern part of the Raton basin there are vertical extension fractures in outcrops of the Niobrara limestone, and about 500 feet lower in the stratigraphic section there are conjugate, strike-slip, shear fractures in the Dakota sandstone. The strike of the extension fractures in the Niobrara limestone bisects the acute angle between the shear fractures in the Dakota sandstone. It is likely that the different mode of fracture is related to different magnitudes of confining stress.

At a deeper level in the basin, the stresses would be higher because of the increased weight of overburden. In this section, the vertical stress is considered to be the result of the weight of the rock plus any contained fluids acting on a unit horizontal area. In the remainder of this section stresses are considered to be effective stresses σ_i defined as total stress minus pore pressure: $\sigma_i = \sigma_i^{tot} - p$ where p is pore pressure and σ_i is any normal stress. An increase in the vertical effective stress $\Delta \sigma_v$, caused by a change in depth Δz , is given by $\Delta \sigma_v = \rho g \Delta z$, where ρ is the density of saturated rock. The gravitational constant is g. It is also assumed that the rock is drained, that is, the pore pressure is given simply the by hydrostatic gradient at any depth. The depth difference between these two formations induces about 500 psi (3.5 MPa) greater σ_v at the level of the Dakota sandstone.


A simple model for the rate of horizontal stress increase with depth is perfect lateral constraint. This condition requires that the changes of the two horizontal stresses be related to the vertical stress change by

$$\Delta \sigma_{H} = \Delta \sigma_{h} = \frac{\nu}{1 - \nu} \Delta \sigma_{\nu} \tag{1}$$

where $\Delta \sigma_H$, $\Delta \sigma_h$ and $\Delta \sigma_v$ are, respectively, the increments of maximum and minimum horizontal stress, and vertical stress. Poisson's ratio is denoted by v. Taking v = 0.25, the proportionality factor is 0.33. This means that the two horizontal principal stresses increase more slowly than the vertical stress with increasing depth. At the depth of the Dakota then, the vertical stress is about 3.5 MPa greater than in the Niobrara, but the horizontal stresses are only 0.88 MPa higher.

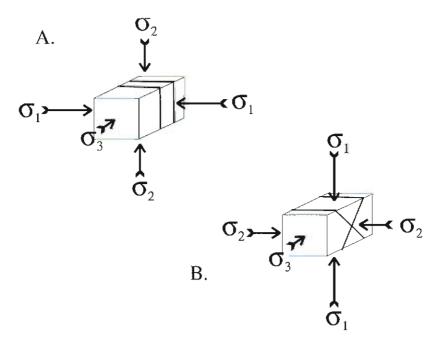
Figure 54 shows possible stress orientations for the two different fracture systems. At the shallower depth in the Niobrara, σ_3 must be perpendicular to the extension fractures, and σ_1 and σ_2 are only known to lie at some orientation in the plane of the fractures. Stress orientations for the conjugate shear fractures in the Dakota, however, are unique. For this system of small strike-slip faults, σ_1 must bisect the acute angle between sets, σ_3 bisects the obtuse angle between sets and both are normal to the line of intersection of the two sets. The intermediate stress σ_2 parallels the line of intersection of the two shear fracture sets and is normal to the other two principal stresses.

The simplest deduction with regard to the orientations of the fractures in the two rocks is to take σ_2 to be vertical at both depths, $\sigma_v = \sigma_2$, then $\sigma_H = \sigma_1$ (parallel to the extension fracture in the horizontal plane), and $\sigma_h = \sigma_3$. Thus the orientations of stresses are identical at both depths (Figure 54).

Figure 54: A) Stress orientations *consistent* with extension fractures. B) Stress orientations *required* for strike-slip shear fractures. The orientations for both systems of fractures are identical.

Figure 55: Mohr circles of the stress states in Niobrara limestone (blue) and Dakota sandstone (red), combined with the appropriate failure conditions for each rock type.

To understand how the difference in depth resulted in two different fracture modes with the same stress orientation, we need to study the stress states at the two depths and the respective failure conditions for the two rocks. The Mohr diagram (Figure 55) illustrates what could have been going on. The straight failure curves show qualitatively the differences between the strengths of the limestone and the sandstone. For example, the limestone (blue) is usually stronger at the τ -axis, but often has a lower slope than the sandstone (red). For extension fractures to form, σ_3 must have been negative (tension), and must have touched the tension cut-off. Elastic mismatch between layers is known to cause such tensions in the stiffer layers.


Five hundred feet (152 m) deeper, in the Dakota, higher stresses cause the stress circle for the sandstone (red) to be farther to the right, and larger. The existence of shear fractures indicates that it must have touched the shear failure line for sandstone (red). The minimum point on the circle was subject only to the condition that it must not have touched the tension cut-off. (The tension cut-off is about the same, 10 MPa, for all rocks.) The relative increases in stress with depth as calculated above are consistent with these constraints.

Example 2: Extension fractures vs. shear fractures in a given rock unit

A given rock layer contains vertical extension fractures in outcrop, but has shear fractures with a normal fault orientation at greater depth in the basin. The strikes of the extension fractures parallel the line of intersection of the normal shear fracture system. This problem differs from

Example 1 in two ways: (1) for this problem, the fractures are in the same rock unit, and (2) the deeper shear fractures are normal faults rather than strike slip. Figure 56 shows the likely orientations of the principal stresses responsible for the two systems of fractures. Recall from Example 1 that the requirements are that σ_1 and σ_2 must lie in the plane of an extension fracture, and that σ_3 must be normal to it. Analogous to the strike-slip faults of Example 1, for the system of small-scale normal faults of this problem, σ_1 must bisect the acute angle between sets, σ_3 must bisect the obtuse angle between sets and is normal to σ_1 ; and σ_2 must parallel the line of intersection of the two shear fracture sets and is normal to the other two principal stresses.

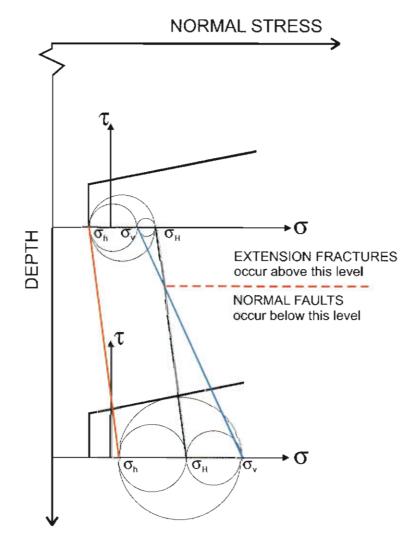

In Figure 56 A, σ_1 was drawn to be in the horizontal plane because of other geological constraints. That stress orientation is also consistent with this problem. In three out of the four observed fracture systems, the direction of σ_1 is the same. As in Example 1, we can explore the possibility of failure in two different modes, extension fractures and shear fractures, using Mohr's diagram.

Figure 56: Block diagrams showing relations of stresses to fractures at two different depths. A) σ_1 and σ_2 are constrained only to lie in the fracture plane. B) The stress system shown is unique for conjugate normal fractures.

Let us take a look at a possible scenario for the extension fractures. For this problem, the fracture systems of interest occur in the same rock type, so only one failure curve is needed. Figure 57 shows such a posited failure curve having a tension cut-off. For the extension fractures to form, the maximum Mohr's circle must be tangent to the tension cut-off, and this will happen at $\sigma_h = \sigma_3$, to the left of the origin. The other two stresses, being compressive, will lie off to the right of the origin. As mentioned in Example 1, elastic mismatch may be responsible for the existence of tensile stress in certain layers. It is not possible to estimate the depth at which the extension fractures occurred because the exact mechanism for generating the tensile stress is unknown.

We need to make an assumption about the relative magnitudes of σ_v and σ_H . As before, without further information, they could be ordered either way for the extension fractures. Consistency between the two existing fracture systems, however, suggests that σ_1 was horizontal at the time of fracturing. Thus we will assume that σ_v is the intermediate stress and σ_H is the maximum stress. This is summarized in the top Mohr diagram. Now at a greater depth, the two horizontal stresses will be greater according to Equation 1, but they increase more slowly, about one-third the rate, than σ_v . Therefore, at some depth, σ_v will exceed σ_H and become the maximum stress. If the exterior circle increases sufficiently in diameter to touch the shear failure curve, normal fractures will form.

Figure 57: States of stress in relation to the failure condition at the two different depths referred to in the text.

The direction of $\sigma_2 = \sigma_H$ forces the alignment of the normal fracture strike to be parallel to that of the extension fractures. Therefore the change in fracture mode from extension to normal fault with increasing depth is likely due to increasing stress associated with greater depth of burial.

2.1.8 Discussion/Summary

This overview of fractures in outcrop within the Raton Basin details a complex fracture pattern related to lithology, local structure, compaction, and thrusting. The most ubiquitous fractures appear to be related to Laramide-age eastward thrusting of the Sangre de Cristo Mountains located at the western edge of the Raton Basin. This is evidenced by extension fracture orientations nearly normal to the thrust front and/or conjugate shear fractures with a bisector to the acute angle that is normal to the thrust front. These fractures and cleats trend roughly E-W to WNW-ESE and are found throughout the basin. It is important to note that these fractures and cleats are also found along the distant eastern margins of the basin over 75 miles from the thrust front. Fracture orientations and surface features at some of these distal locations are indicative of horizontal shearing. These include strike-slip style conjugate fracture sets having an E-W to WNW-ESE acute-angle bisector. Subsurface data in the form of cores and petrophysical logs indicate that, in the deeper part of the basin, the common fracture set consists of east-west striking conjugate shear fractures whose acute angle bisector is vertical. These data are discussed in the sections of this report concerning well and core data.

More complex fracture orientations are observed nearer the thrust front and to secondary structures. The fractures associated with secondary structures were formed by shearing and bending of beds across the Vermejo Park Anticline, by the irregular shape of the thrust front, by the bending of beds in areas of high structural curvature such as the near vertical to overturned beds at the western margins of the basin, and possibly to a stress reversal from approximately east west to north-south.

These data and inferences lead to the hypothesis that the western margins of the basin are more highly fractured and contain a more complex fracture system than eastern sections of the Raton Mesa. Given that rock units are more highly fractured in western areas, it can be hypothesized that western areas will in general have increased production rates and less anisotropic drainage relative to the eastern margins where a single primary fracture pattern may be typical.

2.2 CORE ANALYSES

Cores provide significant insights into the in situ fracture characteristics that are not afforded by outcrops and wellbore-image logs. Cores allow measurements of actual fracture apertures, provide analysis of fracture surfaces and mineralization, and allow for making distinctions between coring-induced and natural fractures. However, fracture strikes cannot be determined in the unoriented Raton basin cores.

Small-diameter cores (two, and two and a half inches in diameter) from seven of the more recent exploration and production wells drilled by the El Paso Production Company on the Vermejo Park Ranch were examined for natural fractures. Three of these cores were examined by contractor Ron Graichen, four cores were examined and analyzed by contractor Connie Knight, and the core reports are part of the Appendix of this report. Statistics from the four cores from wells VPRCH-30, 31, 32, and 34 allow a certain level of comparison of the fracture intensity and characteristics across the area of interest, as well as a comparison of fracturing by lithology.

Fractures are present in all of the cored lithologies: sandstones, siltstones, shales, coals, and igneous intrusives. Four types of fractures are present in the cores: 1) vertical extension fractures similar to those in outcrop, 2) a set of conjugate shear fractures with a vertical acute-angle bisector similar to the fractures seen in image logs, 3) small-scale thrust faults, and 4) compaction fractures in mudstones. The vertical to near-vertical extension fractures and the shear fractures are most common. More of the extension fractures occur in sandstones whereas most of the shear fractures are found in shales. A higher percentage of the total fractures are present a higher percentage of the core. The compaction fractures that are common in mudstones are ubiquitous throughout this lithology in all Rocky Mountain basins; they are rarely mineralized and, unless reactivated, do not add to the porosity or permeability of the reservoir systems, and will not be discussed further here.

Most of the rest of the cored fractures are mineralized with patchy calcite, and a thin layer of quartz druze often underlies the calcite. This is the most common mineralization sequence found in cored fractures up and down the Rocky Mountains. Other minor mineral phases in the Raton include local occurrences of iron pyrite, clay, and a local occurrence of bitumen. Despite mineralization, approximately half of the fractures retain at least 25% of the original fracture aperture. A higher percentage of remnant aperture is typical of larger fractures; sub-millimeter fractures tend to be more completely filled with mineralization.

The spacing of vertical fractures can be assessed in those cores where the core axis is slightly oblique to the planes of a set of fractures, and where fracture spacing is less than the core diameter. Numerous such fracture spacings could be measured in the four cores, and ranged from 0.02 ft to 1.1 ft. This range represents the low end of a much wider range of fracture spacings since the near-vertical core can not sample the wider fracture spacings. However, it does indicate that fractures are widely distributed and occur in all lithologies in the subsurface.

Absolute fracture orientations cannot be determined from these unoriented cores, but can be inferred to be parallel to the fracture orientations measured in nearby wellbores by wellboreimage logs. Most of the core fractures probably strike approximately east-west, with local exceptions. Fracture orientations relative to each other, however, can be measured in numerous examples in the core, where they are overwhelmingly parallel. Approximately three-quarters of the examples of fracture orientations relative to each other show a parallel relationship. However, intersecting fracture orientations were also noted locally, the intersection angles varying from 30 degrees up to 90 degrees.

The degree of fracturing varies significantly in the different cores. One measurement is the total number of fractures divided by the total number of feet cored. This is a gross measurement that suffers from various inaccuracies; i.e., it does not account for the possibility that more of the specific fracture-susceptible lithologies such as siltstone, or perhaps more of the less fracture susceptible lithologies such as the igneous intrusives may be cored in any given well. Moreover, it does not discriminate between the different types of fractures. However, it does provide a certain platform for a preliminary comparison between wells. Thus the ratio of fractures per foot of core varies from 0.32 in the VPRCH-34 well to 1.28 in the VPRCH-32 well, with intermediate values, 1.0 and 0.70, for wells VPRCH-30 and VPRCH-31, respectively.

Many of the inclined shear fractures show lineations on their surfaces indicating the direction of offset, and in fact these lineations do not record simple dip-slip motion. Many of the lineations record oblique-slip offset, with the rake of the lineations across the fracture surfaces deviating as much as 80 degrees from a simple, down-dip plunge. There is also significant evidence, in the form of superimposed lineations on a given fracture surface, for reactivation of many fracture planes.

Several fault zones were cored, as noted by fracture breccia and slickensided fault surfaces. These fault zones are compatible with the reactivated fractures noted above. A few thrust faults were cored, defined by planes with a low dip angle, evidence for shear on the surfaces, and suggestions of reverse-dip offset.

Another cored feature is a small dike filled with coal. Such features are present in several places in outcrop (Pillmore, 1976; Harbour and Dixon, 1959; Podwysocki and Dutcher, 1971), and apparently form where a heat source such as an igneous intrusive heats coal to its liquification temperature of about 400 degrees C.

2.3 WELL LOG ANALYSES OF FRACTURES

Detailed data on fractures from geophysical logging in four wells in the Raton Basin were analyzed to understand fracture patterns at depth. Locations of these wells are shown in Figure 58. These wells were logged to depths ranging from about 1600 ft. to about 2500 ft., primarily in the Raton and Vermejo Formations, with some penetration of the Trinidad Sandstone. Wells VPRC 73 and VPRC 87 are located near the synclinal axis of the Raton Basin in Colorado. Well VPRE 33 is located on the western limb of the basin axis and on the eastern side of the Vermejo Park Anticline. Well VPRD 71 is located near the western flank of the Raton Basin and to the southwest of the Vermejo Park Anticline.

The Formation Micro Imager (FMI) logging tool provides imaging of the formation based on the correlation of eight microresistivity traces measured around the circumference of the well bore. Real-time orientation knowledge of the position of the downhole tool allows measurement of both the dip and strike of bedding, fractures, and faults. Fractures that are open to invasion by the drilling mud are distinguished from closed fractures based on contrasts in electrical resistivity of the mud and the formation. Analyses of fracture orientations in this study have focused on open or partially open fractures for which an apparent hydraulic aperture has been estimated. Open fractures are more likely to interact with the local stress state and are more relevant to gas and water flow within the formation.

2.3.1 Fracture Orientations from FMI Logs

The orientations of open fractures from the FMI logs for the four wells are shown in Figure 59. Open fractures are defined as those for which a fracture aperture was estimated on the FMI logs.

The rose diagram of fracture strike for well VPRC 73 indicates two primary populations of fractures, one oriented approximately east-west and the other northeast-southwest. The east-west striking fracture set is numerically dominant in well VPRC 73. There is no consistent variation in fracture strike with lithology. The corresponding stereonet plot of fracture poles shows that fractures dip to the north and south for the east-west striking population and to the northwest and southeast for the northeast-southwest striking population. The density of the plotted poles on the stereonet indicates that more of the fractures dip to the north and northwest than to the south and southeast in the two populations.

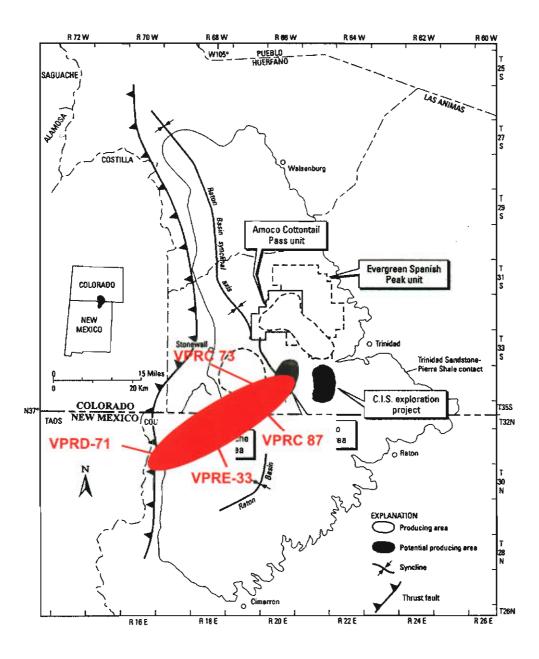


Figure 58: Map showing the approximate location of wells with detailed geophysical logging. Base map of the Raton Basin taken from Johnson and Finn (2001). Red ellipse added to mask precise locations to protect proprietary information.

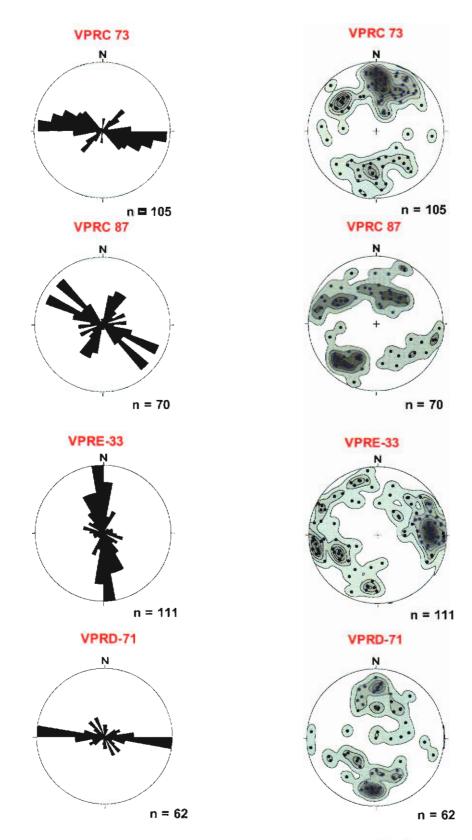


Figure 59: Orientations of open fractures from FMI logs of four wells. Plots on left show rose diagrams of fractures and plots on right show lower hemisphere stereonet plots of fracture poles.

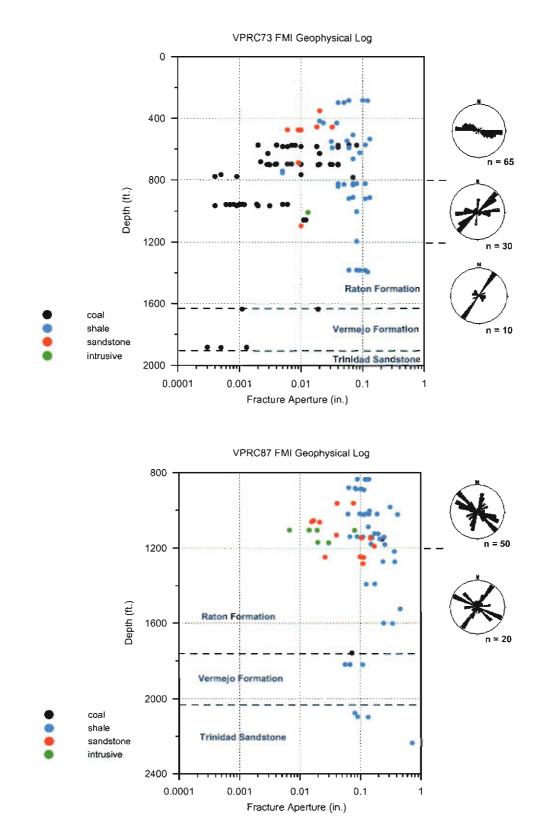
The rose diagram of fracture strike for well VPRC 87 shown in Figure 59 shows two less-welldefined populations that are oriented approximately N55°W and N25°E. The corresponding stereonet plot of fracture poles indicates that these fracture sets dip to both the northeast and southwest, and northwest and southeast, respectively. The northeasterly dipping fractures have generally higher dip angles than the southwesterly dipping fractures.

The plots in Figure 59 for well VPRE 33 show a dominant population of fractures that strike approximately north-south and dip to the west. The fracture pattern in well VPRE 33 is probably strongly influenced by its location on the steeply dipping eastern limb of the Vermejo Park Anticline. Whereas there are general similarities in fracture patterns for the other three wells, VPRE 33 differs significantly.

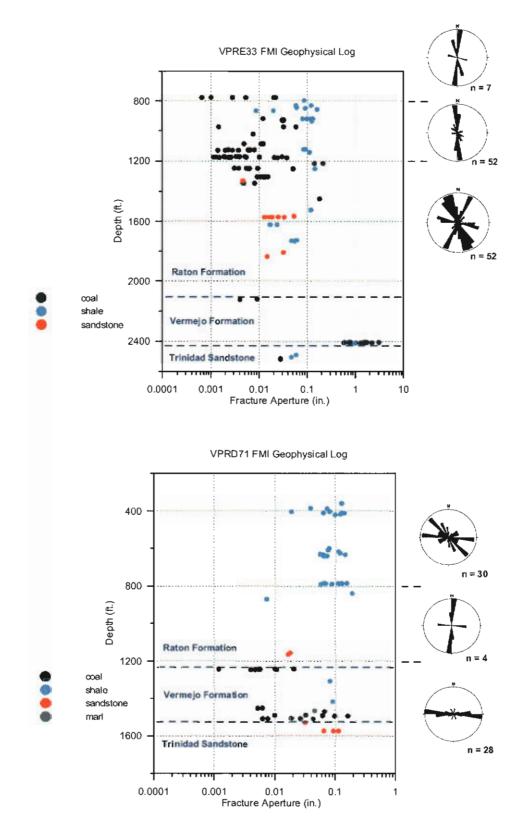
The rose diagram and stereonet plots of fracture orientations for well VPRD 71 indicate a set of east-west striking fractures, with some random variations in strike within the population. Approximately equal numbers of fractures dip to the north and south.

It should be noted that fracture orientation data from vertical drill holes is inherently biased against the observation of fractures with high dip angles. Interpretation of the stereonet plots in Figure 59 should include the realization that high-angle fractures have been undercounted and that the frequency of poles near the circumference of the stereonet is significantly lower than in the actual population of fractures. The bias associated with fracture-orientation data from drill holes can be quantitatively corrected using the inverse of the cosine of dip. For example, the actual frequency of fractures dipping at 80° is greater than the apparent frequency by a factor of 5.8.

The fracture sets identified in these four wells do not readily correspond to conjugate sets resulting from horizontal compression. This is in contrast to the conjugate shear fracture sets resulting from horizontal compression identified in outcrop in the Raton Basin. Differences in fracture orientation patterns from the FMI logs and the observations in outcrop may be attributable to bias against steeply dipping fractures in the borehole logs. In addition, some fractures that would not be identified as open fractures in the FMI logs because of confining stress would be identified with the unloaded conditions in outcrop.


The east-west striking fracture set in wells VPRC 73 and VPRD 71 shown in Figure 59 is consistent with formation as a conjugate set in response to vertical compression, as indicated by the two oppositely dipping sub-sets evident on the stereonet plot. This fracture set would have formed with σ_1 in the vertical direction, σ_2 in an east-west orientation, and σ_3 in the north-south direction. This stress state is not consistent with the present north-south orientation of the maximum horizontal compressive stress, but is consistent with the west to east thrusting along the Sangre de Cristo range and thicker overburden in the Raton Basin during the Middle Tertiary. Similarly, the northwest-southeast striking fracture set observed in well VPRC 87 would have formed with σ_1 in the vertical direction, σ_2 in a northwest-southeast orientation, and σ_3 in the northeast-southwest direction. The difference in the inferred orientation of σ_2 in the two wells may be attributable to irregularities in the Sangre de Cristo thrust front.

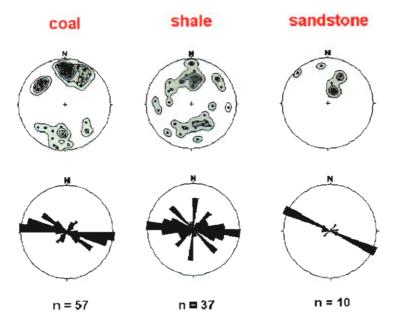
The fracture pattern in well VPRE 33 is unique among the four wells in this analysis. Proprietary seismic data in this area of the Raton Basin indicate multiple, nearly vertical offsets in seismic reflectors that apparently correspond to north-south striking faults (Paul Basinski, personal communication, 2004). These faults may be related to strike-slip movement along a trend from the Vermejo Park Anticline to the Tercio Anticline. The fracture patterns observed in VPRE 33 are probably related to this larger-scale structural feature.


2.3.2 Fracture Orientation and Depth

To examine variations in fracture orientation with depth, the population of open fractures in each well has been divided into depth intervals, as shown in Figures 60a and 60b. Rose diagrams of fracture strike in well VPRC 73 are shown to the right of the graph in Figure 60a (upper) for depths of less than 800 ft, 800 ft to 1200 ft., and greater than 1200 ft. These diagrams indicate a shift in the dominant direction of fracture strike from east-west at the shallower depth interval to northeast-southwest in the deeper depth interval in well VPRC 73. Rose diagrams for depths of less than 1200 ft. and greater than 1200 ft. from well VPRC 87 are shown in Figure 60a (lower). The northeast-southwest striking fracture set becomes a more prominent component of the fracture population for depths greater than 1200 ft in well VPRC 87. Similar plots for well VPRE 33 in Figure 60b (upper) show very predominantly north-south strike to fractures at shallower than 1200 ft and three fracture sets at depths greater than 1200 ft. The two dominant fracture sets below 1200 ft depth in well VPRE 33 strike north northwest and north northeast. The plots for well VPRD 71 shown in Figure 60b (lower) indicate two fracture sets at depths of less than 800 ft, dominantly north-south fractures between 800 ft and 1200 ft depth, and one fracture set striking east-west for depths of greater than 1200 ft. It should be noted that only four open fractures were identified between 800 ft and 1200 ft, so the distribution of orientations is not statistically significant.

For wells VPRC 73, VPRC 87, and VPRE 33, the frequency of open fractures is significantly lower for depths of greater than 1200 to 1400 ft than for shallower depths, as shown in Figures 60a and 60b. Interestingly, this corresponds to the depth below which the variability in the direction of the maximum horizontal compressive stress decreases, as observed in wells VPRC 73 and VPRC 87 (see Section E below). The frequency of open fractures in well VPRD 71 does not show a similar pattern because there are very few open fractures at shallower depths and there are many open fractures near the base of the Vermejo Formation between 1400 and 1600 ft depth. Generally, these observations suggest that there may be a change in the stress state and fracture network at a depth of approximately 1200 to 1400 ft in this area of the Raton Basin.

Figure 60a: Fracture hydraulic aperture estimated from the FMI logs for wells VPRC 73 and VPRC 87 versus depth. Lithology of fractures indicated by colored symbols. Rose diagrams of fracture strike are shown for different depth ranges to the right of the plot.


Figure 60b: Fracture hydraulic aperture estimated from the FMI logs for wells VPRE 33 and VPRD 71 versus depth. Lithology of fractures indicated by colored symbols. Rose diagrams of fracture strike are shown for different depth ranges to the right of the plot.

2.3.3 Fracture Orientation and Lithology

Open fractures from the FMI logs from the four wells were divided into groups based on the rock type in which they occur. Plots of the orientations of these fractures, classified by lithology are shown in Figures 61a and 61b. There are few systematic associations between fracture orientation and lithology apparent in these plots. It should be noted that the sample size of the number of fractures for some lithologic types is relatively small, calling into question the statistical relevance of the patterns of fracture orientations. In wells VPRE 33 and VPRD 71 there is a significant difference in the distributions of fracture orientation in the coals and shales (see Figure 4b). Fractures strike dominantly north-south in coals in well VPRE 33 and strike east-west in coals in well VPRD 71. The rose diagrams for shales in these two wells show somewhat similar, bimodal distributions of fracture strike. Differences in the mechanical characteristics of coal and shale may account for the contrasting fracture patterns.

Interestingly, the six steeply dipping fractures in an igneous intrusion penetrated by well VPRC 87 have a tightly clustered distribution striking just east of north. This orientation is approximately the same as the direction of maximum horizontal compressive stress estimated from ADI logs, as described in Section E below. These fractures may have formed as tension fractures in the cooling igneous body and the direction of the maximum horizontal stress was oriented in approximately north-south direction at that time. These observations suggest that the maximum horizontal stress had rotated from an east-west direction associated with Laramide thrusting to a north-south direction by the time this intrusive rock was formed.

Well VPRC-73

Well VPRC-87

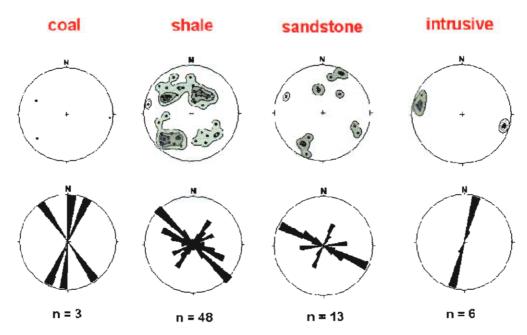
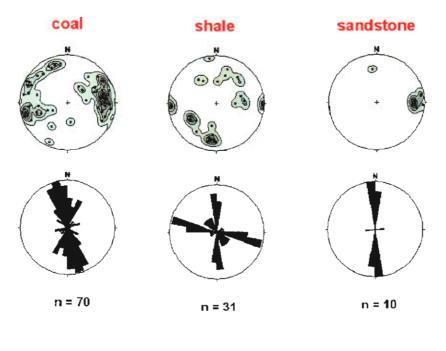



Figure 61a: Orientations of open fractures from FMI logs for wells VPRC 73 (above) and VPRC 87 (below), classified by lithology. Stereonet plots show lower hemisphere projections of fracture poles.

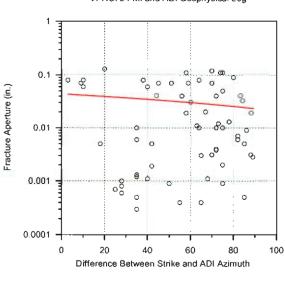
Well VPRE-33

Well VPRD-71 coal shale sandstone n = 20 n = 34 n = 6

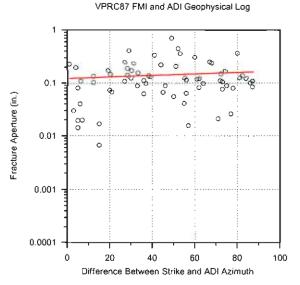
Figure 61b: Orientations of open fractures from FMI logs for wells VPRE 33 (above) and VPRD 71 (below), classified by lithology. Stereonet plots show lower hemisphere projections of fracture poles.

2.3.4 Fracture Aperture

Fracture hydraulic aperture is estimated for the open fractures on the FMI logs. This estimate is based on the assumption that the open fractures are invaded by the drilling fluid and that the contrast in resistivity between the fluid and the formation provides a basis for modeling the aperture of the fracture between the micro-resistivity pads on the FMI tool. Furthermore, the variation in fracture aperture along the trace in the borehole wall is used to calculate an effective hydraulic aperture, based on the cubic law of flow in fractures (Domenico and Schwartz, 1990.


Fracture hydraulic aperture as a function of depth and lithology is shown in Figures 60a and 60b for the four wells. The locations of formation contacts are also shown on these figures. The data from well VPRC 73 show a general decrease in fracture aperture with depth, primarily based on measurements from the coal beds. Fractures in shale do not show any apparent decrease in aperture with depth and have generally larger apertures than fractures in sandstone or coal. The data from wells VPRC 87, VPRE 33, and VPRD 71 do not show any systematic decrease in fracture hydraulic aperture with depth. Values of fracture aperture in shale are generally larger than in sandstone, coal, or intrusive sills in all of the wells, with the notable exception of a cluster of open fractures in coals of the lower Vermejo Formation in well VPRE 33.

There are some significant differences in average and clustered values of fracture aperture in the four wells. The values of fracture hydraulic aperture are significantly higher in VPRC 87 than in well VPRC 73. The apparent difference in average fracture aperture between the FMI logs could be related to the values of resistivity in the drilling mud. The measured values of resistivity of the mud in the two wells differ by almost a factor of two (1.8 ohms and 3.0 ohms, respectively for VPRC 73 and VPRC 87). If there is an error in the value of resistivity in the mud, this could account for the apparent contrast in average hydraulic aperture between the wells.


It should also be noted that wells VPRC 73, VPRE 33, and VPRD 71 are somewhat unusual relative to FMI logs from western coal basins with regard to the large number of open fractures identified in the coals (Randy Koepsell, Schlumberger, personal communication).

It is expected that fractures parallel to the direction of maximum horizontal compressive stress would be more open and exhibit a larger fracture aperture. The relationship between estimated fracture aperture and orientation relative to the local horizontal stress state from the FMI and ADI logs in wells VPRC 73 and VPRC 87 is shown in Figure 62. On these plots, low values of the difference between strike and the ADI azimuth correspond to the situation in which the fracture is nearly parallel to the direction of the maximum horizontal compressive stress at that depth. There is no indication of the expected relationship between fracture aperture and orientation relative to the stress state in the plots in Figure 62. There is a small, expected negative correlation, as shown by the red line regression for well VPRC 73, but the correlation for well VPRC 87 is, unexpectedly, somewhat positive. These findings are apparently contrary to observations of production interference in wells aligned north-south, approximately parallel to the maximum horizontal compressive stress (Paul Basinski, El Paso Production, personal communication). However, interference between wells may be attributable to fracture continuity and connectivity, rather than to larger fracture aperture in the north-south direction.

The lack of apparent correlation between fracture hydraulic aperture and orientation relative to the local stress state may to due to several factors. The estimate of fracture hydraulic aperture on the FMI log is a highly derivative value that is consequently subject to error from several sources. Another potentially complicating factor is the relationship between vertical stress and fracture aperture. The vertical stress relative to the horizontal stress is not quantified with the ADI logging and would impact fracture aperture, particularly for less steeply dipping fractures.

VPRC73 FMI and ADI Geophysical Log

Figure 62: Fracture hydraulic aperture estimated from the FMI logs for wells VPRC 73 (upper) and VPRC 87 (lower) versus the angle between fracture strike and the local azimuth of the maximum horizontal compressive stress from ADI logs. The linear regression is shown as the red line in both plots.

2.3.5 Fracture Spacing

The spacing of fractures in the Raton Basin area was investigated by conducting a horizontal line survey of fractures in an exposed sandstone bed of the Vermejo Formation. Most of the fractures encountered in this survey were vertical or nearly vertical. The results of this survey are shown in Figure 63 as a probability plot. To construct this plot the values of fracture spacing were ranked and a value of cumulative probability was assigned to each ranked value, based on the number of observations. In Figure 63 the excedence (or cumulative) probability is plotted on a normal distribution scale and the fracture spacing is plotted on a log scale. The approximately linear distribution of the data points indicates that fracture spacing is log-normally distributed. The geometric mean or median of this distribution of fracture spacing is about 30 cm.

The results of this survey indicate a fairly dense distribution of vertical fractures in the sandstone of the Vermejo Formation, with a median spacing of only 30 cm. It is not clear how many of these fractures are related to near-surface unloading of stress and it should be noted that these results may significantly underestimate the fracture spacing in the subsurface. A log-normal distribution of fracture spacing is highly skewed and implies that many fractures are clustered with a relatively small spacing, but a few fractures are spaced relatively far from neighboring fractures.

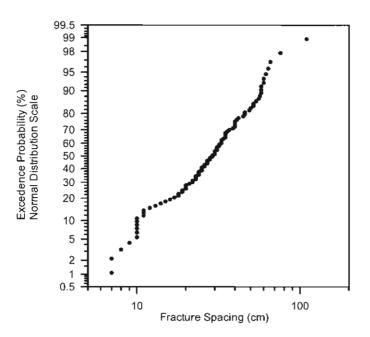


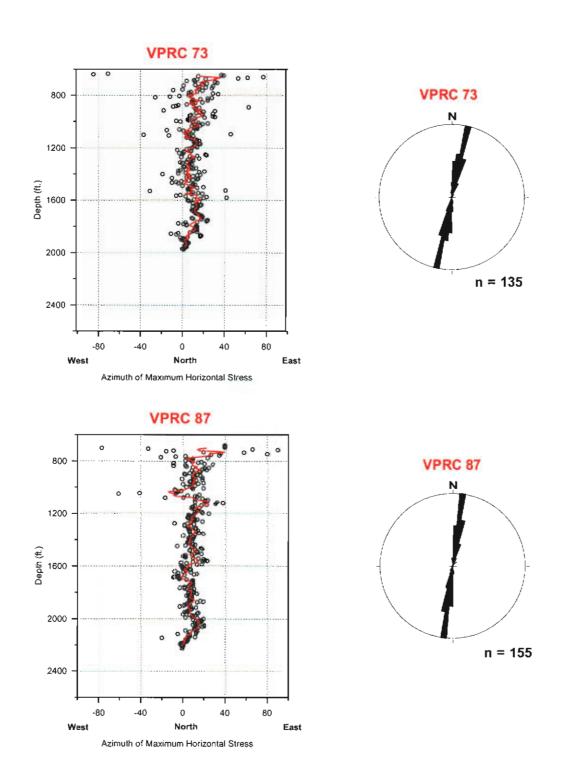
Figure 63: Probability plot of fracture spacing measured in a sandstone bed of the Vermejo Formation at the Maloya Lake spillway, Sugarite State Park, New Mexico.

2.4 WELL LOG ANALYSES OF STRESS

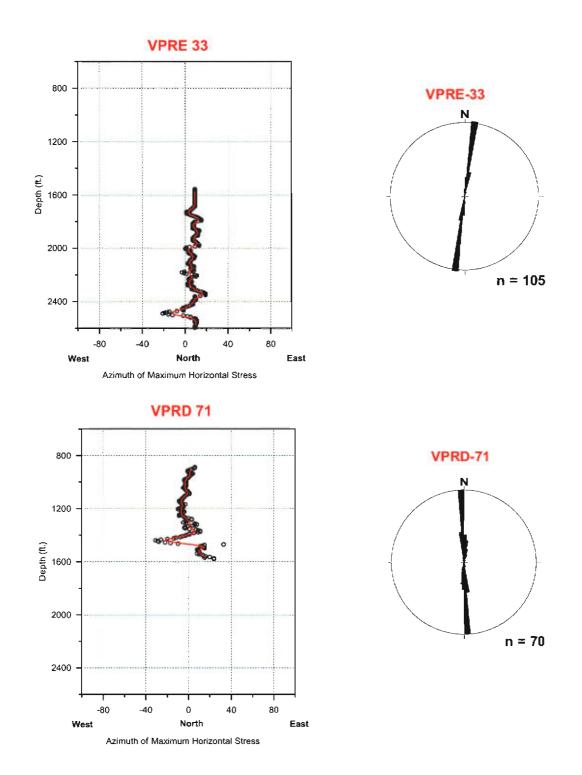
Measurements of *in situ* stress from geophysical logging in four wells in the Raton Basin (VPRC 73, VPRC 87, VPRE33, and VPRD 71) were analyzed to understand the present orientation of the stress field within the Basin. Locations of these wells are shown in Figure 58.

The ADI (or Dipole Shear Sonic Imager) logging tool detects anisotropy of the sonic shear-wave velocity within the formation. The acoustic anisotropy measured by this tool may be intrinsic or stress-induced in nature. Intrinsic anisotropy is due to preferential textural or fracture orientations within the rock; whereas, stress-induced anisotropy is imparted by differences in the horizontal stress state. The direction of fast shear-waves in the medium is aligned with intrinsic features or the maximum horizontal stress in the cases of intrinsic and stress-induced anisotropy, respectively. A consistent azimuth of maximum shear-wave velocity in a well, without a corresponding preferred fracture orientation or textural trend, is generally interpreted to be indicative of the direction of maximum horizontal stress.

2.4.1 Horizontal Stress from ADI Logs


Results of the ADI logging for the four wells are shown in Figures 64a and 64b. The plots on the left show the estimated azimuth of maximum horizontal compressive stress at 5 ft depth intervals and a smoothed curve of individual measurements using a running average. The plots on the right show the corresponding rose diagrams for the running average of the azimuth of maximum horizontal stress.

The average inferred direction of the maximum horizontal stress is approximately north-south in all four of the well logs. The average azimuth in wells VPRC 73, VPRC 87, and VPRE33 is between approximately N5°E and N10°E. The average azimuth in well VPRD 71 is somewhat different at approximately north. The variability in the individual measurements of the azimuth of maximum horizontal stress is noticeably greater in wells VPRC 73 and VPRC 87 than in wells VPRE33, and VPRD 71, particularly with regard to smaller-scale variations. There is no apparent geological explanation for this difference in variability at these locations. It is possible that differences in instrumentation and/or data processing account for these differences in variability.


The results of the ADI logging from these four wells indicate a consistent pattern of horizontal stress orientation at these four locations. This approximately north-south direction does not correspond to any dominant fracture set in wells other than VPRE 33 and indicates that the strong shear-wave anisotropy observed in the ADI logs is not related to preferential fracture orientation. These factors suggest that the ADI logging is sensitive to the regional stress state and that the stress regime is equivalent at the scale of the approximately 20 miles distance separating these wells. The average orientation of the maximum horizontal stress is more north-south in well VPRD 71 and this may be due to its location closer to the thrust front on the western margin of the Raton Basin. The thrust front is essentially north-south in this area; whereas, it strikes in a more northeasterly direction further to the north.

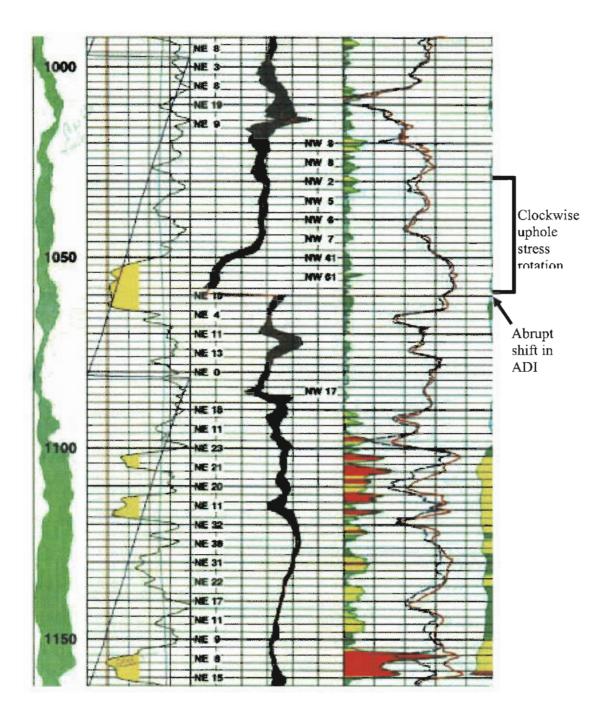
The present approximately north-south orientation of the maximum horizontal stress is about 90° different than the orientation during the formation of the Raton Basin. The Raton Basin formed

in response to west to east compression and thrusting during Laramide orogenic activity. Consequently, the maximum horizontal stress is inferred to have been approximately east-west during filling of the basin. The rotation of the maximum horizontal stress from east-west to north-south inferred from the ADI logging is consistent with conclusions that the stress regime rotated in the late Oligocene, based on the history of igneous intrusions (Close and Dutcher, 1990). The present north-south orientation of the maximum horizontal compressive stress may be a consequence of an extensional tectonic regime related to the Rio Grande rift system located to the west of the Raton Basin. Extension in the Rio Grande rift is in the east-west direction.

Figure 64a: Azimuth of the maximum horizontal compressive stress from the ADI logs from wells VPRC 73 and VPRC 87 versus depth. The red line shows the running average (over a 50 ft. window) of the azimuth of maximum horizontal stress. The rose diagrams to the right plot the corresponding values of the running average of the azimuth.

Figure 64b: Azimuth of the maximum horizontal compressive stress from the ADI logs from wells VPRE 33 and VPRD 71 versus depth. The red line shows the running average (over a 50 ft. window) of the azimuth of maximum horizontal stress. The rose diagrams to the right plot the corresponding values of the running average of the azimuth.

2.4.2 Horizontal Stress and Depth


The ADI logs from wells VPRC 73 and VPRC 87 indicate a noticeable decrease in the variability in the direction of the maximum horizontal compressive stress with depth (Figure 64a). The standard deviation in the direction in well VPRC 73 is 20° for depths of less than 1200 ft. and is 9° for depths greater than 1200 ft. For well VPRC 87, the standard deviation in the direction is 22° for depths of less than 1200 ft and is 7° for depths of greater than 1200 ft. The results for wells VPRE 33 and VPRD 71 do not show this pattern of decreasing variability with depth.

At shallower depths, the local stress state may be somewhat decoupled from stratigraphically adjacent units across fractures or bedding planes, leading to greater variability in the azimuth of the maximum horizontal compressive stress. With increasing confining pressure at depth, the stress state is more strongly coupled across such discontinuities and the variability in the orientation of the stress state decreases. The topographic relief of approximately 200-400 ft. near wells VPRC 73 and VPRC 87 could potentially influence the distribution of stress at shallower depths.

In addition, the ADI logs from wells VPRC 73 and VPRC 87 indicate a slight northerly rotation in the direction of the maximum horizontal compressive stress with depth. The mean direction of maximum horizontal compressive stress is N12°E for depths of less than 1200 ft. and is N8°E for depths of greater than 1200 ft in well VPRC 73. The mean direction of maximum horizontal compressive stress is N11°E for depths of less than 1200 ft. and is N7°E for depths of greater than 1200 ft in well VPRC 87. There is not a clear change in the azimuth of maximum horizontal stress in well VPRE 33, although all of the ADI logging in this well is at depths of greater than 1200 ft. The results for well VPRD 71 seem to show a more complex change in direction with depth, with the direction rotating to the west of north between 900 and 1200 ft depth and then rotating generally back to the east to a depth of 1600 ft.

There is an irregular but consistent, repetitive 30 to 50 ft thick "motif" within the shear wave velocity pattern, primarily within the upper parts of the section, in both the VPRC 87 and VPRC 73 wells. The motif consists of an irregularly clockwise uphole stress rotation that abruptly shifts by 20 to 50 degrees counter-clockwise at the top of the pattern. Typically the abrupt shifts occur within shaley intervals, but the shift at 1060 ft on the ADI log correlates to a highly fractured interval within what appears to be a sandstone on the FMI log (see Figures 65 and 66). Similar, but somewhat larger scale patterns are evident in the ADI logs for wells VPRE 33 and VPRD 71 shown in Figure 64b. The abrupt shift in the ADI log at about 1470 ft depth in well VPRD 71 also correlates with a highly fractured interval in the FMI log.

We suggest that the abrupt shift in orientation of the shear-wave velocity anisotropy orientation at the top of a motif occurs at sub-horizontal shear zones, probably thrust faults. Such stress deviations would be easily explained by the stress changes expected in proximity to shear zones. If this is the case, several small, horizontal thrust planes cut the upper part of the section, and in fact similar features can be found in outcrop. These zones of altered stress may in fact be production targets if they can be traced into reservoirs.

Figure 65: An example of the irregular uphole stress rotation typical within upper sections of the VPRC 87 and 73 holes. An abrupt shift at 1060 ft correlates to a fractured interval in the FMI log (Figure 66).

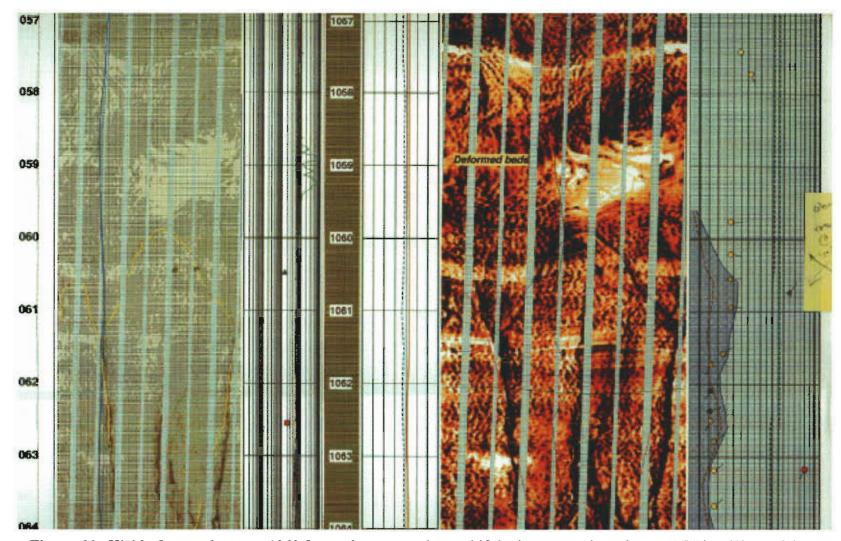


Figure 66: Highly fractured zone at 1060 ft correlates to an abrupt shift in the stress orientation on ADI log (Figure 65).

2.4.3 Relationship Between Horizontal Stress and Fractures

As indicated in the results presented above, the direction of maximum horizontal compressive stress, based on the ADI logging, is consistently oriented in an approximately north-south direction in the four wells used in the analysis. Results from the FMI logging of open fractures indicate that, with the exception of well VPRE 33, there are very few fractures that are optimally oriented to be open and highly permeable (i.e., parallel to the maximum horizontal stress). In contrast, there are numerous fractures oriented parallel to the maximum horizontal stress in well VPRE 33, suggesting higher permeability aligned in a north-south direction at that location.

2.5 IN SITU STRESS CONDITIONS IN THE RATON BASIN DURING THE FORMATION OF SILLS AND DIKES

2.5.1 Background

Dikes and sills are both intrusive igneous bodies that were formed by the injection of magma into solid host rocks. Both have roughly tabular shapes. By definition, sills are oriented approximately horizontally, and dikes approximately vertically. In the case of the Raton basin the host rocks are sedimentary layers that were nominally horizontal at the time of intrusion. Therefore, dikes cut the sedimentary layers perpendicularly, whereas sills are parallel to the layers. The mechanism of formation of both is thought to be tensile fracture of the host rock caused by the fluid pressure of the intruding magma. A key feature of these structures is that they lie in planes normal to the minimum principal compression (*Anderson*, 1951).

Hubbert and Willis (1957) aptly compared these natural hydraulic fractures to the man-made ones emanating from boreholes. In addition to pushing the rock walls open against the minimum compression, hydraulic fractures, either natural or man-made, must also break the host rock at the tip of the fracture.

2.5.2 Elastic Geomechanical Model

At the outset we must choose a constitutive relation for the host rock. Though there is evidence to the contrary such as time-dependence, nonlinearity and presence of discontinuities, the basic elastic model has been very successful for this type of problem because the time scale of fracture and injection is short. Examination of the elastic model will shed light on the relation of the orientations of dikes and sills to the stress boundary conditions.

The basic constitutive assumptions are that the intruded rock mass is homogeneous, isotropic elastic. In a later section, a layer of differing elastic properties is included. If the pores are fluid filled, the stresses are the effective values. The standard rock mechanics convention is adhered to such that compressive stresses and strains are taken to be positive and ordered as $\sigma_1 > \sigma_2 > \sigma_3 > 0$ and $\varepsilon_1 > \varepsilon_2 > \varepsilon_3 > 0$, respectively.

The surface of the earth, which is a free surface and thus a principal surface, is taken to be locally horizontal so that the remaining two principal surfaces are vertical. The vertical normal stress is induced by the overburden weight.

In the absence of tectonic stress, horizontal normal stress has been taken either as equal to the vertical stress (hydrostatic), or as given by a uniaxial strain condition, which is tantamount to lateral confinement (*Price*, 1966). Here we take the horizontal strain to be zero at the outset and thus assume the uniaxial strain condition. This condition derives from the fact that in an undisturbed basin, the symmetry suggests that as vertical load increases, the Poisson-induced lateral motion is restricted by the adjoining material.

Constitutive Equations

The problem is set up by erecting a right handed coordinate system (e, s, v) such that v is vertical (positive downward) and e increases to the east, s increases to the south. The elastic constitutive relations in three dimensions are (*Timoshenko and Goodier*, 1970)

$$\sigma_{e} = \frac{\nu E}{(1+\nu)(1-2\nu)}\Theta + \frac{E}{1+\nu}\varepsilon_{e}$$
(1)

$$\sigma_{s} = \frac{\nu E}{(1+\nu)(1-2\nu)}\Theta + \frac{E}{1+\nu}\varepsilon_{s}$$
(2)

$$\sigma_{v} = \frac{\nu E}{(1+\nu)(1-2\nu)}\Theta + \frac{E}{1+\nu}\varepsilon_{v}$$
(3)

where σ_i is normal stress, ε_i is normal strain and i = (e, s, v). Young's modulus is E, v is Poisson's ratio, and the volume strain is $\Theta = \varepsilon_e + \varepsilon_s + \varepsilon_v$.

Boundary Conditions for a Simple Sedimentary Basin

There are several situations in which dikes or sills could form, but here the problem will be set up to be consistent with the probable stress system responsible for the formation of the Raton Basin. This is the same stress system for any elongate basin compressed normal to its long axis. First, we examine the basic situation in which the stresses derive from the overburden only. For this case, as pointed out above, the horizontal strains are constrained to be zero $\varepsilon_e = \varepsilon_s = 0$ and by symmetry $\sigma_e = \sigma_s$. The vertical stress is reckoned to be $\sigma_v = \rho gv$ where ρ is wet rock density, and g is acceleration due to gravity. As is Section 2.1.7 all stresses are taken to be effective stresses as defined in that section. Inserting these conditions into equations (1-3) results in great simplification to

$$\sigma_{\rm v}({\rm v}) = \rho {\rm gv} \tag{4}$$

$$\sigma_{\rm e}(v) = \frac{v}{1 - v} \rho g v \tag{5}$$

$$\sigma_{\rm s}({\rm v}) = \frac{\nu}{1 - \nu} \rho {\rm gv}. \tag{6}$$

The argument v is shown explicitly for the stress to emphasize that the stresses vary with depth. It is interesting to note that of the two elastic constants appearing in the constitutive equations, only the Poisson ratio ν remains in equations (4–6). Thus the only material parameters appearing in the model are Poisson's ratio ν and density ρ . Equations (4–6) show that the horizontal stresses are

always less than the overburden stress. Compare this to the other common starting point of hydrostatic conditions, where the horizontal stresses are equal to the vertical stress.

Poisson's ratio ranges from about 0.1 to 0.3 depending on rock type and therefore $0.11 \sigma_v < \sigma_e = \sigma_s < 0.43 \sigma_v$. That is, the horizontal stresses are 0.11 to 0.43 of the vertical stress.

Tectonic Stress

Additional tectonic stress along one direction, in this case the east-west σ_e , can be accounted for with the system

$$\sigma_{\rm c} = \sigma_{\rm t} \tag{7}$$

$$\mathcal{E}_s = 0 \tag{8}$$

$$\sigma_{\rm v} = 0. \tag{9}$$

This is a plane strain problem wherein the deformation is restricted to the vertical, east-west plane. The tectonic stress σ_t is taken to be independent of depth, but may vary with time. This system of stresses would tend to create an elongate basin, characterized by buckling of layers if the magnitude of tectonic stress was great enough.

The basic principal for creation of a fluid-filled crack is that the crack must lie in the plane of σ_1 and σ_2 , and is normal to σ_3 . The simplest criterion of formation is that $p \ge \sigma_3^{tot} + T_0$, where p is the magma pressure in the crack and T_0 is the tensile strength of the host rock. T_0 is a very low number for rock, and is vanishingly small for a bedding plane. Therefore, if magma pressure is just slightly greater than the minimum compressive stress a sill or dike is likely to form.

Propagation could be discussed in terms of fracture toughness rather than tensile strength, but this would not add any important insights for the problem at hand.

Boundary Conditions for a Sedimentary Basin Under Tectonic Stress

The problem under consideration is one of linear elasticity and therefore the two previous problems can be superposed. This is tantamount to adding the oriented tectonic stress to the simple sedimentary basin. Adding equations (4–6) to equations (7–9) results in

$$\sigma_{v}(v) = \rho g v \tag{10}$$

$$\sigma_{\rm e}(\mathbf{v}) = \frac{\nu}{1-\nu}\sigma_{\rm v} + \sigma_{\rm t} \tag{11}$$

$$\sigma_{\rm s}({\rm v}) = \frac{\nu}{1 - \nu} \sigma_{\rm v} + \nu \sigma_{\rm t} \tag{12}$$

The vertical stress σ_v is still governed by gravity and density of the overlying rocks plus any fluids contained in them. The driving stress σ_e is the component of stress induced by the vertical stress plus the independent, east-west tectonic stress. The north-south stress is comprised of elastic components arising from vertical loading and the tectonically applied stress.

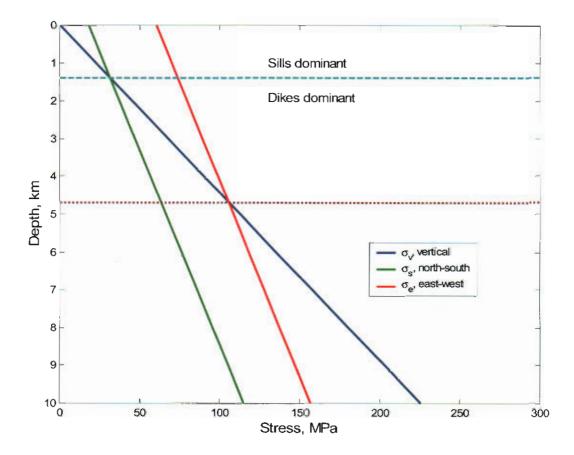


Figure 67: The three normal stresses σ_v (vertical stress, blue line), σ_e (east-west stress, red line), and σ_s (north-south stress, green line), plotted against depth. Above the dashed line, the relative stress magnitudes promote the formation of sills. Below the dashed line, dikes are more likely to form. Below the dotted line, the maximum and intermediate stresses exchange directions within the planes of the dikes, but this has no effect on orientation of the intrusion. Poisson's ratio is taken as 0.3 and $\sigma_t = 60$ MPa.

2.5.3 Implications for Dikes and Sills in the Raton Basin

The relationship of dikes to sills can be easily seen by choosing some realistic values for the parameters ν , ρ and σ_t . As noted above $0.1 \le \nu \le 0.3$. The density of sedimentary rock is taken to be 2300 kg m⁻³, which may vary with porosity and pore filling. For illustration, the tectonic stress was taken to be $\sigma_t = 60$ MPa. Figure 67 shows the three coordinate stresses plotted against depth. At the surface $\nu = 0$ so that

$$\sigma_{v}(0) = 0 \tag{13}$$

$$\sigma_{e}(0) = \sigma_{t} \tag{14}$$

$$\sigma_s(0) = \nu \sigma_t \tag{15}$$

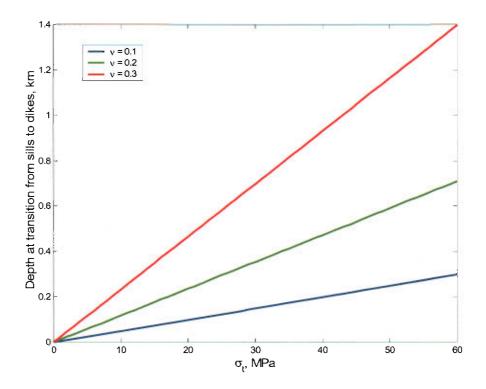


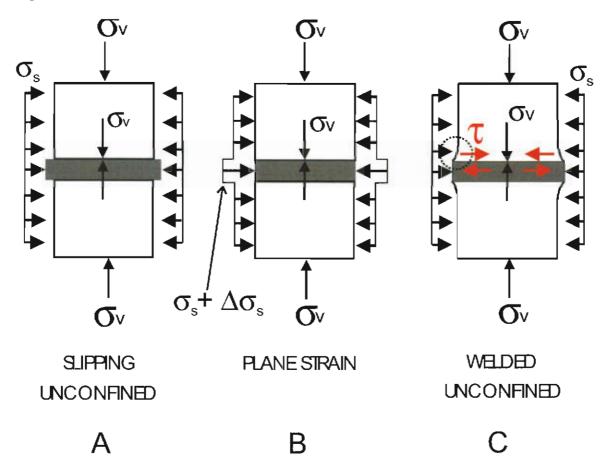
Figure 68: Depth below which dikes predominate and above which sills predominate plotted against tectonic stress for several values of ν . Density ρ was taken to be 2300 kg m⁻³.

The slope of the vertical stress is 23 MPa km⁻¹. The vertical stress is zero at the surface and increases linearly with depth. The stress in the east-west direction σ_e starts at 60 MPa at the surface and increases less rapidly with depth than σ_v because of the factor v/(1-v). The north-south stress σ_s increases at the same rate as σ_e , but starts out at the surface at only $v\sigma_c = 18$ MPa.

The important consequence of the different rates of increase of the horizontal stresses with respect to the vertical stress is that although $\sigma_v \leq \sigma_s \leq \sigma_e$ at the surface, σ_v surpasses σ_s at a depth of 1.5 km. At depths less than v = 1.5 km, the stresses are ordered $\sigma_v \leq \sigma_s \leq \sigma_e$ and therefore, $\sigma_v = \sigma_3$, that is, the vertical stress is the minimum compressive stress. Any hydraulic fracture to form at depths shallower than v = 1.5 km will then be a sill. Similarly, below 1.5 km the stresses are ordered $\sigma_s \leq \sigma_v \leq \sigma_e$ or $\sigma_s = \sigma_3$, $\sigma_v = \sigma_2$ and $\sigma_e = \sigma_1$. Therefore, below v = 1.5 km, any hydraulic fracture to form must be vertical and consequently it would be a dike. In this case, the dikes, would lie in the plane of σ_1 and σ_2 and strike east-west. Below 4.7 km, the stresses are ordered such that $\sigma_s = \sigma_3$, $\sigma_e = \sigma_2$, and $\sigma_v = \sigma_1$. A hydraulic fracture forming below 4.7 km, is also a dike, but σ_1 and σ_2 have exchanged directions—they still lie in the east-west plane of the dike.

Additional information can be gained by examining the relation between the critical depth as a function of σ_t for various values of v. The density is also a factor but does not vary as rapidly relative to the other two variables. The depth of transition from sills to dikes is plotted against σ_t in Figure 68 for selected values of v. For higher values of v the effect of tectonic stress magnitude is greater. In fact for the smaller values of 0.1 to 0.2 for v the effect of tectonic stress is much less than that for v = 0.3, the value used in Figure 67. Poisson's ratio tends to smaller values in rocks of lower elastic modulus E (*Jaeger and Cook*, 1969), and this often correlates with increased porosity. Clearly, the orientations of dikes and sills can be used to determine the direction of one axis of the stress tensor, σ_3 . Estimates of the magnitude of σ_t can be made from Figure 2, or by equating equations (10) and (12), if the depth of emplacement could be estimated.

A question of some importance is when, relative to subsidence, did the intrusives form? For example, further subsidence combined with additional sedimentation could easily lead to dikes being higher in the stratigraphic section than sills. Thus, the ages of the dikes and sills by independent means is also an important consideration It is possible that further considerations of this type could lead to a better estimate of the rock properties in the Raton basin or boundary conditions on the basin at the time of formation of the intrusives.


2.5.4 Depression of the Sill-to-Dike Transition Depth

Clearly, for a given density, the factors controlling the relative magnitudes of the three stresses during the emplacement of tabular intrusions in this scenario are the Poisson's ratio and the tectonic stress σ_t . The roles of both ν and σ_t were examined in Figure 68. It is clear from that figure, that for larger values of ν , the transition depth increases for a model with no layering. The question of included layers and how they might behave is now addressed.

Uniform Host Rock with an Included Layer of Coal

In this section $\nu = 0.2$ is used for the host rock (a better value for sedimentary rocks), and the response of an included layer of coal with $\nu = 0.4$ is examined. This value for coal was suggested by Paul Basinski (El Paso Production Company) and is supported by data from *Peng* (1978). Inclusion of a layer with a value of ν different from the host rock broaches the issue of the

conditions at the layer interfaces, i.e., bedding surfaces. There is a continuum of conditions there, bounded by the extreme cases of welded and frictionless interfaces. Let us determine if this problem can be done analytically. The difference in kinematics between these two cases is depicted in

Figure 69: A) Three-layer model with frictionless contacts. Loaded vertically with σ_v and laterally with σ_s . Both σ_v and σ_s are continuous across the bedding planes. The coal layer is allowed to "squeeze out". B) Same with sufficient additional σ_s applied to push coal layer back to the original size. Vertical stress continuous, σ_s discontinuous at contacts. C) Same three-layer model with welded contacts. Applied vertical and lateral stresses are continuous. The additional lateral deformation of the coal induces shear stresses along the contacts and distorts the host rock as indicated in the dotted circle.

Figure 69, which shows the results for a three-layer model with the coal in the middle (gray shading), ignoring gravity. The boundary stresses are σ_v vertical and σ_s lateral for the frictionless case in A and the welded case in C. This sketch corresponds to looking east-west. In the frictionless case A, the coal layer extrudes out the sides, which are loaded with a uniform lateral stress σ_s . This results is a sharp discontinuity in the horizontal displacements at the bedding surfaces. For welded conditions C, the larger v for the coal still causes more lateral displacement for coal, but now the coal exerts a drag on the surrounding rock, and vice versa, setting up shear stresses as shown in red.

The surrounding rock, being stiffer and welded to the coal, prevents the coal from extending laterally to an extent as great as that in the frictionless case. The displacement is now continuous across the bedding surfaces (circled in Figure 69C). The induced shear stresses cause the principal stresses to rotate from vertical and horizontal.

The application of sufficient additional lateral stress to the frictionless model, (Figure 69A) calculated with knowledge of nothing more than the vertical stress σ_v and v for coal, pushes the coal layer back to the same width as the surrounding rock (Figure 69B). In this problem, the vertical stress remains continuous from top to bottom of the model, even at the coal/rock interfaces as required by stress equilibrium. The lateral stress is not continuous across the interfaces, but is not required to be by equilibrium conditions (See *Appendix*). Because the interfaces are frictionless, no shear stresses arise, and thus the normal stresses remain the principal stresses everywhere in the model. Calculation of σ_v and σ_s is therefore independent of the existence of the layer, and depends only on the depth and the local value of v, and the condition of zero-displacement at the lateral boundaries. The mathematical details of equilibrium conditions are given in the *Appendix*.

For the welded condition, the unknown resistance to lateral expansion of the coal caused by the surrounding rock makes it difficult to estimate the stress increment required to enforce plane strain on the model in Figure 69C.

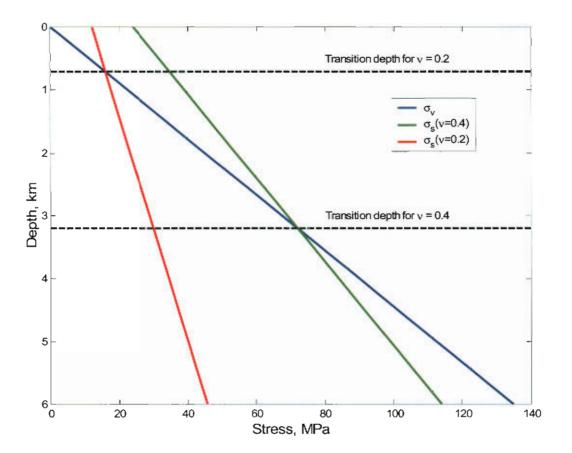


Figure 70: Vertical stress σ_v and σ_s plotted against depth for v=0.2, typical of sedimentary rocks, and v=0.4, representative of coal. The depth where σ_v exceeds σ_s is the transition depth from sills to dikes. This transition occurs at 0.72 km (2362 ft) for v=0.2. For v=0.4, the transition occurs at 3.21 km (10,531 ft).

Figure 70 shows the results of assuming in that calculation that the lateral stress is independent of which layer is being considered. This plot shows σ_v for a gradient of 23 MPa km⁻¹ and $\sigma_t = 60$ MPa as in Figure 1. As the maximum stress σ_e is largest of the three stresses, and is always equal to σ_1 , it is not involved in locating the transition depth and is omitted for clarity. Two lines, one for v = 0.2 and the other for v = 0.4 are shown as red and green, respectively. These are calculated from equation (3). This plot shows that for an non-layered model of v = 0.2 the transition depth is 0.72 km (2362 ft), and that for a non-layered model of v = 0.4, the transition depth is 3.21 km (10531 ft). In the light of the argument presented in the previous paragraph, one may correctly interpret this to show that an embedded layer with v = 0.4 could allow the intrusion of sills to depths of 3.21 km even while embedded in material that allows sills to form only to a depth of 0.72 km. Thus the sill-to-dike transition depth is depressed 2.49 km below the level of the host rock.

A value for the transition depth v_{transH} for a particular geographic location can be calculated for the host rock by equating eqn. (1) and eqn. (3) to get

$$\mathbf{v}_{\text{transH}} = \frac{\nu_{\text{H}}}{\rho g} \left[\frac{1}{(1 - \nu_{\text{H}})} \sigma_{v} + \sigma_{t} \right].$$

Simply enter the appropriate ρ for the local geologic column, and assign some reasonable average value to $v_{\rm H}$ for the host rock. The reasonable value for the tectonic stress $\sigma_{\rm t}$ is somewhat arbitrary and is left to the experience of the investigator. Next, enter the value of $v_{\rm C}$ for coal and recalculate according to

$$\mathbf{v}_{\text{trans C}} = \frac{\nu_{\text{C}}}{\rho g} \left[\frac{1}{(1-\nu_{\text{C}})} \sigma_{\text{v}} + \sigma_{\text{t}} \right].$$

The transition depth in coal v_{transC} is independent of the transition depth in the host rock.

2.5.5 Finite Element Model

To broaden the applicability of the geomechanical model, its response with welded bedding surfaces was investigated. A commercially available partial differential equation solver called *FlexPde*[©] was used to solve the two-dimensional static equilibrium equations of elasticity with gravity, as written in the *Appendix (Timoshenko*, 1970). Stress boundary conditions were given by equations (1–3). The model dimensions were 10 km wide by 10 km deep (Figure 71). A coal layer is modeled at a depth of 2.2 km and was taken to be 0.3 km thick. (This unrealistically large thickness was used for clarity of display and has no effect on the results.) The top and bottom layers have v = 0.2 and the included coal layer (Fig. 5, gray) has v = 0.4. The small rectangular

inset in the lower right of the figure shows relative dimensions, location of the coal, and the vertical line shows the axis of the plot. The red numerals are keyed to the plot.

The gravity induced vertical stress σ_v is shown in green as a function of depth. The calculated values of both σ_e (purple) and σ_s (red) are also shown as functions of depth. The horizontal dotted black line indicates the sill-to-dike transition at a depth of 0.7 km, the same as calculated previously for frictionless interfaces to within plot-reading error. The vertical stress is continuous with depth as discussed earlier; it is the gravity stress ρgv . The lateral stresses, however, are both strongly discontinuous at the rock/coal interfaces. The maximum σ_e jumps about 30 MPa in the coal layer and remains the maximum principal stress. The minimum σ_s lateral stress jumps about 35 MPa in the coal layer and surpasses the vertical stress is the minimum principal stress is the minimum principal stress in the coal layer. As the vertical stress is the minimum principal stress in the coal, any intrusions that may form would therefore be sills.

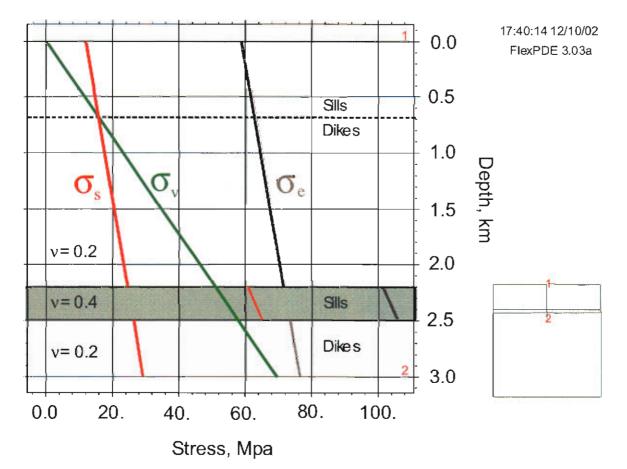


Figure 71: Two-dimensional, elastic model. The host rock is uniform sedimentary rock with $\nu = 0.2$ containing a single layer of coal (gray) with $\nu = 0.4$. The vertical line indicated by the red numerals 1 and 2, is the line along which the stresses were plotted.

It is pointed out that the stress profiles are more complicated at the lateral edges of a finite size model. This has no effect on the problem at hand, however, as the boundaries in the real situation are far away.

2.5.4 Conclusions

The geomechanical model developed here for sill and dike development in the Raton Basin has shown the following:

- 1. The transition depth separating sills from dikes is greater for materials with higher Poisson ratios.
- 2. Whether the interfaces between coal and surrounding rock are welded or freely slipping is immaterial to the calculations.
- 3. The formation of sills in a given layer is independent of the possibility of enclosing layers having different Poisson ratio. Therefore, the sill-to-dike transition depth can be calculated for the host rock and coal independently, using equations 4 and 5.
- 4. Sills may have formed in coals to depths as great as 3.21 km. This compares favorably with the reconstructed depth for the coals of 2.44 km. In the absence of coals the transition depth would have been nearer 720 meters.

Appendix

Recall the that the Cartesian coordinate system used in this analysis was (e, s, v) representing the geographic coordinates. The two-dimensional stress equilibrium equations including gravity body force \mathbf{F}_v in the v-direction are

$$\frac{\partial \sigma_s}{\partial s} + \frac{\partial \tau_{vs}}{\partial v} = 0$$

$$\frac{\partial \tau_{vs}}{\partial s} + \frac{\partial \sigma_{v}}{\partial v} + F_{v} = 0$$

Existence of the derivative $\partial \sigma_s / \partial s$ requires that σ_s be continuous in the s-direction but not the v-direction. Similarly, existence of $\partial \sigma_v / \partial v$ requires that σ_v be continuous in the v-direction but not the s-direction. The existence of the derivatives of shear stress is satisfied because τ_{vs} is zero everywhere.

2.6 MECHANICAL ANALYSIS OF THE RATON BASIN

The finite element analysis of the Raton Basin represents an initial attempt at numerically simulating the geologic evolution of the Raton Basin. It is hoped that understanding the development of the aggregate stress state in the basin may lead to a predictive model for the exploration of potential natural gas reserves within the basin.

The model can be described as a regional model in that we are attempting to ascertain the mechanical response of the Raton Basin from a large east-west cross-section of the basin. Individual geologic structures such as dikes, sills, faults, and disjointed material layering are not included in this model. The effects of such geologic structures on the stress and displacement fields in the basin are better addressed by smaller and more detailed models. It is hoped that the regional model does provide adequate computational resolution for understanding the development of the Raton Basin.

The computer codes used to create the finite element meshes, analyze the models, pre-, and post process the data were developed at Sandia National Laboratories in Albuquerque, NM (Sandia). The finite element mesh was created by CUBIT (Cubit, 2000) a three-dimensional mesh generating code. The analysis was performed using JAS3D (Blanford, 2001), a quasi static three-dimensional finite element code. The transfer of model information (stress and displacement fields) from one model to another is accomplished with MAPVAR (Wellman, 1999), a finite element model, data mapping program. Additional software was also written by the analyst specifically for this project to facilitate the modeling of the layer deposits and variable extraction from the data base.

2.6.1 Model Description

The finite element analysis models the geologic history of the Raton Basin from 74.5 million years ago (Mya) to the present era. During this time span the geologic structure that will eventually form the Raton Basin undergoes horizontal compression from the Laramide thrust on its western flank and gravity loading from layer deposits and erosion. Figure 72 shows the plan view of the Raton Basin with the region of interest shaded in the figure.

Model Geometry and Boundary Conditions

The finite element model of the Raton Basin represents a 87 Km slice of the Raton Basin (Keefe, 2002). The western boundary of the model is the Laramide thrust fault boundary and the model extends approximately 10 Km beyond the eastern edge of the basin. An additional 10 Km were appended the eastern edge of the basin in order to reduce boundary condition effects upon this region of interest. Figure 73 shows the boundary conditions of the model. The east (right) side of the model is restrained against horizontal displacement and is free to move vertically. The west (left) side of the model has a horizontal displacement boundary and is free to move vertically. The north and south boundaries (out-of-plane) of the model are restrained against horizontal displacement. In solid mechanics terms this is a plane strain model.

The finite element model is composed of 55,616 hexagonal elements (8-node bricks) and 113,100 nodes. The average element in the mesh is roughly 100 m on a side and thin material layers have a minimum of three elements through their depths.

Constitutive Model

The geology of the Raton Basin is very complex and not fully characterized, particularly in regions of the basin close to the Laramide thrust fault. Adding to the modeling uncertainty there is a limited database of mechanical properties defined for the rocks in the basin. As a result mechanical properties for the material layers are largely derived from representative rock properties. The geology of the Raton Basin is modeled by seven material layers whose properties are derived from averaging the various rock types making up the individual geologic units (Cooper, 2002). Figure 74 shows a close up view of the material layers on the western edge of the model.

The mechanical response of the rock layers is modeled using Sandia's soil and crushable foam constitutive model (Stone, 1995). In the soils and foams material model mechanical response is defined by dilational and deviatoric properties of the material. The dilational response of the material is controlled by the pressure (mean stress) and the volumetric strain (natural strain). The pressure is defined as a function of the volumetric strain. In the case where a pressure versus volumetric curve is not specified by the analyst the dilational response is linear with the slope of the pressure versus volumetric strain curve being the bulk modulus of the material (Figure 75). The deviatoric response of the material is governed by a yield surface defined as a parabolic function of the pressure (Figure 75). Tensile failure of the material can be approximated by specifying a tensile stress limit (negative) on the pressure axis.

The pressure dependent yield surface allows the analyst to use failure criteria that can be defined in terms of a pressure variable and can create a smooth surface of revolution about the pressure axis. The Drucker-Prager (Desai, 1984) failure criterion meets these requirements and it defines a conical failure surface (truncated cone if a tensile stress limit is specified) when rotated about the pressure axis. The Drucker-Prager criterion is defined as a linear function of pressure in the soil and foams material model. The Mohr-Coulomb failure criterion could not be used as it defines a six sided prismatic solid centered about the pressure axis.

The dilational response of the rock layers is modeled using the default linear function in the soils and foams material model due to the lack of pressure and volumetric strain data.

Figure 76 depicts the Young's modulus and Poisson's ratios for the rock layers from the stiffest material (granite) to the softest (mid-Cretaceous units). In Figure 77 the Mohr-Coulomb failure parameters are similarly ordered from the strongest (granite) to the weakest (mid-Cretaceous units; Cooper, 2002).

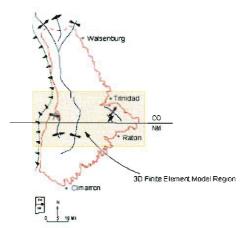


Figure 72: Region of interest.

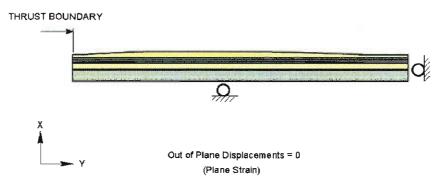


Figure 73: Model boundary conditions.

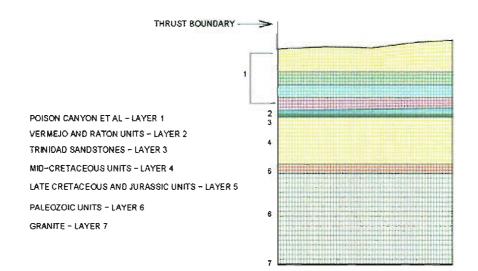


Figure 74: Mesh detail left-hand side of model.

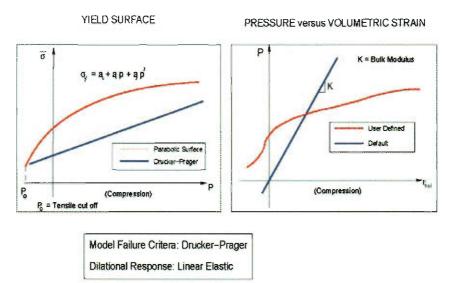


Figure 75: Soil and foams material model.

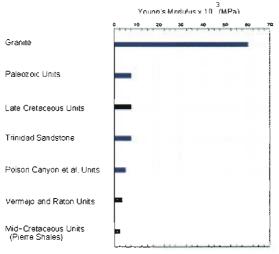
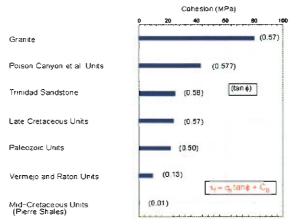
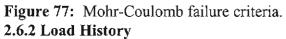




Figure 76: Young's moduli.

The loading history of the Raton Basin model is depicted in Figure 78. In the figure the Laramide thrust history, the expected creation dates of the material layers, and other relevant geologic events are depicted on the time line.

Early and Late Laramide Thrust Histories

In the analysis the horizontal movement of the Laramide thrust is modeled as a bilinear displacement function. The abrupt change in the curve's slope marks boundary between the early and late Laramide thrust periods. The assumption of linear thrust movement in the model is admittedly simplistic as the true fault movement is more likely characterized by intermittent and varying rates of movement. From the present geologic evidence the early Laramide thrust began approximately 74.5 Mya, moved at an average rate of 120 m/Myr to about 62 Mya. In the late Laramide period thrust fault activity increased and the thrust fault moved at an average rate of 444 m/Myr and ending movement at 44 Mya.

Regional Strain Across the Basin

The Laramide thrust has been estimated to move 9500 m eastward over it's 30.5 million years (Myr) of activity. The effects of the thrust faulting were felt far beyond the eastern edge of the Raton Basin. It is the consensus of the project group that the average horizontal strain developed within the Raton Basin is on the order of two percent. This translates to a maximum horizontal displacement of 1745 m being applied to western flank (left-side) of the model.

Deposit Process of Material Layers

Four of the seven material layers from the Mid-Cretaceous units down to the base Granite are assumed to be in situ prior to the start of the Laramide thrust. The remaining three geologic units are deposited or "birthed" over the course of the Laramide thrust. The deposit of the geologic units is modeled as discrete loading events, reflecting the rapid (geologically speaking) lay down of the material. The Trinidad Sandstones are deposited 71.3 Mya, followed by the Vermejo and Raton units at 62 Mya, and finally the Poison Canyon *et al.* units are deposited in three discrete loading events starting at 40 Mya and ending at 37 Mya. The decision to break the Poison Canyon *et al.* units deposit into three parts, 40 Mya, 38 Mya, and 37 Mya, was based upon two concerns. One being the greater thickness of the geologic unit relative to the previous units and that multiple deposits over time would be more realistic. The other concern was the numerical stability of the finite element calculation if a large load is instantaneously applied to the model.

The in situ stress state of the material layers (pre-existing and deposited) was chosen to be lithostatic (horizontal components of stress are equal to the vertical stress) for modeling purposes. The classic, elastic solution for plane strain, gravity loaded models calculates the ratio of the horizontal stresses to the vertical stress to be v/(1+v) where thev is the Poisson's ratio of the material. In most geologic settings the elastic solution underestimates the actual stress ratio. Usually the ratios of horizontal to vertical stresses are closer to unity and thus were set to a lithostatic stress state in the analysis. An exception to the lithostatic condition was made for the last component layer of the Poison Canyon *et al.* units. It was in the analyst's opinion that given the proximity of the free surface a lower stress ratio was more realistic and therefore the elastic solution stress ratio was used.

The assumption of the discrete creation of the material layers implies that erosion is non-existent during the Laramide thrust. While the lack of erosion during the Laramide thrust is not realistic in the model, there is an absence of data indicating the extent of this process. It can be said that the rate of layer building was faster than the rate of erosion during the period of 74.5 to 44 Mya timeframe. The erosion that is analyzed in the model occurs later than 44 Mya.

The creation of material layers in the model made the analysis a stop and start process. The calculation was halted at the time when the layer was to be deposited. The in situ stresses and material properties in the new layer were computed, mapped onto the model, and the calculation restarted. The JAS3D code outputs a restart file at user specified intervals during a calculation. The restart file contains all the state variables required to restart the calculation. It is important to note that the geometries of all the "to be deposited" layers were carried along in the finite element model from the start of the analysis. The material properties of these layers; stiffness, strength, and density were set at very low values prior to their "birth". For example the Trinidad Sandstone unit had a pre-deposit density of 2.320e-06 kg/m³ and a bulk modulus 0.333 MPa. The post deposit values for these variables were respectively set at 2320 kg/m³ and 5643.94 MPa. Setting the material properties to very low values minimizes their effect upon the lower layers in the model and produces a near zero stress states within the materials themselves. Custom software was written to edit the restart file to enable this process.

Post Laramide Thrust and Erosion to the Present Era

The post Laramide thrust period is dominated by erosion whereas the previous period of thrust activity was characterized by layer building. Figure 79 shows the top surface of the Poison Canyon *et al.* units at the end of the Laramide thrust with intermediate surfaces between it and the present era surface profile. The rate of erosion from 44 Mya to the present era is unknown and in the absence of data the decision was made to model the erosion from the post Laramide thrust surface to the present era topography in five discrete steps. The intermediate surfaces were derived by linear interpolation between the post Laramide and present era surfaces. In the figure each curve is annotated with the time of formation in the model.

The analysis of the erosion of Poison Canyon *et al.* units was simpler than the modeling of the layer deposit during the Laramide thrust period. JAS3D has a material death option that allowed the removal of the erosion layers and eliminated the need for stopping and restarting the calculation1. To model the erosion the part of original model defining the Poison Canyon *et al.* units was re- meshed, going from the original three layers to the five layers defining the erosion geometry. Stresses, displacements, and other state variables were then mapped using the MAPVAR code onto the new mesh from all seven geologic units to create a new restart file. The analysis could continue from this point with the new mesh and restart file.

¹ JAS3D also has a material birth option, but it did not work properly for creating material layers in the Raton Basin model.

Rio Grande Extension

Approximately 26 Mya the geologic structures west of the Laramide thrust fault underwent a large north-south extension. Four Myr after that event the maximum principal stress (compression) in the Raton Basin rotated 90° from an east-west direction to a north- south direction. There is a lack of agreement among the geologists and engineers on this project over how or if the Rio Grande extension affected the swing in maximum principal stress direction in the Raton Basin. A plausible case can be made that the Rio Grande extension west of the thrust fault relaxed the thrust load on the Raton Basin and thereby reduced the maximum horizontal stress in the castwest direction. The reduction in the east-west compressive stress may have been enough to allow the north-south horizontal stress to dominate. Another opinion is that the rotation in the stress direction was due to processes, not fully understood, occurring within the Raton Basin itself. The main process for driving the stress rotation being the erosion of the overburden. In the current analysis the effects of the Rio Grande extension are not included in the model and will be considered when more field evidence is gathered and greater consensus among the researchers is reached. However in the analysis the erosion of the overburden includes output occurring at both the time of the Rio Grande extension and the time of the stress direction reversal in the Raton Basin.

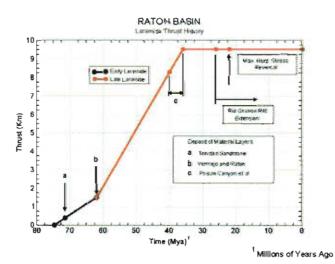


Figure 78: Laramide thrust loading history.

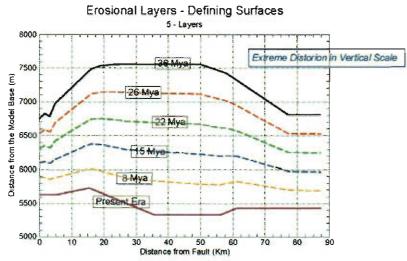


Figure 79: Post Laramide thrust topographies.

2.6.3 Model Results

JAS3D outputs a plot file containing the time histories of the stresses, displacements, and user selected variables for every element (stresses) and node (displacements) in the mesh. From this data the user can derive principal stresses, principal stress directions, and other variables of interest. In the Raton Basin analysis the stresses, displacements, principal stresses, and principal stress direction components were written to the plot file.

Formation of the Raton Basin

One of the encouraging predictions made by the finite element model was the formation of a basin-like structure as interpreted from the deformation of deep layers in the model at the end of the Laramide thrust. The basin formation was not a monotonic process, but one in which the layers were alternatively extended and compressed vertically in response to the thrust fault movement and the deposit of the overburden layers. There was a possibility the model could have predicted a dome structure instead of a basin due to the thrust fault loading and the fact that all the geologic units with the exception of the Poison Canyon *et al.* underwent plastic deformation from the loading. However, there is evidence to suggest that the compliance of one of the geologic units influenced the structure formation.

Influence of the Pierre Shales (Mid-Cretaceous Units)

The vertical displacement of the Raton Basin was dominated by its weakest and softest material, the Mid-Cretaceous units (Figures 76 and 77). The mechanical behavior of the Mid-Cretaceous units was in turn influenced by the Pierre Shales that comprised 90 percent of the unit's volume. The Mid-Cretaceous units failed completely or go "plastic" soon after the start of the Laramide thrust. Figure 80 shows vertical displacement profiles for selected times from the analysis. The displacement profiles clearly show the Mid-Cretaceous units extending under thrust loading and compressing with the creation of overburden layers. The layer compression being the greatest with the deposit of the Poison Canyon *et al.* units. The stronger and stiffer layers above and

below the Mid-Cretaceous units show relatively little vertical displacement under the same loads. Figure 81 shows another perspective of the vertical deformation of the Mid-Cretaceous units with the plots of the units' extension for times before and after the creation of the Poison Canyon *et al.* units, and in the present era. There is a slight extension of the layer after the erosion of the overburden which is expected, but the bowl shape remains intact.

Analytical Results

At this time there is very little available field data from Raton Basin that can be used to compare predictions made by the finite element model. Of particular interest is the orientation of maximum (compressive) principal stress. It is known from the few available fracture logs that with increasing depth the orientation the maximum principal stress is tending towards north-south.

The principal loading on the Raton Basin is the Laramide thrust and it is not surprising that the predicted orientation of the maximum principal stress is east-west in all the geologic units at the end of the Laramide thrust period 36 Mya. In the post Laramide thrust era the erosion of the overburden in the model did produce a rotation of the maximum principal stress from the east-west direction to the north-south direction in parts of the Mid-Cretaceous units. Available field data shows the north-south direction trend starting in the Vermejo and Raton units. The model does not show this and predicts the maximum principal stresses orientation in the units above the Mid-Cretaceous remaining in an east-west direction. Also the orientation of the maximum principal stress in the geologic units beneath the Mid-Cretaceous is predicted to be east-west.

Figure 82 shows the rotation of the maximum principal stress orientation from the end of the Laramide thrust to the current era.

Figure 83 shows the variation in maximum principal stresses in the top four geologic units over a distance of 50 Km from the thrust front. The stresses plotted are from the mid-layer of each unit. There is general trend of the magnitude of the maximum principal stresses increasing with depth. However the Trinidad Sandstones are the major exception to this trend. This is due to the unit's higher stiffness and strength relative to the other layers depicted. The "undulations" of the maximum principal stresses across the basin reflect the effect of the ground surface topology upon the stresses. The Poison Canyon *et al.* units show the greater oscillation when compared with the deeper Mid-Cretaceous units.

Figures 84 and 85 show the strike and dip angle profiles for the maximum principal stresses across the basin. For visual clarity the strike and dip angle profiles for the Mid-Cretaceous units are plotted separately in Figure 85. The maximum principal stress directions for the three geologic units above the Mid-Cretaceous are nearly uniform in orientation. The strike angle is 90 degrees (east-west) and the dip angles are either zero degrees (horizontal) or close to it. The dip angles predicted for the Poison Canyon *et al.* layer showed some deviation from zero probably due to ground surface effects. The Mid-Cretaceous units show the greatest variation in strike angle and dip angles of the four layers. It should be noted that this unit is the softest and weakest of the four and the difference between the minimum and maximum principal stresses is close to

zero. Thus any a slight change in the stress state can cause the principal stress directions to switch directions.

Figures 87 through 90 show the strike and dip profiles for the minimum principal stresses for each layer.

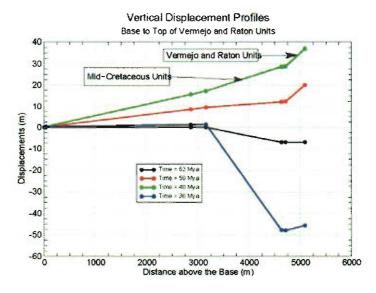


Figure 80: Vertical displacement profiles at 40 km.

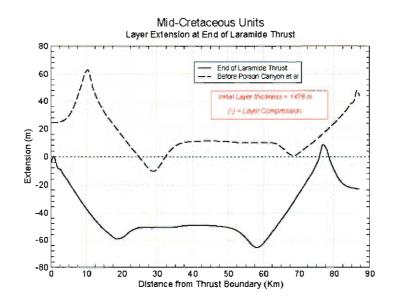


Figure 81: Mid-Cretaceous layer extension.

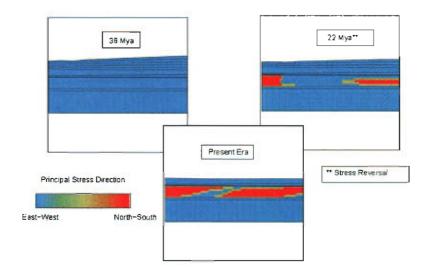


Figure 82: Maximum principal stress orientation.

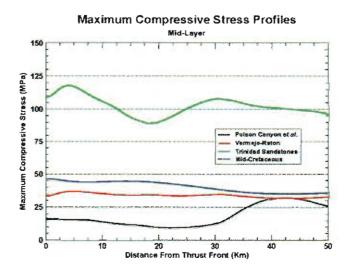


Figure 83: Maximum compressive Stress Profiles

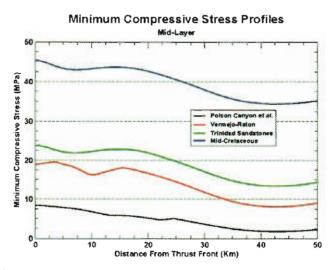


Figure 84: Minimum Compressive Stress Profiles

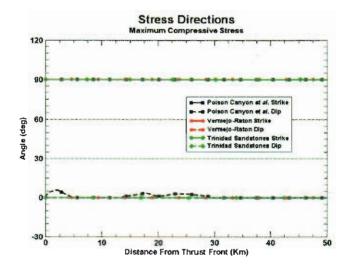


Figure 85: Strike and Dip Angle Profiles - Max. 1

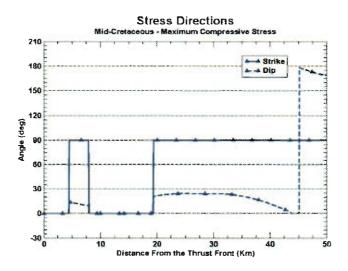


Figure 86: Strike and Dip Angle Profiles - Max. 2

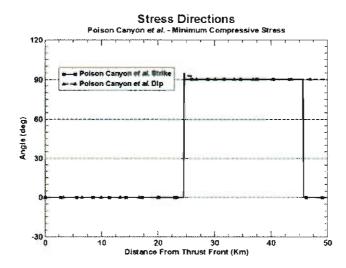


Figure 87: Strike and Dip Angle Profiles - Min. 1

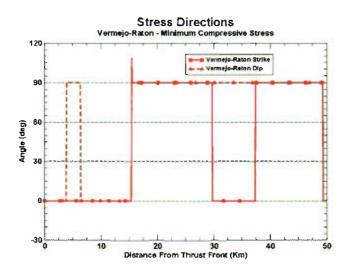


Figure 88: Strike and Dip Angle - Min. 2

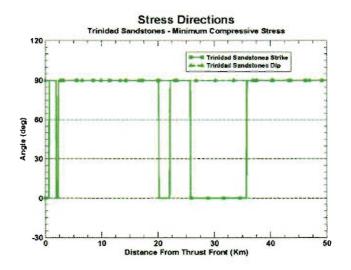
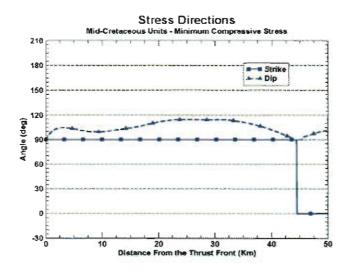



Figure 89: Strike and Dip Angle Profiles - Min. 3

Figure 90: Strike and Dip Angle - Min. 4

2.6.4 Future Modeling Efforts

The finite element model discussed in the previous sections represents a first attempt at understanding the evolution of the Raton Basin. The following are suggestions where future modeling efforts could proceed.

Full Three-dimensional Models

As noted in section 2.6.1 the finite element model represented a two-dimensional slice of the basin and on this model plane strain boundary conditions were applied. When the modeling project began two and half years ago our knowledge of the basin geology was limited and a two-dimensional geometry was deemed appropriate. A "true" three-dimensional model would allow us to model more realistic loading scenarios by incorporating the variations in north-south topography, geology, and boundary conditions.

Three-dimensional models will require a much greater level of effort than was needed for the first model. Computational times can be expected at a minimum to quadruple and construction of the finite element mesh will be major task in itself. As an alternative to building large, basin scale models it may be more productive to construct smaller, high resolution models of regions within the Raton Basin that are of interest to the natural gas industry. The boundary and initial conditions of these models can be derived from larger and simpler models.

Greater Detail in Material Layer Modeling

The current finite element model used seven materials to model the rock response of the Raton Basin. This was very simplistic considering the complex layering of materials within both the basin and the geologic units themselves. Future models will require a larger number of rock materials, more sophisticated material modeling, model fluid pore pressures, and account for the spatial variation of the rock properties within the mechanical units. More sophisticated material models will be required to account for creep and stress relaxation behavior in materials such as coal and shale, and material discontinuities such as fault surfaces may be needed in the finite element model. Nonlinear material behavior and discontinuities will definitely have an effect upon the stress magnitudes and orientations within the mechanical units. Parallel to these efforts is that more material testing and spatial mapping of the representative rock types and geologic features will be required.

Improved Boundary Conditions

The present finite element model had its base restrained against vertical deformation. It is shown in several cross-sections made of the basin that the deep rock layers on the western flank of the Raton Basin underwent large vertical movement in response to the Laramide thrust and material deposits. It may be useful to build and analyze finite element models that capture this kinematic behavior. An effort was being made to develop such a model, but was curtailed due to budget shortfalls.

Given that our knowledge of the loading of Raton Basin will always be limited and subjected to interpretation, it may be useful to perform parametric analyses where different loading scenarios can be explored. For example the effects of different thrust loading rates and magnitudes upon the present era stress state could be explored.

2.7 PRODUCTION ANALYSES

2.7.1 Production History

Petroleum exploration in the Raton Basin dates from as early as 1896. Natural gas for local consumption was produced from the Garcia Field in Las Animas county, Colorado, and from the Wagon Mound Field in Mora county, New Mexico. A moderate quantity of oil was produced from the Cretaceous Codell Formation in Colorado, and many exploration wells throughout the basin have had gas shows from Lower and Upper Cretaceous clastic formations (Woodward, 1984). With no pipeline to carry natural gas to market, most petroleum exploration before 1980 was targeted at oil which could be transported by truck or rail. Results of this exploration were disappointing, partly due to the very low permeability of the Cretaceous formations and an apparent lack of suitable hydrocarbon traps in the Raton Basin.

A new exploration approach began in the 1980's in which wells were drilled with the intention of draining gas from coal seams. One of the first pilot projects to exploit this coalbed methane (CBM) resource was Amoco's Cottontail Pass unit in Colorado (Johnson and Finn, 2001). Evergreen Resources began drilling in the same area of the basin and began the first commercial production of coalbed methane in 1993. Meanwhile, in the New Mexico portion of the basin, Pennzoil drilled several CBM exploratory wells in 1989. However, lack of a pipeline to drain this portion of the basin, along with low gas prices and an expiration of CBM tax credits forced these wells to be shut in to await the extension of the pipeline system into New Mexico. The pipeline finally arrived, and the first commercial production from the New Mexico side started in October 1999. Between January 1999 and May 2004, approximately 475 billion cubic feet of gas (BCFG) were produced from nearly 2000 wells in the Raton Basin (Figures 91, 92).

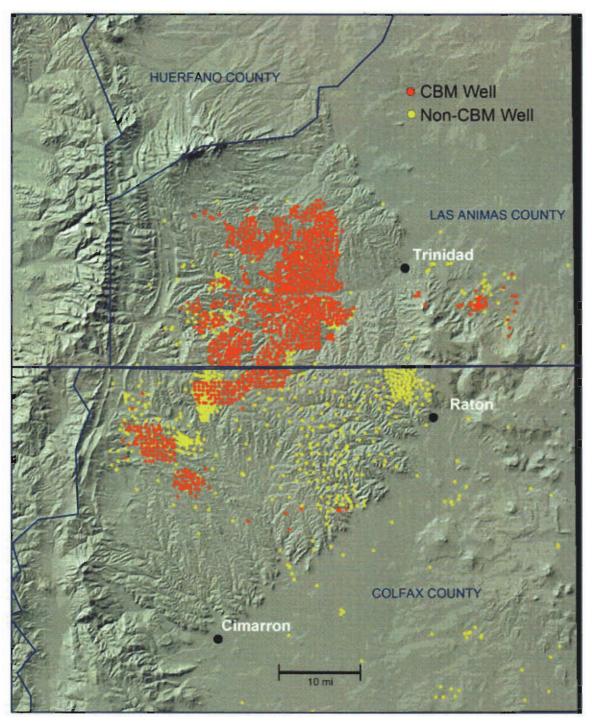
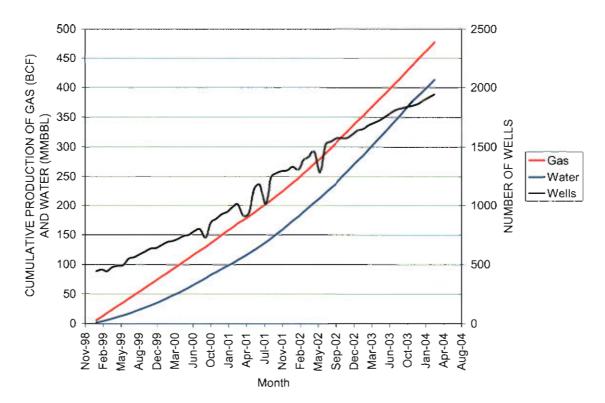
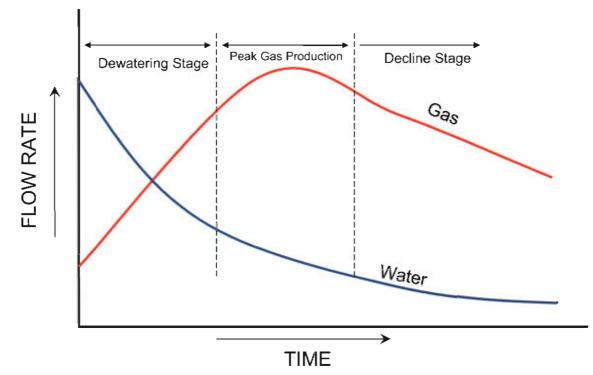


Figure 91: Distribution of wells in the Raton Mesa Region as of December 2002 (includes producing CBM wells, as well as shut in wells, mine wells, and stratigraphic holes.)




Figure 92: Cumulative production and number of producing CBM wells in the Raton Basin from 01/1999 to 06/2004.

2.7.2 Coalbed Methane

Coalbed methane (CBM) is classified as an unconventional hydrocarbon resource, as the coal seam acts as both a source rock and reservoir rock. During the natural process by which peat is transformed to coal, large amounts of methane are stored within the fabric of the coal. The system of natural fractures in coal, termed cleats, may also store a certain volume of free gas, but a much larger volume may be bound at the molecular level to the large surface area of the coal matrix. Thermal maturity, along with other factors such as coal rank and type, determine the volume of gas generated during the coalification process. The amount of gas that can be stored within the coal matrix is a direct function of pressure. That is, as a coal bed is buried and subjected to greater lithostatic and hydrostatic stress, it is capable of storing more methane in its matrix. Conversely, if a coal bed is brought nearer to the surface of the earth, either through tectonic means or removal of overburden, gas is desorbed from the coal matrix as the overall pressure of the system is reduced.

In a typical coalbed methane operation, a well is drilled through the coal seams of interest, completed and stimulated to enhance the natural cleat system. The pressure of the system is reduced by pumping off formation water to reduce the hydrostatic stress. Due to this pressure requirement, little gas may flow during the initial stages of production, and it is difficult to estimate the ultimate recovery of gas from a CBM well during the first few weeks or months of production. Following this "dewatering" stage, however, gas will begin to flow more readily and

reach a somewhat steady rate of production. As methane is depleted from the coal matrix, the well begins a decline phase in gas production, similar to that seen in conventional gas wells (Figure 93). Currently, 7% of the gas production in the U.S.A. is from coal beds, and interest in CBM exploration and production is growing (Nuccio, 2002). It is estimated that U.S. basins contain at least 700 trillion cubic feet (TCF) of coalbed methane in place, with about 100 TCF in recoverable reserves.

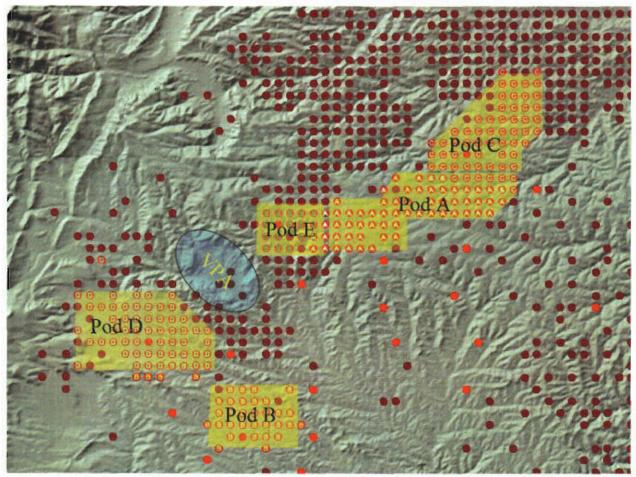
Figure 93: Idealized production behavior of a typical coalbed methane well. Pressure in the coal seam is reduced by pumping off formation water. Methane production increases with decreasing formation pressure.

2.7.3 CBM Resources in the Raton Basin

Coal has been mined in the Raton Mesa region for more than a century. Coal seams from both the Vermejo and Raton formations were mined along the eastern edge of the mesa, where these formations outcrop in cliff exposures, as well as near the center of the basin where drainage channels have exposed these formations. Estimates of coal volumes vary, ranging from 1.5 billion tons of combined Vermejo and Raton coal, to 5 billion tons in the Vermejo Formation alone (Johnson and Finn, 2001). It is generally accepted among most sources that there is at least 1.5 billion tons of demonstrated coal resources within Raton Mesa region (Hoffman and Brister, 2003). Rank of these coals is mostly high volatile 'C' bituminous to medium volatile bituminous. Anthracite and graphite locally occur near the many Tertiary igneous intrusions in the basin. Vitrinite reflectance values range from less than 0.57% along the edges of the basin to 1.58% along the Purgatoire River (Johnson and Finn, 2001). Coals having reflectance values greater than 0.8% are generally considered favorable for coalbed methane exploration.

Measured gas content values range from 115-492 cubic feet per ton for Vermejo coals, and from 23-193 cubic feet per ton for Raton coals (Tyler et al., 1995).

Estimates of coalbed gas reserves in the Raton Basin vary, but most sources cite a figure of about 18 TCF of gas in place, which includes contributions from coals in both the Vermejo and Raton formations. Estimates are based on average aggregate coal thickness, coal density (mass per unit area), aerial extent of coal, and average coal rank (to determine amount of gas generated per unit mass). For the Raton Basin, it was assumed that only half the amount of gas generated has remained trapped in the coal beds (Jurich and Adams, 1984).


2.7.4 CBM Operations in the Vermejo Park Ranch Unit

Distribution of wells and on-line dates

Data from CBM wells in the Raton Basin—including monthly gas and water production volumes, completion procedures, and well locations—that are reported to state regulatory agencies are available to the public via internet database interfaces. Some data for this report were provided by the Colorado Oil and Gas Conservation Commission Information System and the New Mexico Oil and Natural Gas Administration and Revenue Database. Detailed production and geologic data concerning CBM operations in the New Mexico portion of the basin were provided by El Paso Raton LLC. Since much of the detailed outcrop study was also focused on the New Mexico side, the remainder of this chapter will chiefly focus on the production characteristics of this part of the basin. It should be recognized that geologic heterogeneities and hydrologic systems vary widely across the greater Raton Basin, so findings and hypotheses applicable to the southern half of the basin may not apply in the northern half.

Commercial coalbed methane production from the New Mexico side began in October 1999 on the Vermejo Park Ranch (VPR) Unit. Wells are grouped into five geographic sub-unit 'Pods' labeled A, B, C, D, and E (Figure 94). The size of each Pod ranges in size from approximately 10 to 20 square miles and contains up to 100 wells. Pods A, C, and E in the northern part of the Vermejo Park Ranch unit are separated from Pods D and B by the Vermejo Park Anticline. This structural dome exposes the Pierre shale at its core and the Vermejo and Raton formations along its rim. Wells are absent in this area due to the simple fact that the producing intervals are exposed to near atmospheric pressure and are not likely to contain much gas.

Current well spacing is approximately 160 acres, and spotting of individual wells is dependent on environmental and aesthetic concerns. Most wells are drilled through the Trinidad sandstone and terminate in the Pierre shale at an average depth of 2,000 feet. The primary target in both the Colorado and New Mexico portions of the basin are the coals within the Vermejo Formation. Though they be thinner and less continuous, coals of the Raton Formation are sometimes completed with the Vermejo coals to supplement production, especially when they occur at depths greater than 900 feet. Once the coals of interest are identified by wireline petrophysical methods, they are fracture stimulated to enhance the natural cleat system. Water is pumped from the well to initiate coal gas desorption. In compliance with Vermejo Park Ranch environmental requirements, pump jacks are driven by electric motors, and produced water is injected into deeper formations (e.g., the Cretaceous Dakota Formation). Gas and water are transported to compressor stations or injection wells via underground plumbing.

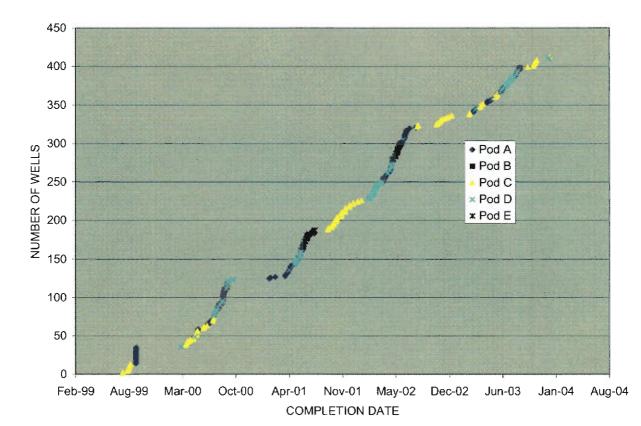
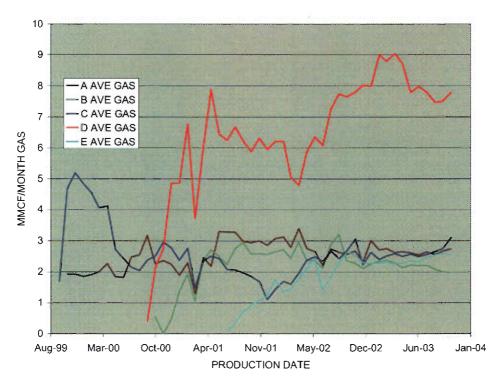


Figure 94: Subset of Figure 1, showing arrangement of CBM wells operated by El Paso Raton LLC in the New Mexico portion of the Raton Basin. Note position of well "Pods" relative to the Vermejo Park Anticline (VPA).

2.7.5 Pod-scale Characteristics

Drilling Activity

Figure 95 shows the drilling activity of the Vermejo Park Ranch unit from September 1999 to January 2004. The stepped appearance of the drilling program reflects the cessation of drilling activities during certain wildlife-sensitive seasons. As can be seen from the Pod breakdown, the first wells drilled were in Pods A and C—those areas near the Colorado border which extended CBM production from the productive fields already established in Colorado. During the second year of drilling, Pods D and B in the south were explored, as was Pod E the following year. As of January 2004, El Paso Raton LLC was operating 423 wells on the Vermejo Park Ranch unit. At present, drilling continues in all Pods.



Gas and Water Production

As of October 2003, more than 28 billion cubic feet (BCF) of gas had been produced, along with nearly 24 million barrels of water. The average VPR coalbed methane well produces 100 thousand cubic feet (MCF) of gas per day, however that figure is not uniform across the lease. Figure 96 shows that after four years of production, most wells in Pods A, B, C, and E have settled into a production rate of 2.5 million cubic feet (MMCF) of gas per well per month. The exception are those wells in Pod D which show an average monthly production as high as 9 MMCF per well. At times, some individual wells in Pod D produced more than one million cubic feet of gas per day.

The disparity in production characteristics between those wells in the southern portion of the lease (Pods D and B) and those in the north (A, C, and E) is shown in the production graphs for each Pod (Figures 97-101). Pod D production is remarkable for the low volumes of water produced and high volumes of gas. Pod B has produced little gas, but little water as well. Cumulative gas to water ratio for Pod D is 3.6 (MMCF/MBBL) and for Pod B is 2.7. The gas to water ratios for pods A, C, and E, however, are 0.67, 0.63, and 0.23, respectively.

Figure 96: Average monthly gas production per well. Most wells in Pods A, B, C, and E are currently producing an average of 2.5 million cubic feet of gas per month. In contrast, the average production from wells in Pod D is three times greater.

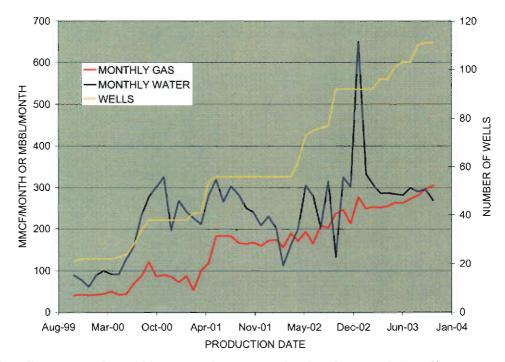
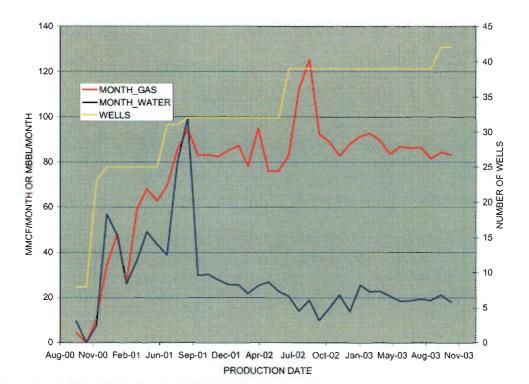



Figure 97: Summary of monthly gas and water production from Pod A wells.

Figure 98: Summary of monthly gas and water production from Pod B wells. Note significant drop in water production after one year of production and relatively modest gas production.

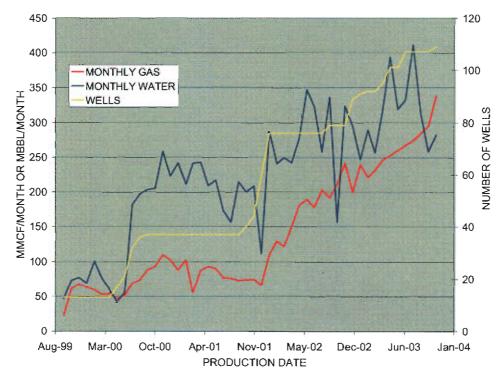


Figure 99: Summary of monthly gas and water production from Pod C wells.

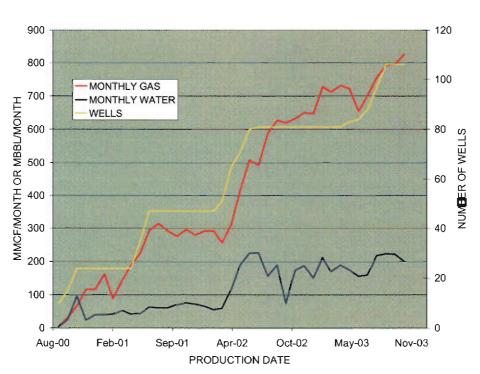
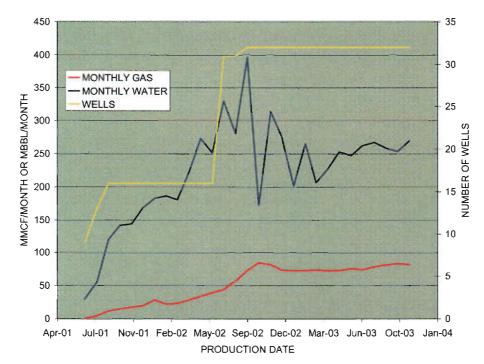
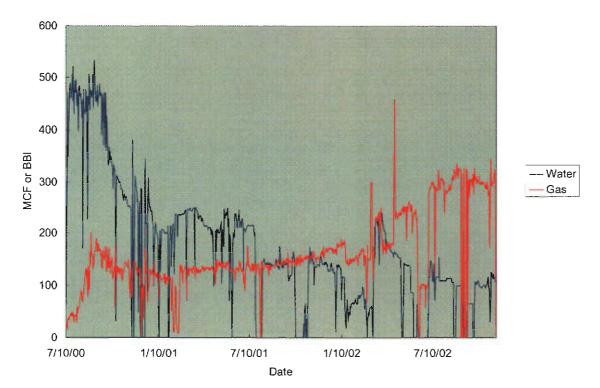



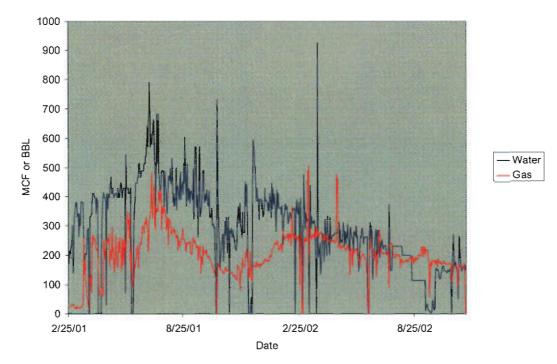
Figure 100: Summary of monthly gas and water production from Pod D wells. Note relatively low water production and very high gas production rates.

Figure 101: Summary of monthly gas and water production from Pod E wells. This pod is characterized by relatively high water and low gas production. Note, however, that this is the youngest pod of wells within the Vermejo Park Ranch Unit.


Water Quality

In many coalbed methane-producing regions in the U.S., the quality of produced water determines whether it must be injected back into the earth or if it may be discharged on the surface. While all produced water on the VPR lease is injected back into deeper aquifers, water quality characteristics could be useful in identifying different ground water systems which, in turn, could provide insight into coalbed gas potential. Average values of total dissolved solids (TDS) in units of milligrams per liter for Pods A, C, D, and E are 2,800, 5,400, 4,600, and 2,500, respectively. In contrast, Pod B has an average TDS value of 12,900 mg/L. This seems to be a local anomaly, as compared to the entire basin. In general, TDS values increase from west to east across the greater basin. This indicates a general west-to-east movement of groundwater from recharge areas near the Sangre de Cristo Mountains, where aquifer strata are upturned and exposed at the surface, to outcrops and drainages in the eastern end of the basin.

2.7.6 Individual Well Production Curve Characteristics


Observing gas and water production characteristics on a pod-by-pod basis gives some idea of geographical trends in CBM production, but looking at production curves from individual wells exposes vast differences in production behavior across the basin, and even among wells in the same pod. This section will highlight just four end-member examples which were identified among the VPR wells.

Typical coalbed methane wells initially produce large volumes of water and little gas. As hydrostatic pressure is reduced in the reservoir, more and more methane desorbs from the coal surface. As a result, the water and gas production curves from such a typical well should look similar to those in Figure 93. A gas incline curve is paired with a water decline curve during the de-watering phase. Many wells, especially those within Pods A and C, exhibit this behavior. An example from Pod A is given in Figure 102.

Figure 102: Example of gas and water production curves for a single well in Pod A. Compare with the idealized CBM production behavior in Figure 93. Wells of this type exhibit high initial water production and little gas production. Withdrawal of water from the formation decreases hydrostatic pressure and induces methane gas to desorb from the coal matrix. As formation pressure is reduced further, more gas desorbs from the coal, resulting in a gas incline curve.

Three other end-member production behaviors were identified which diverge from the standard CBM model. One, an example of which is shown in Figure 103, is characterized by water and production curves which remain fairly parallel. That is, an increase in gas production is matched by an increase in water production; a decrease in gas production is paired with a decrease in water production. There may be a slight lag of a few days between peaks or troughs of the water and gas curves. Another end-member example is given in Figure 104. In this case, there is a local peak in gas production which occurs nine months to one year after the well comes on line. After this local peak, gas production decreases for a few months and then increases again, surpassing flow rates of the earlier peak. Finally, another production behavior observed in some wells consists of a high initial gas flow rate followed by a continuous decline in gas production (Figure 105). Very little water is produced in this type of well. Hypotheses concerning these end-member production types are in the Discussion section.

Figure 103: Gas and water production curves from a single well in Pod A. Contrast this production behavior with than in Figure 12. There is no well defined water decline, gas incline curve. Instead, peaks on water production are typically followed soon after by a peak in gas production.

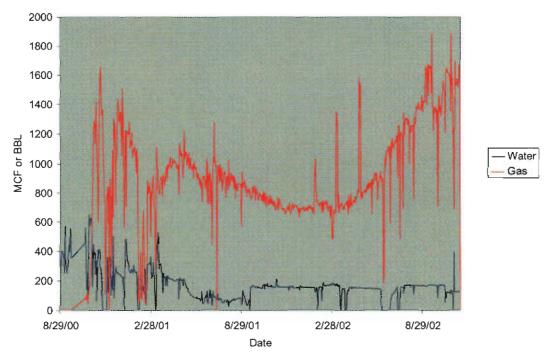
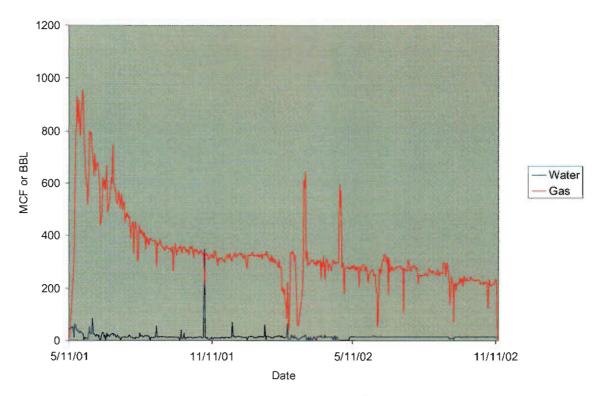



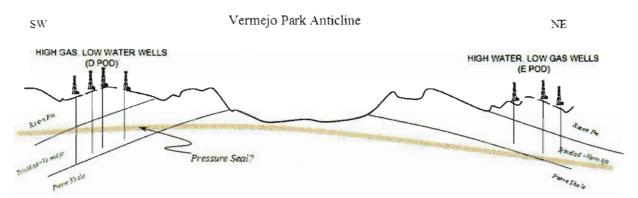
Figure 104: An example, from Pod D, of a well that exhibits high gas production early in its history, followed by a decline in gas production, and then a gas incline curve.

Figure 105: An example of high gas, very low water production typical of many wells in Pod D. Production behavior such as this would be more likely anticipated in a conventional gas reservoir rather than a coalbed methane field.

2.7.7 Resource Potential of the Raton Mesa Region

Notwithstanding the spotty prc-1990 oil and gas exploration attempts, gas exploration and production is relatively new in the Raton Basin. New infrastructure and technology have established coalbed methane as the most important hydrocarbon resource in the basin. Producing gas from the Trinidad Sandstone, the basal conglomerate of the Raton Formation, and sandstone lenses within the Vermeio and Raton formations has experienced mixed results. These clastic rocks, although having very low matrix permeability values, stand a good chance of being charged with gas from the adjacent coal beds. The presence of natural fractures would greatly enhance bulk permeability, facilitating gas flow to the wellbore, and detailed fracture studies such as the one described in this report would aid exploration and production strategies for lowpermeability fractured sandstone reservoirs in the Raton Basin. Operators in both New Mexico and Colorado have generally not completed wells in these non-coal intervals for fear of excessive water production, however some very promising gas shows have been noted in the Trinidad Sandstone, and at least one well is producing gas from the Raton Conglomerate in the VPR unit. In some areas, gas may be trapped within the sandstones by a regional capillary seal, and such a "basin-centered" gas accumulation has been proposed for the Raton Basin (Johnson and Finn, 2001).

2.7.8 Discussion: Vermejo Park Ranch CBM Production


The nature of coalbed methane production—the requirement that wells must be dewatered, sometimes for many months before economic quantities of gas begin to flow—makes it very difficult to predict reserve estimates or ultimate recovery based on early production characteristics. At the time of this writing, the oldest of El Paso's Vermejo Park Ranch wells have only been producing for four years, and the company's exploration strategy is constantly being modified with each new well drilled. However, some general observations can be made about relationships between gas production, water production, geography, geology, and hydrology of the VPR unit.

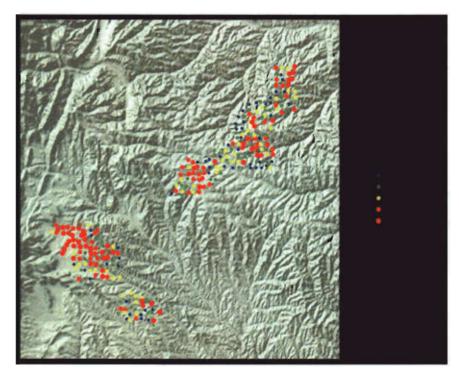
The most striking contrast in production behavior is seen in the very different gas-to-water ratios between Pod D and B wells, and those of Pods A, C, and E. Water production rates and cumulative volumes exhibited by most wells in Pods A, C, and E are comparable to most CBM wells in Colorado and CBM wells in other basins. The low water production in Pods D and B is anomalous, and points to a different hydrologic system in this area. The most salient geologic feature separating Pods B and D from Pods A, C, and E is the Vermejo Park Anticline. Whether this structure is indeed solely responsible for the differences in water production between the northern and southern wells is uncertain. Pods D and B, despite being adjacent to each other, exhibit very different water chemistry values, suggesting these two areas are host to different hydrologic systems. No obvious surface features hint at a geologic structure separating the two regions. As noted in this report, the Vermejo and Raton formations are quite heterogeneous, consisting of laterally discontinuous lenses of sandstone, shale, siltstone, and coal. It is reasonable to assume that hydrologic flow units are also restricted laterally and vertically, and could account for the very different water production behavior among wells that are relatively closely spaced.

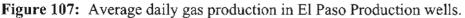
Alternatively, low water production in the wells of the southern part of the unit could be a result of their separation, by capillary seal, from the wells to the north. Figure 106 illustrates how this capillary seal, which cuts across lithologic boundaries, could isolate the productive intervals of Pods D and B in a basin-centered type gas deposit. Wells of Pods A, C, and E would produce from intervals above this seal, and be exposed to the regional groundwater and meteoric water systems. Rainfall rates do not appreciably differ from Pod D to Pod C, and there is no evidence to suggest greater recharge on the northeast side of the Vermejo Park Anticline than on the southwest side.

Variability in the gas and water production curves from individual wells could help answer these questions. The first example, shown in Figure 102, exhibits a general gas incline curve, water decline curve, and has no peculiar features that would suggest it is not a "typical" coalbed methane well. The second example (Figure 103) is more problematic. Both gas and water production curves behave similarly. Increased cumulative water production does not bring about greater gas flow rates. The third example (Figure 104) shows a spike in gas production during the early history of the well. The latter portion of the recorded production shows an increase in gas flow rate with continued dewatering, just as one would expect from a typical coalbed methane. The early peak may be evidence of free gas being produced directly from the cleat or natural fracture system. Significant pressure reduction is not necessary to produce this free

gas—only a pressure gradient from the formation to the wellbore is required. However, only a limited amount of free gas can be stored in the fracture network, and once this resource has been depleted, the well's gas flow rate declines until a sufficient quantity of water is pumped off the formation, beginning liberation of gas adsorbed onto the coal matrix. In the final example (Figure 105), gas production is high to begin with, continuously declines, and water production is minimal throughout. This is the 'hyperbolic' type decline curve one would expect to see in a conventional or basin-centered gas reservoir.

Figure 106: Conceptual cross section of Vermejo Park anticline illustrating one hypothesis for the differing gas to water ratios on either side of the structure. Production from Pod D southwest of the anticline may be from a basin-centered gas accumulation, which is isolated from meteoric waters by a capillary seal. Evidence includes low water production, high values of dissolved solids in the produced water, and increased water production at shallower depths.

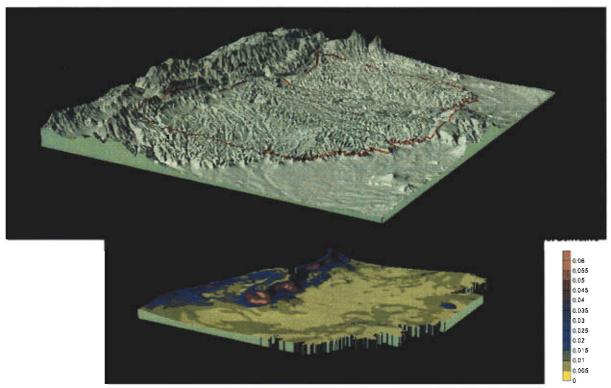

2.8 GEOSTATISTICAL ANALYSIS OF WELL PRODUCTION


Coal-bed methane production can be influenced by multiple factors, including fracture network characteristics, local geologic structure, regional stress, coal thickness, depth, hydrology, and pressure history. In addition, there may be significant spatial continuity (i.e., clustering) of gas production that reflects spatial trends in the underlying geological controls on production rates. Understanding the relative importance of influential factors and the spatial continuity of their impacts potentially contributes to the optimization of production development (Arnold et al., 2004).

This section describes statistical and geostatistical analyses of gas and water production in coalbed methane production wells. Average daily gas and water production from 235 coal-bed methane wells in four El Paso Production development pods in the Raton Basin were analyzed. A statistical analysis of factors potentially influencing production was conducted using the stepwise linear regression method, which estimates the relative importance of independent variables or correlation to production. The factors or independent variables in the regression analysis include coal thicknesses, slope of the structural surface of the Trinidad Sandstone, groundwater total dissolved solids, and duration of production. The geostatistical method of variogram analysis was used to assess the spatial continuity in production.

2.8.1 Estimates of Gas and Water Production

A database of gas production was compiled from information from the El Paso Production Company. Average daily gas and water production were calculated from the data on cumulative production and the number of producing days. Gross coal thicknesses in the Vermejo Formation and the Raton Formation for each well were also contained in the information from the El Paso Production Company. Average total dissolved solids values in groundwater produced from the wells were also compiled. A map plotting the values of average daily gas production is shown in Figure 107. Note in Figure 107 that the production wells are grouped into two general areas.



2.8.2 Stepwise Linear Regression Analysis

Data on the structural surface of the Trinidad Sandstone were derived from a hand-contoured structural map of the southern portion of the Raton Basin supplied by the El Paso Production Company. The contours on this map were digitized and used to produce a gridded representation of the surface. Several quantities were calculated from this gridded structural surface, including the local dip, the first derivative of the surface parallel and perpendicular to the direction of maximum horizontal stress, and the second derivative parallel and perpendicular to the direction of maximum horizontal stress. Figure 108 shows the digital representation of the structural surface. Note that the perspective view shown in Figure 108 is from approximately the southeast. The color scale superimposed on the structural surface of the Trinidad Sandstone indicates the first derivative, or dip, of the surface. The steeper dips along the western margin of the Raton Basin, especially along the eastern limbs of the Vermejo Park anticline and the Tercio anticline, are clearly shown in the figure. Estimated values of quantities related to the slope of the structural surface at well locations are incorporated into the production database and used in the regression analysis.

Topographic Surface

Structural Surface of the Trinidad Sandstone

Figure 108: Topographic surface and structural surface of the Trinidad Sandstone in the southern Raton Basin. The dip, expressed as the first derivative of the structural surface of the Trinidad Sandstone, plotted as the color scale.

The method used to explore the relationships between gas (and water) production and potentially influential geological factors in this study was stepwise regression, a form of regression analysis. Stepwise linear regression varies from commonly used multiple regression techniques in that stepwise regression, in addition to calibrating a predictive equation, uses statistical criteria for selecting which of the predictor variables will be included in the final regression equation. The stepwise process consists of building the regression equation one variable at a time by adding at each step the variable that explains the largest amount of the remaining unexplained variation (Haan, 1994). The coefficient of determination R^2 , represents the fraction of the total variation that is explained by the linear relationship between the input variables and the dependent variable (production in this case). The change in the coefficient of determination, as each variable is added into the regression equation, is used to determine the relative importance of each variable. Rank transformation of variables was used in this sensitivity analysis to reduce potential non-linearity between the independent and dependent variables.

The results of the stepwise linear regression analysis of average daily gas production are shown in Table 1. These results indicate that a regression or correlation model using six of the independent variables has a value of about 0.19 for the coefficient of determination. The total

thicknesses of the coal in the Vermejo and Raton Formations, as the first two variables in the stepwise regression model, have a R^2 value of about 0.14. This indicates that these two variables account for about 14% of the variability in observed average daily gas production.

These regression analysis results show that there is not a strong correlation between the average daily gas production and the potentially controlling variables used in the analysis. Even taken in aggregate, the independent variables account for only about 19% of the variability in gas production. This indicates that these independent variables probably have very little predictive value for potential gas production, at least within the context of the regression model developed in this study.

Step	Variable	R ²	ΔR^2	Correlation
1	Gross Vermejo Coals Thickness	0.0975	0.0975	Positive
2	Gross Raton Coals Thickness	0.1412	0.0437	Negative
3	First Derivative – Trinidad Sandstone – S85°E	0.1669	0.0257	Negative
4	Groundwater Total Dissolved Solids	0.1830	0.0161	Negative
5	Second Derivative – Trinidad Sandstone – N5°E	0.1879	0.0049	Negative
6	First Derivative – Trinidad Sandstone – N5°E	0.1899	0.0020	Positive

Table 1. Stepwise Linear Regression Analysis Results for All Independent Variables VersusAverage Daily Gas Production, n=235.

Significantly better correlation exists between the independent variables and the average daily water production. The results of the stepwise regression analysis for average daily water production are shown in Table 2. As indicated in these results, about 48% of the variability in the average daily water production can be accounted for by the eight independent variables listed for the regression model. About 37% of the variations in water production can be explained by just two of the variables, the first derivative of the structural surface of the Trinidad Sandstone parallel to the direction of maximum horizontal stress and the total dissolved solids in the groundwater.

The regression analysis results for average daily water production do show a weak to moderate correlation to the independent variables. Although water production from wells is of secondary importance with regard to coal-bed methane production, it does impact the economics of gas production because of potential costs associated with the disposal of water. Consequently, the

regression model for average daily water production may have potential value with regard to planning production well locations.

Step	Variable	R ²	ΔR ²	Correlation
1	First Derivative – Trinidad Sandstone – N5°E	0.2214	0.2214	Negative
2	Groundwater Total Dissolved Solids	0.3717	0.1503	Negative
3	Number of Gas Producing Days	0.4418	0.0701	Negative
4	First Derivative – Trinidad Sandstone – S85°E	0.4586	0.0168	Positive
5	Gross Vermejo Coals Thickness	0.4679	0.0093	Negative
6	Second Derivative – Trinidad Sandstone – N5°E	0.4732	0.0053	Negative
7	Gross Raton Coals Thickness	0.4770	0.0038	Negative
8	First Derivative – Trinidad Sandstone	0.4808	0.0038	Negative

Table 2. Stepwise Linear Regression Analysis Results for All Independent Variables Versus Average Daily Water Production, n=235.

2.8.3 Geostatistical Analysis of Production

The spatial continuity of gas and water production was analyzed using the geostatistical technique of variography. A variogram quantifies the variability in a particular variable as a function of the separation distance between locations at which the variable is measured (Issaks and Srivastava, 1989). It is based on the intuitive concept that measured values of a quantity in a heterogeneous system should be more similar for locations that are closer together than for locations that are farther apart. The degree of spatial continuity of a variable within the system is typically quantified using a value called the "range" of the variogram. The range is the limit of spatial continuity and is the distance beyond which values for a particular variable are essentially uncorrelated.

Variograms of average daily gas production for two production areas of the El Paso Production wells are shown in Figure 109. The variograms in this figure are omnidirectional, meaning that the pairing of observations is made in any (and all) directions. The lag distance is the separation distance between pairs of wells and the variogram is the measure of variability in average daily gas production. The points plotted on the graphs are the values from the production database and

the number by each point is the number of data pairs used to calculate that variogram value. The blue curves on the plots are models approximately fitted to the plotted points. The values of the range from the plotted variogram models are shown for each area. Note that the range in Area 1 (1300 m) is significantly less than the range in Area 2 (4200 m).

The results in Figure 109 indicate that values of average daily gas production for wells that are farther apart than about 1300 m in Area 1 are essentially unrelated; whereas, wells that are closer than 1300 m tend to have similar (either high or low) rates of gas production. In Area 2, the estimated range of 4200 m indicates that the distance over which gas production is related is significantly larger.

Variograms can also be constructed so that the pairing of observations is directionally restricted. Multiple directionally restricted variograms of average daily gas production were constructed to assess potential variations in spatial continuity as a function of direction. Each variogram only considered pairs of wells that were within 30° of the azimuth of interest and a value of the range was estimated for each variogram. The results of this analysis for both of the production areas are shown in Figure 110 as a polar plot of the estimated range as a function of azimuthal direction. The results for Area 1 indicate that spatial continuity in gas production is approximately isotropic and the range is about 1200 m to 2000 m. The results for Area 2 show that the spatial correlation in gas production is anisotropic, with significantly greater continuity in the NW-SE direction than in the NE-SW direction. The correlation range in gas production for Area 2 varies from about 2000 m to 6000 m, depending on direction.

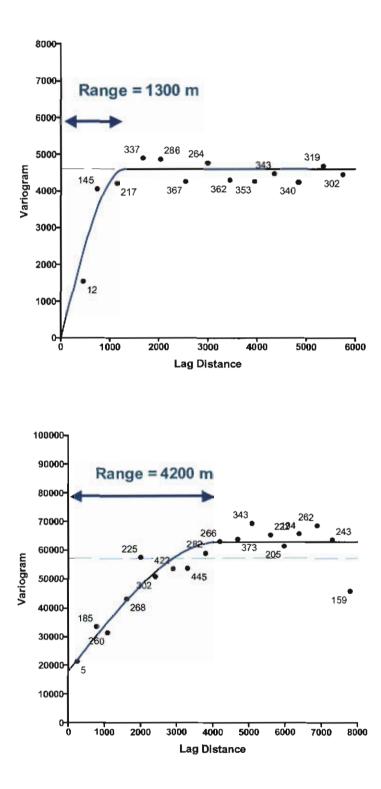
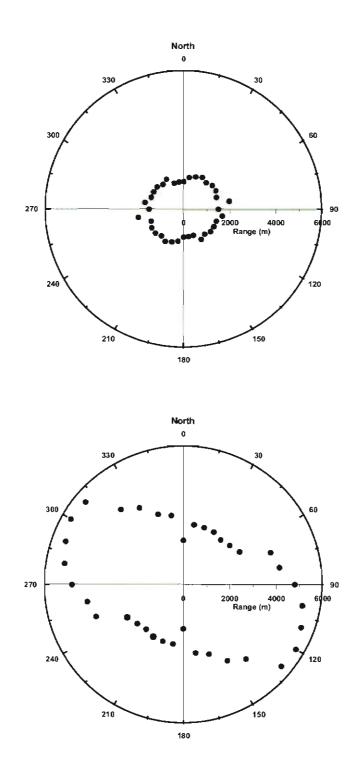



Figure 109: Omnidirectional variograms of average daily gas production in El Paso Production wells for Area 1 (above) and Area 2 (below) in the Raton Basin.

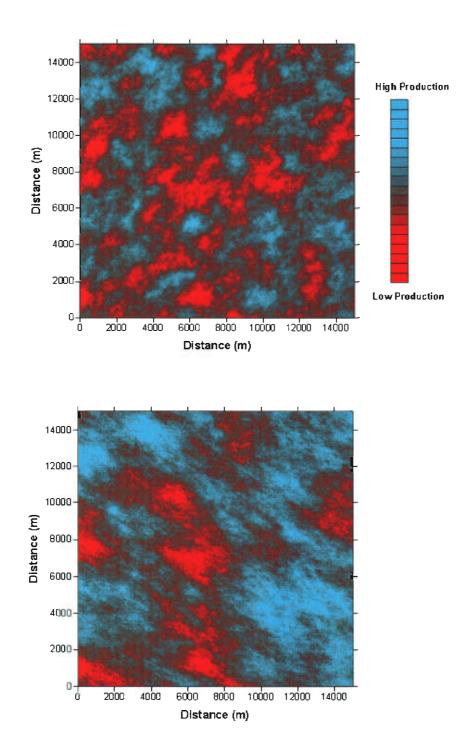


Figure 110: Polar plots of variogram range of average daily gas production in El Paso Production wells as a function of direction for Area 1 (upper) and Area 2 (lower) in the Raton Basin. To illustrate the style of spatial continuity in gas production and the differences between Area 1 and Area 2, simulations of the heterogeneous distribution of potential gas production were performed. These simulations were generated using the values of the range and the degree of anisotropy indicated in the analyses above. In other words, these simulations honor the geostatistical characterization derived from the variograms of average daily gas production. These simulations were generated using the sequential gaussian simulation method described in Deutsch and Journel (1998). In addition, it should be noted that these are unconditional simulations, meaning that they do not correspond to the values at the actual values of average daily gas production at individual wells. The resulting simulations are shown in Figure 111.

The simulated distributions of relatively high and low gas production potential shown in Figure 111 for Area 1 and Area 2 are qualitatively consistent with the characteristics of spatial continuity identified in the variogram analysis. Regions of high or low production potential in Area 1 are smaller and more randomly distributed than in Area 2. The regions of high or low production potential in the simulation of Area 2 are larger and have a longer extent in the NW-SE direction than in the NE-SW direction.

The patterns of spatial continuity in gas production identified in this analysis are, by inference, related to spatial continuity in underlying geological characteristics of the system that control gas production. The relatively small scale of spatial correlation in gas production observed in Area 1 suggests that the geological controls on rates of gas production are local and not related to any larger-scale structural or stratigraphic geological features. In contrast, the relatively larger scales of spatial continuity in gas production in Area 2, especially in the NW-SE direction, suggests that there are larger, through going geological features related to the potential for gas production. The longer spatial correlation in the NW-SE direction in Area 2 does not correspond to preferred orientations of open fractures observed in well VPRD 71 from this area (see Figure 2). Consequently, it is unlikely that the greater spatial continuity in gas production in the NW-SE direction in the NW-SE directio

These results on spatial correlation in gas production have potential implications for exploration and production strategies. In Area 1, the lack of spatial continuity in gas production potential implies that drilling offsets from existing wells, either high- or low-production wells, can be essentially random. In contrast, the anisotropic spatial correlation of gas production in Area 2 suggests differing drilling offset strategies from high- versus low-production wells. Examination of the simulation for Area 2 in Figure 111 illustrates that if there is an existing high-production well, a location to the NW or SE is more likely to have high gas production potential; whereas an offset to the NE or SW is likely to have lower gas production potential. However, if there is an existing low-production well, an offset to the NE or SW is more likely to be a location with higher gas production potential than an offset to the NW or SE.

Figure 111: Unconditional simulations of relative average daily gas production, based on differing anisotropic values of variogram range, for Area 1 (upper) and Area 2 (lower) in the Raton Basin.

3.0 SYNTHESIS AND CONCLUSIONS

3.1 RATON BASIN TECTONICS

3.1.1 Topography vs. Structure

The Raton basin is unique among the Rocky Mountain basins in that it is marked by a topographic upland, commonly referred to as the Raton Mesa. Cather (2002) suggests that this highland mesa resulted from a point source for the basin filling strata, a basin-scale alluvial fan of sorts, although Merin et al. (1988), citing Tweto (1975), suggest that there were several sediment sources for the sediments that filled the Raton basin in the Late Cretaceous and Early Tertiary time, northwest and southwest of the basin but now deeply buried under the San Luis valley. Suppe et al. (1975) suggested that the Raton highlands are caused by a northeast-southwest trending linear upwarp, created by a migrating hot spot, although little has been made of this idea by later geologists working in the area. If this hot spot theory is valid, it might help to explain the thermal anomaly that extends eastward from the Rio Grande Rift province of high heat flow and encompasses the Raton basin (Edwards et al., 1978), and it would explain some of the anomalous stress orientations in the basin, discussed elsewhere.

3.1.2 Basin Margins

The gas-bearing Vermejo and Raton formations thin and lap eastward onto the broad Sierra Grande arch. The formations crop out at the eastern margins of the basin above cliffs created by the pairing of erosion-resistant Trinidad Sandstone and the underlying, easily weathered, slopeforming Pierre Shale. Strata dip gently westward from this basin margin to the synclinal basin axis, which is slightly west of the center of the basin, where they reverse and dip eastward. Dip angle increases westward to the western margin where the strata are abruptly upturned, locally to the vertical, and even overturned.

The western margin is a complex structure composed of multiple thrust horizons and repeated sections. Many of the published cross sections (i.e., Clark, 1966; Rose and Everett, 1986) can be interpreted to indicate that the eastward-dip of the strata at the western basin margin resulted from an insertion of under thrust layers wedged and jammed into the basin below the Late Cretaceous and Tertiary strata, uplifting them. Lindsey (1998) suggested that the basin axis moved eastward during deposition as the western margin was progressively compressed by thrusting and uplifted. Higher in the section, Precambrian rocks have been thrust eastward over the top of these same strata, resulting in stratigraphic inversion. Keller and Gridley (1990), based on a gravity low at the western margin of the basin, estimate that these Precambrian rocks have been thrust eastward by about 50 kilometers. Miocene and younger normal faulting related to extension along the Rio Grande basin has truncated the thrust system and buried its proximal, western regions deeply under the San Luis valley (i.e., Brister and Gries, 1994).

However, the western margin of the Raton basin is not a uniform, curved, overthrust front. Thrust faults are more numerous and most obvious north of the New Mexico-Colorado border, whereas normal faults are more common to the south. Merin et al. (1988) have suggested that the thrust-fault western margin of the Raton basin in Colorado transitions into a right-lateral wrench fault southward across the border into New Mexico. Although some thrusts are still present in New Mexico, they are fewer in number and perhaps have less eastward displacement. Cather (2002) suggests that the Pecos-Picuris fault zone, 40 km west of the present western margin of the Raton basin, is a transpressive, dextral, strike-slip fault, that accommodated 37 kilometers of lateral offset during Laramide tectonism. The interplay between this major fault zone and the nearby Raton-margin fault that combines eastward-directed thrusting and right lateral strike-slip motion is unclear, but north-south oriented strike-slip faulting is compatible with other structures in the Raton basin.

A component of right-lateral strike-slip faulting may explain the skewing of natural fracture strikes from the radiating pattern that would be expected of fractures that formed normal to the curved western thrust front during a purely thrust/indentation mode of deformation. A combination of thrust indentation and right-lateral shear offset would have produced a Laramide stress trajectory that favored an east-southeast/west-northwest maximum horizontal stress and related fractures.

3.1.3 Vermejo Park and Tercio Anticlines

Several structures are present within the basin, the largest being the Vermejo Park and Tercio anticlines. These are compound structures, related to Laramide strike-slip faulting in combination with contemporary thrusting and laccolithic intrusion. Different published maps (e.g., Pillmore, 1976; Woodward and Snyder 1976; Cather, 2002) have drawn structure contours that may or may not connect these two anticlines depending on the prejudices of the author: the sparse drill-hole data between these two features permits either interpretation. However, proprietary seismic data (Basinski, personal communication, 2003) suggest that they are related to each other via a north-south trending, right-lateral strike-slip zone. Seismic coverage consists of a single east-west line between the two structures and thus the north-south extent of the wrench zone cannot be determined, but the absence of this significant strike-slip zone in a seismic line south of the Vermejo Park anticline strongly suggests that this fault zone is the link between the two anticlines, and that the Vermejo Park anticline is the uplifted accommodation zone at the termination of the wrench fault. The natural fracture data gathered during this study show that the regional, east-west striking extension fracture pattern is significantly disrupted in the vicinity of the Vermejo Park anticline, indicating that the local stresses were significantly altered by the local structural complexities.

Spear (1976) wrote opaquely of deep-seated thrust faulting beneath the Vermejo Park and Tercio anticlines, and presumably he had wellbore data to substantiate this description, but these data are no longer available. However, this interpretation is compatible with outcrop data gathered from the west side of the Vermejo Park anticline during this study that include examples of small (a few centimeters to a few tens of meters offset), eastward directed thrust faults, and which probably reflect larger thrusts at depth.

The third and final part of the compound history of these structures, or at least of the Vermejo Park anticline, is an underlying laccolithic intrusion. Several other anticlinal structures in and near the Raton basin (the Morley dome, Stevens et al., 1992, and the Turkey Mountains uplift) are known or speculated to be underlain by laccoliths. Pillmore cited two 1926 drillholes that penetrated igneous rock below the Vermejo Park anticline, and Brian Brister (personal communication, 2003) actually located cuttings from these wells and is in the process of analyzing them for their age. Brister reports igneous rock at subsurface depths of 3200 ft and 3700 ft. The structure contours on the top of the Precambrian surface (Woodward and Snyder, 1976) do not reflect any anomaly over the Vermejo Park anticline, but this is probably more due to a lack of control than to the actual absence of basement-involved structure in the area.

In summary, our interpretation is that the Tercio and Vermejo Park anticlines were formed as uplifts along a transpressive splay off of the western-margin thrust/wrench-fault margin of the basin where it jogged eastward into the basin. Right-lateral motion was accommodated along a connecting wrench fault, culminating at a southern terminus in uplift of the Vermejo Park anticline. Uplift of this anticline was enhanced by intrusion of an igneous laccolith, probably facilitated by and localized along the deep-seated faults of the system.

3.1.4 Other Structures within the Raton Basin

Numerous anticlines, faults, and other structures are present within the Raton basin, including some that have not yet been mapped or described. Many of these were actively forming during deposition of the gas-bearing Late Cretaceous and Early Tertiary strata, as indicated by otherwise unexplained thickening and thinning of strata across the basin, and by evidence of intra-formational, syn-sedimentary deformation of the strata documented elsewhere in this report.

Different stratigraphic picks have led different authors to map different thickening and thinning trends within the same formations, but the overall trends are similar. Interestingly, the Vermejo Formation apparently *thickened* over the site of the future Vermejo Park anticline (Pillmore, 1976), suggesting that this area was the locus of a structural sag that was later inverted into the uplift, and strengthening the evidence for an underlying wrench-fault system where structural inversions are common along the length of the fault. Stevens et al., 1992, map coal isopachs that show thinning eastward from the basin axis (due to non-deposition and change of facies to marine strata) and westward (due to more proximal depositional environments that were not conducive to coal formation and/or uplift of the western margins during deposition.) In fact, many of the strata initially deposited at the western margins of the basin were uplifted sufficiently to be eroded, reworked, and re-deposited farther eastward as the Poison Canyon Formation.

Stevens et al. (1992) suggest that thinner coals along the Purgatoire River reflect a paleo-high during deposition, and in fact several authors (Harbour and Dixon, 1959; Johnson et al., 1966) have suggested that the Vermejo Formation itself is thinner or even absent along this trend. It is unclear whether this is non-deposition due to local, syn-sedimentary uplift or whether coal deposition was largely displaced by a sandstone channel system. Merry and Larsen (1982) map sandstone thicks offset from coal thicks elsewhere in the basin, but this is a common depositional pattern, thus not necessarily the result of structural complications.

Regardless, there are several anomalies in addition to thinner coals associated with the Purgatoire River valley. One is a higher coal rank and higher gas content of the coals (Close and Dutcher, 1990; Flores and Bader, 1999). Interestingly, Merry and Larsen (1982) did not map a similar pattern in vitrinite reflectance but rather suggested that coal ranks increase in proximity to the Spanish Peaks intrusions, a trend which is not apparent on any of the other published coal rank or vitrinite reflectance maps. Other Purgatoire River anomalies include a local abundance of sill intrusions and what appears in satellite imagery to be stressed vegetation. The reason(s) for these anomalies are not apparent but they may be related to the difference in production north and south of the Vermejo Park anticline.

3.1.5 Timing

Subsidence of the Raton basin and deposition of the gas-bearing strata initiated about 80 million years ago, accelerating as thrust faulting worked its way eastward. Cather (2002) suggests that subsidence increased between 72 and 71 million years ago, probably related to an increase in the rate of thrusting. Timing on wrench faulting at the western margin of the basin cannot be constrained, although it was probably concurrent with thrusting. Rio Grand rifting in general began between 27 and 25 million years ago (Miggins et al., 2002), about the same time that intrusion began in the Spanish Peaks area. Johnson et al (1966) and Lindsey et al (1986) report that apatite fission track data suggest that rapid uplift and cooling of the strata began about 19 million years ago, possibly in association with renewed Rio Grande rifting at about 15 million years.

3.1.6 Erosion

A significant but poorly constrained amount of material has been stripped off of the Raton basin by erosion during these periods of uplift. The Spanish Peaks stand up some 6000 ft above the general surface of the surrounding basin; they are intrusives, indicating that they were intruded into strata of at least that thickness that is now missing. Harbour and Dixon (1959) suggest that at least 7000 ft of section has been removed from the overburden of the basin during two phases: late Laramide and post Pliocene. Close and Dutcher (1990) estimate the removed strata to have been somewhat less but at least 5000 ft in thickness, whereas Hemmerich (2001) estimates that some 8000 ft of strata have been removed from the New Mexico portion of the basin.

3.1.7 Stresses

Observations made on the present-day in situ stresses in the Raton basin are presented elsewhere in this report, but some reports have been published by other authors. Stevens et al. (1992) suggested that an east-west maximum horizontal compressive stress prevailed from Laramide time through to Miocene time, when a north-south trending maximum compressive stress developed related to initiation of the Rio Grande rift. The east-west stress is compatible with the background fracture pattern across the basin, and the north-south stress in compatible with measurements of the present-day, in situ stress. Muller, 1986, pegged the stress rotation at 22 million years, or early Miocene, while Close and Dutcher (1990) suggest that the stress rotation occurred somewhat earlier, during the Late Oligocene.

3.2 Implications for Production

The data presented in this report can be used to further the understanding of the hydrocarbon system of the Raton basin and to improve the probabilities of successful drilling for natural gas, but they do not add up to a "drill-here" map. There are just too many variables in the system and the constraints on the variables are too loose. This is highlighted by the geostatistical analyses (chapter 2.8) which show that even an accounting for eight of the different variables that are commonly used to predict and assess production potential is insufficient to fully characterize the wide range in observed production in the Raton basin.

Although discouraging from the exploration standpoint, this highlights the importance of obtaining as much information as possible from wells as they are drilled and from other sources (i.e., seismic) early in a development program in order to successfully drive it. In this respect, the Raton basin study has described a methodology, components of which will assume varying significance in other basins but the whole of which affords a comprehensive and integrated approach to understanding the fracture and stress history of a basin. The relationships documented here can be used to intelligently spot well locations and choose drilling practices, as follows:

- 1. Structures in the Raton basin such as the Morley and Vermejo Park anticlines are associated with local fracture populations that include both background, thrust-front-normal fractures and good developments of secondary fracture sets trending oblique to the background fractures, and should therefore have good interconnected fracture permeability. Such structures are good exploration targets. Given the origin of these structures as thrust and laccolith-related anticlines, there could be more of them hidden within the basin and gravity surveys might prove to be a good exploration tool.
- 2. The oblique relationship between east-west background fracture strikes and the north-south present-day maximum horizontal compressive stress is not reason enough to predict that the in situ fractures have been or will be squeezed shut and would therefore be ineffective permeability mechanisms. The wellbore-image logs suggest that east-west striking fracture apertures are not any narrower than the apertures of north-south fractures, and in fact the apertures do not decrease with the increasing confining stresses at deeper horizons in any of the four wells for which data are available. Either the prevailing stress magnitudes (which were not measured) are insufficient to cause fracture closure, or the rock within which the fractures occur is sufficiently stiff that the fracture apertures are not particularly sensitive to changes in stress magnitudes. This suggests that fracture-related permeability will not significantly diminish under stress changes caused by decreasing pore pressures during production. This is particularly true since drawdown of the already low in situ pore pressures should not cause significant changes in the in situ effective stress magnitudes.
- 3. The regional, background fracture pattern is approximately east-west, which means that north-south laterals from horizontal wells would be most effective in intersecting the most fractures. However, there are parts of the basin, such as along the wrench fault between the Tercio and Vermejo Park anticlines and perhaps closer to the western margin of the basin, where north-south striking regional fractures seem to dominate. Recognition of the

existence of these local structural and fracture domains allows an operator to optimally orient horizontal wellbore azimuths and to spot vertical step-out wells according to the local conditions.

- 4. The placement of step-out wells relative to existing wells is a problem in any play. The Raton geostatistical study suggests that in areas of high anisotropy in the similarity of production characteristics (which is not the same thing as an anisotropy in drainage area), a step-out well from a poor producer has a higher probability of good production if it is offset along the narrow axis of anisotropy, whereas a step-out from a good producer is more likely to also have good production if it is offset along the long axis of the ellipse. This tactic must be played carefully against knowledge of fracture-controlled elliptical drainage patterns, where step-out well locations in drained areas should be avoided. Placement of step-outs is less critical in areas of relatively isotropic lateral variability in production characteristics.
- 5. The highly fractured dikes and sills that cut through the basin and the enhanced fracturing in the strata in the adjacent strata are probably responsible for venting gas to the atmosphere over geologic time and leaving the basin in its present, underpressured condition. Anecdotal reports indicate that gas is being produced locally from completions within the igneous units, but the low igneous matrix permeabilities suggest that these completions are probably also connected to other, conventional reservoir units. Similar dikes and sills are present in other Rocky Mountain basins although not in such profusion, and they are probably not good reservoir targets.
- 6. Fracture spacing in reservoir sandstones is log-normal, meaning that there are few widely spaced fractures and significantly more closely spaced fractures. The ultimate in close fracture spacing is a fracture swarm, commonly associated with a fault or incipient fault. Fracture swarms make good reservoirs as long as they have not tapped large water reservoirs in deeper parts of the stratigraphic section, but they are hard to locate prior to drilling.
- 7. Fractures are present in all lithologies at reservoir depths. The core and image-log data show that significant fracturing is present in the subsurface shales: such fracturing is either obscured by weathering or not present in outcrops, and outcrop studies therefore do not lend themselves to good shale fracture studies.
- 8. In the Raton basin it appears that fractures in these fine-grained strata are open and conductive at depth, providing potential paths of communication between adjacent sandstone reservoirs. In fact, the average relative fracture widths in shales, as measured from image logs, are greater than they are in any other lithology. This condition is not apparent in other Rocky Mountain basins where fractures in the muddy intervals are typically poorly developed and, where present, closed by high magnitude in situ confining stresses. The difference may have to do with shallower Raton depths of interest as well as with the high degree of tectonism and resulting internal deformation within the strata that fill the Raton basin.

- 9. Plan-view conjugate shear fractures are present in several parts of the stratigraphic succession, including within the Raton Conglomerate, the Dakota Sandstone, and limestones of the Fort Hayes Member of the Niobrara Formation at various locations in the Raton basin. Conjugate fractures have the potential to be highly interconnected and their presence should significantly enhance the quality of a reservoir. The conjugate fractures in the Dakota sandstone are both good and bad, however: at the western margin of the basin they have developed as deformation bands, i.e., shear features that degrade rather than enhance permeability. On the eastern margin of the basin, stress and depth of burial conditions in the Dakota sandstone were such that good, intersecting, high permeability fracture conduits developed. Modeling of the stress conditions and rock properties as presented here, can point to the conditions under which the desirable types of conjugate fractures rather than deformation bands developed, leading to a rationale for targeting conjugate fractures at depth. Conversely, outcrop observations provide constraints on such modeling as well as the basic data to put into models.
- 10. Syn-sedimentary deformation seems to be more common, or rather, perhaps, more obvious, in the Raton basin than in other Rocky Mountain basins. This deformation has controlled the orientations of many of the fluvial lenticular sandstone reservoir bodies, turning them to strike across the regional paleo-slope and 90 degrees to their expected trend. In following such reservoir trends it is useful to know that such potential quirks exist.
- 11. Similarly, there are many horizontal and sub-horizontal thrust planes that cut the section. These planes formed both during and after sedimentation, are difficult to recognize in wellbores, even when image logs and cores are available. They may be important as permeability conduits, and they controlled local fracture populations, local stress orientations, and commonly, sedimentary distribution patterns as noted above.
- 12. Hydraulic stimulation fractures grow in the direction parallel to the maximum horizontal compressive stress except where the horizontal stress anisotropy is low, in which case local planes of weakness such as faults and natural fractures can control the direction of hydraulic fracture growth. The horizontal stress anisotropy is an unknown in the Raton basin, but it is reasonable to expect it to be relatively small given the observed stress rotation and the absence of north-south compressive structures. Hydraulic fractures should propagate in a north-south direction, parallel to the observed present-day maximum horizontal compressive stress, but given the predominant east-west fracture orientations, there should be significant hydraulic fracture tortuosity as these stimulation fractures jog and side step as they cross the natural fractures. This can be a good way to access the natural fracture permeability, but it can also lead to stimulation fractures that do not reach as far into the formation as planned due to the extra energy consumed in propagating irregular fractures. In the vicinity of VPCH-33 however, where the hydraulic fractures should propagate parallel to the dominant natural fracture trend, it will be easier to inject the hydraulic fracture as it follows and exploits pre-existing planes of weakness. However, the hydraulic fracture may not access regions of the reservoir that would have been drained by the natural fracture system anyway.

3.3 Environmental Considerations

Several environmental issues exist with production of coal bed methane. These include construction of facilities, noise, access to well sites, number and spacing of wells, size of the well pad, production and disposal of water, and draw down of water tables. There are also possible benefits to production of good quality water for irrigation and possible sequestration of green house gases (CO₂) during an enhanced recovery phase. Possible working solutions to mitigate or reduce the impact of CBM production on the environment are discussed below.

In other Rocky Mountain basins, such as the San Juan Basin, each major productive stratigraphic unit has been developed at a separate stage in resource development. As a result, most areas have required a separate set of wells for each major gas-producing layer. For example, in the San Juan Basin, separate wells are used to produce gas from vertically arrayed rock layers such as Fruitland coals, Pictured Cliffs sandstones, and Dakota sandstones. These three rock units are present throughout the same geographic area of the basin at different depths but each has been developed separately. Work done during the course of this project indicates that simultaneous development of multiple producing horizons using the same boreholes for production of methane from coalbeds as well as tight, naturally fractured sandstones would reduce the total number of wells needed to extract gas from the basin, with a resulting reduction in the need for drill pads and haul roads.

Another approach to drilling and accessing producing intervals is directional drilling. Using this report to review the type and orientation of fracture most likely to be encountered at a particular site in the basin, a well could be designed to enter the producing interval and to intersect the greatest number of fractures. This approach has the benefit of draining a large area and enhancing production. This approach could also be used to drill under large scale obstacles such as large scale structures negating the need for roads and pipeline into topographically challenging areas. One such area on the Vermejo Park Ranch property could be the Ash Mountain area south and west of the Castle Rock Park production area. Wells could be placed along the perimeter of Ash Mountain within the already sited areas of Castle Rock Park and drill under the mountain negating the need for additional surface disturbances such as well pads, roads, pipelines, and electric lines on Ash Mountain itself but nevertheless recovering the reserves in that area.

To mitigate water issues it would be best to have several observation wells to obtain a continuing database of water levels and quality across an area of interest. Many variables can lower water level besides production such as drought or minimal snow pack. Thus gathering data over a long period of time starting well before production begins till long after production has ceased is recommended. This approach could allow water related issues and problems to be addressed and solved earlier rather than later.

In environmentally sensitive areas, such as the Raton Basin, the use of 2D seismic data rather than the more invasive 3-D seismic would minimize surface disturbances. This approach has the benefit of also being much less expensive. However, such an effort would require a approach similar to that used in this report of integrating surface, well log, core and production and

tectonic modeling to fill in that missing third dimension of seismic data. In areas of fracture controlled production these types of data can be more valuable than seismic data. This is in part due to the fact seismic methods cannot directly record data from or measure fractures.

An understanding of the reservoir and its associated fracture system as provided in this report can help in future enhanced recovery programs or carbon sequestration efforts. Enhanced understanding of the directional nature of fluid flow will allow CO_2 to be safely and efficiently sequestered and used to enhance recovery of the methane resource.

The methodology outlined in this report can be used to maximize the extractable volume of gas in any basin while decreasing the number of boreholes needed to produce this gas. This creates the opportunity to minimize surface disturbances associated with natural gas production while actually increasing the economic viability of a basin.

4.0 RECOMMENDATIONS FOR FUTURE WORK

The Raton basin still has secrets. The hydrocarbon content and reservoir potential of the stratigraphic section below the Trinidad-Vermejo-Raton formations are largely untested, and although these deeper strata crop out at the edges of the basin, their fracture characteristics have not been extrapolated into the deep subsurface via modeling and they have not been sampled by numerous cores or logs.

The relative importance of strike-slip vs. overthrust motion at the western margin of the basin has still to be assessed and the effects of this type of combined structure on stresses and fractures on the basin-filling strata remain speculative.

The presence of what appears to be strike-slip faulting, splaying off the thrust front along the western margin of the basin and running beneath the Tercio anticline, ultimately connecting it with Vermejo Park anticline where it abruptly terminates, was largely unsuspected until late in study, and its origin, as well as its effects on the nearby fracture patterns, should be more fully assessed. The few data available from the vicinity of this structure come from a single wellbore-image log, but they suggest that there are significantly anomalous fracture characteristics in that region. A short field study should be carried out to document whether, and if so, how, the fracture patterns vary as strata are affected by the underlying fault zone. Given unlimited funds, a modern, three-dimensional seismic coverage would be ideal for documenting the presence and extent of this and similar structures.

This work has documented the presence of both vertical and lateral fracture domains within the basin, but the extents and limits of these domains are still poorly defined. Assessments of the fracture distributions and orientations, and of stress characteristics, should be continued via coring and logging programs, at least until such time as the extent of variability in these characteristics and the reasons for it become apparent. The in situ stress magnitudes have not been measured, and although they can be estimated for a given depth and pore pressure, the magnitude of the anisotropy in the present day horizontal stresses, the presence of which is so obvious from the geophysical logs, can only be guessed at. Stress magnitudes generally control

fracture permeability, and are there fore also important inputs for both reservoir and tectonic models.

Logging core is a labor- and time-intensive undertaking, but fractures in more of the numerous cores from the basin should be assessed statistically. The distributions of different fracture types by lithology have been assessed for individual wells, but the inter-well differences or similarities in those distributions, and kinematic reconstructions based on fracture characteristics and distributions, have not been attempted.

The possibility of obtaining core and a wellbore-image log from the same hole is a project that we discussed with El Paso Production Company but the timing, funding, and logistics never meshed. Such a comparison would have calibrated the image logs, allowing a better distinction between induced and natural fractures. It would also have quantified the fracture aperture signatures and allowed recognition of shear vs. extension fractures in the logs.

The geostatistical approaches started here can and should be continued as they hold the promise of being able to assess production variability. Such assessments can be relatively blind, i.e., predictions made on the basis of observed trends but in the absence of an understanding of the reasons for that variability and those trends, but they can also be used to support and to advance the geological insights and understandings of the reservoir systems.

This study has not seriously addressed the reasons for significant differences in volume of coproduced formation water from the gas wells on the northeast vs. the southwest side of the Vermejo Park anticline. Several potential reasons for this difference have been considered, including differences in depth to production, local faults that may introduce meteoric waters to the formations at depth, differences in topographic relief, and local seals within the producing horizons, but none of these factors have been rigorously assessed, in large part because the data base is not well enough defined to support rigorous investigation. For example, production records are for the whole producing interval in a given well: they do not, because it is not economically feasible, isolate individual gas-producing zones for testing and monitoring. However, it may be possible to instrument several dedicated closely spaced wells and subdivide the production horizons by zone, monitoring production of gas and water under different conditions, and looking for inter-well interference in a controlled manner.

Further basin modeling efforts would include plan-view, lateral distributions of irregular boundaries, stress trajectories, and strains, and would provide predictions for the lateral distributions of fracture susceptibility and orientations. Such a modeling effort would better integrate the rock-mechanics models of strains, and would use log and outcrop observations of fractures and stresses as known tie points to constrain the model. Further research into the production characteristics of the wells drilled into the basin could concentrate on trying to tie known production variability to various geologic characteristics.

Much of the present work has concentrated on the southern, New Mexican half of the Raton basin as a matter of efficiency. Access to large tracts of land containing many significant outcrops was easily obtained from a single landowner (the Vermejo Park Ranch), and the surface land ownership overlaps nicely with the mineral rights holdings of a single company (El Paso Production Company) which has been more than generous in sharing production and logging data. Continued work in the basin should expand northward into Colorado, where similar numbers of reserves are present. Evergreen, recently bought by Pioneer Natural Resources, was the major holder of mineral rights in this area; Evergreen had been unresponsive to our efforts to work with them but Pioneer might be more approachable. However, patchwork surface ownership by numerous private individuals seriously complicates outcrop examinations.

5.0 ACKNOWLEDGEMENTS

This study has been funded by Sandia's internal Lab Directed Research and Development (LDRD) program. It was proposed, funded, and started at a time when California was suffering from rolling brown-outs and local blackouts, a probable forerunner of future energy shortages. We would like to express appreciation to the LDRD office for continued support for the three year project, and for the vision to see that research in fossil energy will be critical to maintaining the US energy supply levels for the next few decades while we develop the technology for alternative energy sources. In addition, we would like to thank the U.S. Department of Energy, National Energy Technology Laboratory (Tom Mroz, Project Manager), which supported a separate but related study of the sedimentological aspects of the Raton basin, part of which is reported here as a matter of efficiency and of combining all studies from the basin into one volume.

This study could not have proceeded without the assistance of the El Paso Production Company, in particular Paul Basinski. While cautious and deliberate in the release of data, El Paso gave us unlimited access to their cores, logs, and production and seismic data. These gave us invaluable insights into the third dimension, without which this study would have been severely hampered and limited in scope.

Personnel at the Vermejo Park Ranch, in particular Rich Larsen and Gus Holm, shared their considerable knowledge of the local geology and geography, and in addition provided invaluable access to the ranch holdings on the southern Raton basin. This gave us the ability to compare outcrops across a wide area and vastly improved the scope and efficiency of the field work effort. We were also lucky enough early in the project to participate in a field trip led by Chuck Pillmore (USGS, now deceased), who shared much of his vast experience in the basin.

Contractors Dr. Connie Knight and Mr. Ron Graichen are thanked for diligent logging of the cores as reported here, and Dr. Knight for pursuing the core fracture analyses. We thank Dr. David Holcomb and Dr. Norman Warpinski for their through and insightful reviews of this report.

6.0 REFERENCES/BIBLIOGRAPHY

- Anderson, E. M., 1951, The Dynamics of Faulting and Dyke Formation with Applications to Britain: Oliver and Boyd, London, 206 p.
- Antonellini, M., and Aydin, A., 1994, Effect of faulting on fluid flow in porous sandstones: Petrophysical properties: American Association of Petroleum Geologists Bulletin, v. 78, p. 355-377.
- Antonellini, M., Aydin, A., and Pollard, D. D., 1994, Microstructure of deformation bands in porous sandstones at Arches National Park, Utah: Journal of Structural Geology, v. 16, p. 941-959.
- Applegate, J.K., and Rose, P.R., 1985, Structure of the Raton basin from a regional seismic line; in Gries, R.R., and Dyer, R.C., eds., Seismic exploration of the Rocky Mountain region: Denver, Rocky Mountain Association of Geologists and Denver Geophysical Society, p. 259-266.
- Arnold, B.W., M. Herrin, and P. Basinski, 2004, Statistical and geostatistical analyses of coalbed methane production in the Raton Basin, New Mexico and Colorado (abstract), American Association of Petroleum Geologists 2004 Annual Convention, April 18-21, Dallas, TX.
- Baltz, E.H., 1965, Stratigraphy and history of Raton Basin and notes on San Luis Basin, Colorado-New Mexico: American Association of Petroleum Geologists Bulletin, v. 49, no. 11, p. 2041-2075.
- Billingsley, L.T., 1977, Stratigraphy of the Trinidad Sandstone and associated formations Walsenburg area, Colorado, in Veal, H.K., ed., Exploration Frontiers of the Central and Southern Rockies: Rocky Mountain Association of Geologists Guidebook, p. 235-246.
- Blanford, M. L., Heinstein, M. W., Key, S. W., September 2001,"JAS3d A Multi-Strategy Iterative Code for Solid Mechanics Analysis Users' Instructions, Release 2.0", SANDxx-0000, Sandia National Laboratories, Albuquerque, NM.
- Brister, B.S., and Gries, R.R., 1994, Tertiary stratigraphy and tectonic development of the Alamosa basin (northern San Luis Basin), Rio Grande rift, south-central Colorado, in Keller, G.R., and Cather, S.M., Basins of the Rio Grande Rift: Structure, Stratigraphy, and Tectonic Setting, Geological Society of America Special Paper 291, p.39-58.
- Brill, K.G., 1952, Stratigraphy of the Permo-Pennsylvanian zeugogeosyncline of Colorado and northern New Mexico: Geological Society of America Bulletin, v. 63, p. 809-880.
- Byerlee, J. D., Friction of rocks, Pageoph 116, 615-, 1978.
- Carter, D.A., 1956, Coal deposits of the Raton Basin, in McGinnis, C.J., ed., Geology of the Raton Basin, Colorado: Rocky Mountain Association of Geologists Guidebook, p. 89-92.
- Clark, K.F., 1966, Geology of the Sangre de Cristo Mountains and adjacent areas, between Taos and Raton, New Mexico, in Northrop, S.A., and Read, C.B., eds., New Mexico Geological Society Seventeenth Field Conference Guidebook of the Taos--Raton--Spanish Peaks Country, New Mexico and Colorado, p. 57-65.
- Close, J.C., 1988, Coalbed methane potential of the Raton Basin, Colorado and New Mexico: Southern Illinois University at Carbondale, Ph.D. dissertation, 432p.
- Close, J.C., and Dutcher, R.R., 1990, Update on coalbed methane potential of Raton Basin, Colorado and New Mexico: Society of Petroleum engineers, Proceedings, 65th Technical Conference, SPE Paper 20667, p.497-512.
- Close, J.C., and Dutcher, R.R., 1990, Prediction of permeability trends and origins in coalbed methane reservoirs of the Raton Basin, New Mexico and Colorado, in Bauer, P.W., and

others, eds., Tectonic development of the southern Sangre de Cristo Mountains, New Mexico: New Mexico Geological Society Guidebook, Forty-First Field Conference, p.387-395.

- Cooper, S.P., Lorenz, J.C., and Goodwin, L.B., 2001, Lithologic and structural controls on natural fracture characteristics Teapot Dome, Wyoming: Sandia National Laboratories Technical Report, SAND2001-1786, 73p.
- Cooper, S. P., June 26, 2002, "Raton Basin", Xcel spreadsheet file attached to e-mail.
- CUBIT Development Team, April 18, 2000,"CUBIT Mesh Generation Environment Volume 1: Users Manual", SAND94-1100, Sandia National Laboratories, Albuquerque, NM.
- Delaney, P.T., Pollard, D.D., Ziony, J.I., and McKee, E.H., 1986, Field relationships between dikes and joints: emplacement processes and paleostress analysis: Journal of Geophysical Research v. 91, p. 4920-4938.
- Desai, C. S., Siriwardane, H. J., 1984,"Constitutive Laws for Engineering Materials with Emphasis on Geologic Materials", Prentice-Hall Inc.,Englewood Cliffs, NJ.
- Deutsch, C.V. and A.G. Journal, 1998, GSLIB Geostatistical Software Library and User's Guide, Oxford University Press, New York, second edition.
- Dickinson, W.R., Klute, M.A., Hayes, M.J., Janecke, S.U., Lundin, E.R., McKittrick, M.A., and Olivares, M.D., 1988, Paleogeographic and paleotectonic setting of Laramide sedimentary basins in the central Rocky Mountain region: Geological Society of America Bulletin, v. 100, p. 1023-1039.
- Dolly, E. D., and Meissner, F. F., 1977, Geology and gas exploration potential, Upper Cretaceous and Lower Tertiary strata, northern Raton basin, Colorado, Exploration frontiers of the central and southern Rockies: Rocky Mountain Association of Geologists Field Conference Guidebook, p. 247-270.
- Domenico, P.A. and F.W. Schwartz, 1990, Physical and Chemical Hydrogeology, John Wiley and Sons, New York.
- Dunn, D. D., LaFountain, L. J., and R. E. Jackson, Porosity dependence and mechanism of brittle fracture in sandstones, J. Geophys. Res. 78, 2403-2417, 1973.
- Elkins, L. F., and Skov, A. M., 1960, Determination of fracture orientation from pressure interference: Petroleum Transactions, American Institute of Mining Engineers, v. 219, p. 301-304.
- Epis, R.C., and Chapin, C.E., 1975, Geomorphic and tectonic implications of the post-Laramide, late Eocene erosion surface in the southern Rocky Mountains, in Geological Society of America Memoir 144, p. 45-74.
- Flores, R.M., 1987, Sedimentology of Upper Cretaceous and Tertiary siliciclastics and coals in the Raton Basin, New Mexico and Colorado, in Lucas, S.G., and Hunt, A.P., eds., Northeastern New Mexico: New Mexico Geological Society 38th Annual Field Conference, p. 255-264.
- Flores, R.M., and Tur, S.M., 1982, Characteristics of deltaic deposits in the Cretaceous Pierre Shale, Trinidad Sandstone, and Vermejo Formation, Raton Basin, Colorado: The Mountain Geologist, v.19, no. 2, p. 25-40.
- Flores, R.M., and Pillmore, C.L., 1987, Tectonic control on alluvial paleoarchitecture of the Cretaceous and Tertiary Raton Basin, Colorado and New Mexico, in Ethridge, F.G., Flores, R.M., and Harvey, M.D., eds., Recent developments in Fluvial Sedimentology: Society of Economic Paleontologists and Mineralogists Special Publication 39, p. 311-321.

- Flores, R.M., and Bader, L.R., 1999, A summary of Tertiary coal resources of the Raton Basin, Colorado and New Mexico, in Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, United States Geological Survey Professional Paper 1625-A, p. SR1-SR35.
- Geldon, A.L., 1989, Ground-water hydrology of the central Raton Basin, Colorado and New Mexico: U.S. Geological Survey, Water-Supply Paper 2288, 81p.
- Haan, C., 1994, Statistical Methods in Hydrology, Iowa State University Press, sixth printing.
 Harbour, R.L., and Dixon, G.H., 1959, Coal Resources of the Trinidad-Aguilar area, Las
 Animas and Huerfano counties, Colorado: U.S. Geological Survey, Bulletin 1072-G, p. 445-489.
- Hemborg, H.T., 1998, Spanish Peak Field, Las Animas County, Colorado: Geologic Setting and Early Development of a Coalbed Methane Reservoir in the Central Raton Basin: Colorado Geological Survey Resource Series 33, p. 1-34.
- Hemmerich, M., 2001, Cenozoic denudation of the Raton Basin and vicinity, northeastern New Mexico and southeastern Colorado, determined using apatite fission-track Thermochronology and Sonic Logs Analysis: New Mexico Institute of Mining and Technology, Master's thesis report, 75p. plus appendices.
- Hoffman, G., and B. Brister, 2003, New Mexico's Raton Basin coalbed methane play: New Mexico Geology, v. 25, p. 95-110.
- Howard, W.B., 1982, The hydrogeology of the Raton Basin, south-central Colorado: Indiana University, Master's thesis, 95p.
- Hubbert, M. K., and D. G. Willis, 1957, Mechanics of hydraulic fracturing: Petrol. Trans. AIME, vol. 210, 153–166.
- Hugmann, R. H. H., III, and M. Friedman, Effects of texture and composition on mechanical behavior of experimentally deformed carbonate rocks, Amer. Assoc. Petrol. Geol. Bull. 63, 1478-1489, 1979.
- Issacs, E.H. and R.M. Srivastava, 1989, An Introduction to Applied Geostatistics, Oxford University Press, New York.
- Jaeger, J. C., and N. G. W. Cook, 1969, Fundamentals of Rock Mechanics: Chapman and Hall, London, 585 p.
- Johnson, R.B., 1961, Patterns and origin of radial dike swarms associated with West Spanish Peak and Dike Mountain, south-central Colorado: Geological Society of America Bulletin, v. 72, p. 579-590.
- Johnson, R.B., 1968, Geology of the igneous rocks of the Spanish Peaks region, Colorado: U.S. Geological Survey Professional Paper 594-G, p. 1-47.
- Johnson, R.B., and Baltz, E.H., 1960, Probable Triassic rocks along eastern front of Sangre de Cristo Mountains, south-central Colorado: American Association of Petroleum Geologists, v. 44, no. 12, p. 1895-1902.
- Johnson R.B., and Wood, G.H., Jr., 1956, Stratigraphy of Upper Cretaceous and Tertiary rocks of Raton Basin, Colorado and New Mexico: American Association of Petroleum Geologists Bulletin, V.40, no. 4, p. 707-721.
- Johnson, R.B., Dixon, G.H., and Wanek, A.A., 1966, Late Cretaceous and Tertiary stratigraphy of the Raton Basin of New Mexico and Colorado, in Northrop, S.A., and Read, C.B., eds., Guidebook of Taos-Raton-Spanish Peaks Country, New Mexico and Colorado: New Mexico Geological Society 17th Field Conference, p. 88-98.

- Johnson, R.C., and Finn, T.M., 2001, Potential for Basin-Centered Gas Accumulation in the Raton Basin, Colorado and New Mexico, in Nuccio, V.F., and Dyman, T.S., eds., Geologic Studies of Basin-Centered Gas Systems: United States Geological Survey Bulletin 2184-B, p. 1-14.
- Jurich, D., and Adams, M.A., 1984, Geologic overview, coal and coalbed methane resources of Raton Mesa region, Colorado and New Mexico, in Rightmire, C.T., Eddy, G.E., and Kirr, J.N., eds., Coalbed Methane Resources of the United States: American Association of Petroleum Geologists Studies in Geology Series 17, p. 163-184.
- Kauffman, E.G., 1977, Geological and biological overview Western Interior Cretaceous basin, in Kauffman, E.G., ed., Cretaceous facies, faunas, and paleoenvironments across the Western Interior basin: The Mountain Geologist, v.6, p. 227-245.
- Keefe, R. G., June 24, 2002,"2D stratigraphic column data", e-mail.
- Kirby, S. H., and J. W. McCormick, Inelastic properties of rocks and minerals: strength and rheology, Chap. 3, p. 139-280, in: CRC Handbook of Physical Properties of Rocks. Ed. Robert S. Carmichael, CRC Press, 1984.
- Kluth, C.F., and Schaftenaar, C.H., 1994, Depth and geometry of the northern Rio Grande rift in the San Luis Basin, south-central Colorado, in Keller, G.R., and Cather, S.M., Basins of the Rio Grande Rift: Structure, Stratigraphy, and Tectonic Setting, Geological Society of America Special Paper 291, p.27-37.
- Knopf, A., 1936, Igneous geology of the Spanish Peaks region, Colorado: Geological Society of America Bulletin, v. 47, p. 1727-1784.
- Law, B. E., and Dickinson, W.W., 1985, Conceptual model for origin of abnormally pressured gas accumulations in low-permeability reservoirs: American Association of Petroleum Geologists Bulletin, V.69, p. 1295-1304.
- Lee, W.T., 1917, Geology of the Raton Mesa and other regions in Colorado and New Mexico, in Lee, W.T., and Knowlton, F.H., eds., Geology and paleontology of the Raton Mesa and other regions in Colorado and New Mexico: U.S. Geological Survey Professional Paper 101, p. 9-37.
- Lee, W.T., 1924, Coal resources of the Raton coal field, Colfax County, New Mexico, United States Geological Survey Bulletin 752, 254p.
- Lindsey, D.A., Andriessen, P.A.M., and Wardlaw, B.R., 1986, Heating, cooling, and uplift during Tertiary time, northern Sangre de Cristo range, Colorado: Geological Society of America Bulletin, v. 97, p. 1133-1143.
- Long, J. C. S., A. Aydin, S. R. Brown, H. H. Einstein, K. Hestir, P. A. Hsieh, L. R. Myer, K. G. Nolte, D. L. Norton, O. L. Olsson, F. L. Paillet, J. L. Smith, and L. Thomsen, 1997, Rock Fracture and Fluid Flow, Washington, D.C., National Academy Press, 551p.
- Lorenz, J.C., and Cooper, S.P., 2001, Tectonic setting and characteristics of natural fractures in Mesaverde and Dakota Reservoirs of the San Juan Basin, New Mexico and Colorado, Sandia National Laboratories Technical Report, SAND2001-0054, 77p.
- Lorenz, J. C., Cooper, S. P., 2001, Interpreting fracture patterns in sandstones interbedded with ductile strata at Salt Valley Anticline, Arches National Park, Utah, Sandia National Laboratories, Albuquerque, NM, SAND Report, SAND2001-3517, 26p.
- Lorenz, J. C., and Finley, S. J., 1991, Regional fractures II: Fracturing of Mesaverde Reservoirs in the Piceance Basin, Colorado: American Association of Petroleum Geologists Bulletin, v. 75, p. 1738-1757.

- Lorenz, J. C., and Hill, R. E., 1991, Subsurface fracture spacing: comparison of inferences from slant/horizontal core and vertical core in Mesaverde reservoirs: Society of Petroleum Engineers Paper 21877: Joint Rocky Mountain Section Meeting and Low-Permeability Reservoir Symposium, p. 705-716.
- Merry, R.D., and Larsen, V.E., 1982, Geologic investigations of the methane potential of western U.S. coalbeds: Gas Research Institute Project CE-807083, 155p.
- Meissner, F.F., 1980, Examples of abnormal fluid pressure produced by hydrocarbon generation: American Association of Petroleum Geologists Bulletin, v. 65, p. 749.
- Meissner, F.F., 1981, Abnormal pressures produced by hydrocarbon generation and maturation and their relationship to processes of migration and accumulation: American Association of Petroleum Geologists Bulletin, v. 65, p. 2467.
- Merin, I.S., Everett, J.R., and Rose, P.R., 1988, Tectonic evolution and structural geology of the Raton Basin, Colorado, in Sloss, L.L., ed., Sedimentary cover – North American Craton, U.S.: Geological Society of America, Decade of North American Geology, v. D-2, p. 170-179.
- Muller, O.H., 1986, Changing stresses during emplacement of the radial dike swarm at Spanish Peaks, Colorado: Geology, v. 14, p. 157-159. Muller, O.H., and Pollard, D.D., 1977, The stress state near Spanish Peaks, Colorado, determined from a dike pattern: Pure and Applied Geophysics, V. 115, p. 69-86.
- Nelson, R. A., 1985, Geologic analysis of naturally fractured reservoirs, Contributions in petroleum geology and engineering: Houston, Gulf Publishing Company, 360 p.
- Nuccio, V. F., 2002, Coalbed Methane--"What is it"--"Where Is It"--"And Why All the Fuss?" in S. D. Schwochow, and V. F. Nuccio, eds., Coalbed Methane of North America II, Rocky Mountain Association of Geologists.
- Odé, H., 1957, Mechanical analysis of the dike pattern of the Spanish Peaks area, Colorado: Geological Society of America Bulletin, v. 68, no. 5, p. 567-576.
- Olsson, W. A., Grain size dependence of yield stress in marble, J. Geophys. Res. 79, 4859-4862, 1974.
- Penn, B.S., Lindsey, D.A., 1996, Tertiary Igneous Rocks and Laramide Structure and Stratigraphy of the Spanish Peaks Region, South-Central Colorado: Road Log and Descriptions from Walsenburg to La Veta (First Day) and La Veta to Aguilar (Second Day): Colorado Geological Survey Department of Natural Resources Open-File Report 96-4, Field Trip No. 28, (not consecutively numbered).
- Peng, S. S., 1978, Coal Mine Ground Control: John Wiley & Sons, 450 p.
- Peng, S., and A. M. Johnson, 1972, Crack growth and faulting in cylindrical specimens of Chelmsford granite: International Journal of Rock Mechanics and Mining Science, v. 9, p. 37-86.
- Pillmore, C.L., 1969, Geology and coal deposits of the Raton coal field, Colfax County, New Mexico: The Mountain Geologist, v. 6, no. 3, p. 125-142.
- Pillmore, C.L., 1976, Commercial coal beds of the Raton coal field, Colfax County, New Mexico, in Ewing, R.C., and Keus, B.S., eds., Guidebook to Vermejo Park Northeastern New Mexico: New Mexico Geological Society Guidebook, Twenty-Seventh Field Conference, p. 227-247.
- Pillmore, C.L., 1976, The York Canyon coal bed, in Ewing, R.C., and Keus, B.S., eds., Guidebook to Vermejo Park Northeastern New Mexico: New Mexico Geological Society Guidebook, Twenty-Seventh Field Conference, p. 249-251.

- Pillmore, C.L., and Flores, R.M., 1984, Field Guide and discussion of coal deposits, depositional environments and the Cretaceous-Tertiary boundary, southern Raton Basin, in Lintz, J., Jr., ed., Western Geological Excursions: Geological Society of America Annual Meeting Guidebook, v.3, p. 1-51.
- Pillmore, C.L., 1991, Geology and coal resources of the Raton coal field, in Molina, C.L., Jobin, D.A., O'Connor, J.T., and Kottlowski, F.E., Coalfields of New Mexico: Geology and Resources: U.S. Geological Survey, Bulletin 1972-D, p. 46-68.
- Pillmore, C.L., and Hatch, J.R., 1976, Geochemical data on selected coal beds, Raton coal field, Colfax County, New Mexico: U.S. Geological Survey Open-File Report 76-542, 26 p.
- Pillmore, C.L., and Flores, R.M., 1987, Stratigraphy and depositional environments of the Cretaceous-Tertiary boundary clay and associated rocks, Raton Basin, New Mexico and Colorado, in Fassett, J.E., and Rigby, J.K., Jr., eds., The Cretaceous-Tertiary boundary in the San Juan and Raton Basins, New Mexico and Colorado: Geological Society of America Special Paper 209, p. 111-130.
- Pillmore, C.L., and Maberry, J.O., 1976, The depositional environment and trace fossils of the Trinidad Sandstone, southern Raton Basin, New Mexico, in Ewing, R.C., and Keus, B.S., eds., Guidebook to Vermejo Park Northeastern New Mexico: New Mexico Geological Society Guidebook, Twenty-Seventh Field Conference, p. 191-195.
- Pollard, D. D., and A. Aydin, 1988, Progress in understanding jointing over the past century: Geological Society of America Bulletin, v. 100, p. 1181-1204.
- Podwysocki, M.H. and Dutcher, R.R., 1971, Coal dikes that intrude lamprophyre sills, Purgatoire river valley, Colorado: Economic Geology, v. 66, p. 267-280.
- Price, N. J., Fault and Joint Development, Pergammon, Oxford, 1966.
- Read, C.B., and Wood Jr., G.H., 1947, Distribution and correlation of Pennsylvanian rocks in the late Paleozoic sedimentary basins of northern New Mexico: Journal of Geology, v. 55, p. 220-236.
- Roehler, H.W., and Danilchik, 1980, *in* Carter, L.M., eds., Proceedings of the fourth Symposium on the Geology of Rocky Mountain Coal, Colorado Geological Survey Resource Series 10, p. 13.
- Rose, P.R., Everett, J.R., and Merin, I.S., 1986, Potential basin-centered gas accumulation in Cretaceous Trinidad Sandstone, Raton Basin, Colorado, in Spencer, C.W., and Mast, R.F., eds., Geology of Tight Gas Reservoirs: American Association of Petroleum Geologists Studies in Geology Series 24, p. 111-128.
- Sales, J.K., 1983, Collapse of Rocky Mountain basement uplifts, in Lowell, J.D., ed., Rocky Mountain foreland basins and uplifts: Rocky Mountain Association of Geologists, p.70-97.
- Scott, G.R., Wilcox, R.E. and Mehnert, H.H., 1990, Geology of volcanic and subvolcanic rocks of the Raton-Springer area, Colfax and Union Counties, New Mexico: U.S. Geological Survey Professional Paper, 1507, 58 p.
- Speer, W.R., 1976, Oil and gas exploration in the Raton Basin, in Ewing, R.C., and Kues, B.S., eds., Guidebook of Vermejo Park, northeastern New Mexico, New Mexico Geological Society Guidebook, Twenty-Seventh Field Conference, p. 217-226.
- Spencer, C.W., 1987, Hydrocarbon generation as a mechanism for overpressuring in the Rocky Mountain region: American Association of Petroleum Geologists Bulletin, v.71, p. 368-388.
- Spencer, C.W., 1989, Review of characteristics of low-permeability gas reservoirs in Western United States: American Association of Petroleum Geologists Bulletin, v. 73, no.5, p. 613-629.

- Steven, T.A., 1975, Middle Tertiary volcanic field in the southern Rocky Mountains, in Curtis, B.F., ed., Cenozoic History of the Southern Rocky Mountains: Geological Society of America Memoir 144, p. 75-94.
- Stevens, S.H., Lombardi, T.E., Kelso, B.S., and Coates, J.M., 1992, A geologic assessment of natural gas from coal seams in the Raton and Vermejo Formations, Raton Basin: Advanced Resources International, Inc., topical report prepared for the Gas Research Institute under contract no. 5091-214-2316, GRI 92/0345, 84 p.
- Stone, C. M., 1995, "SANTOS A Two-Dimensional Finite Element Program for Quasistatic Large Deformation, Inelastic Response of Solids", SAND90-0543, Sandia National Laboratories, Albuquerque, NM.
- Strum, S., 1985, Lithofacies and depositional environments of the Raton formation (Upper Cretaceous-Paleocene) of northeastern New Mexico: North Carolina State University M.S. thesis, 81 p.
- Teufel, L. W., and Farrell, H. E., 1992, Interrelationship between in situ stress, natural fractures, and reservoir permeability anisotropy: A case study of the Ekofisk Field, North Sea, In Proceedings of Fractured and Jointed Rock Conference, Lake Tahoe, Ca, June 3-5, 1992, not consecutively numbered.
- Timoshenko, S. P., and J. N. Goodier, Theory of Elasticity, McGraw-Hill, New York, 1970.
- Tschudy, R.H., Pillmore, C.L., Orth, C.J., Gillmore, J.S., and Knight, J.D., 1984, Disruptions of the terrestrial plant ecosystem at the Cretaceous-Tertiary boundary, Western Interior: Science, v. 225, no. 4666, p. 1030-1034.
- Tremain, C.M., 1980, The coalbed methane potential of the Raton Mesa coal region, Raton Basin, Colorado: Colorado Geological Survey Open-File Report 80-4, 48 p.
- Tyler, R., Kaiser, W.R., Scott, A.R., Hamilton, D.S., and Ambrose, W.A., 1995, Geologic and Hydrologic Assessment of Natural Gas from Coal: Greater Green River, Piceance, Powder River, and Raton Basins, Western United States: Gas Research Institute Report of Investigations No. 228, 219p.
- Weimer, R.J., 1960 Upper Cretaceous stratigraphy, Rocky Mountain area: American Association of Petroleum Geologists Bulletin, v. 44, no. 1, p. 1-20.
- Weijermars, R., 1997, Principles of Rock Mechanics, Alboran Science Publishing, 360 p.
- Wellman, G. W., March 1999, "MAPVAR A Computer Program to Transfer Solution Data Between Finite Element Meshes", SAND99-0456, Sandia National Laboratories, Albuquerque, NM.
- Wood, G.H., Johnson, R.B., and Dixon, G.H., 1957, Geology and coal resources of the Starkville
 Weston area, Las Animas County, Colorado: U.S. Geological Survey, Bulletin 1051, scale
 1:31680, 68p.
- Woodward, L.A., 1984, Potential for significant oil and gas fracture reservoirs in Cretaceous rocks of Raton Basin, New Mexico: American Association of Petroleum Geologists Bulletin, v. 68, no. 5, p. 628-636.
- Woodward, L.A., 1987, Oil and gas potential of the Raton Basin, New Mexico, in Lucas, S.G., and Hunt, A.P., Northeastern New Mexico: New Mexico Geological Society Guidebook, p. 331-338.
- Woodward, L.A., 1995, Regional Tectonic Control of Laramide (Late Cretaceous-early Tertiary) Fractures in the Raton Basin, New Mexico - Implications for Horizontal Drilling in Cretaceous Shales: American Association of Petroleum Geologists Bulletin, v. 79, p. 148A.

7.1 Maps

- Andreasen, G.E. and Kane, M.F., 1961, Isostatic compensation in the Sangre de Cristo Mountains, New Mexico [paper 391]: U.S. Geological Survey, Professional Paper 424-D, scale 1:856000.
- Bass, N.W., 1947, Structure contour map of the surface rocks of the Model anticline, Las Animas County, Colorado: U.S. Geological Survey, Oil and Gas Investigations Preliminary Map OM-68, scale 1:42240.
- Budding, K.E. and Kluender, S.E., 1983, Mineral resource potential map of the Spanish Peaks Wilderness Study Area, Huerfano and Las Animas Counties, Colorado: U.S. Geological Survey, Miscellaneous Geologic Investigations Map MF-1542-C, scale 1:50000.
- Budding, K.E. and Lawrence, V.A., 1983, Geochemical map of the Spanish Peaks Wilderness Study Area, Huerfano and Las Animas Counties, Colorado: U.S. Geological Survey, Miscellaneous Geologic Investigations Map MF-1542-B, scale 1:50000.
- Budding, K.E. and Lawrence, V.A., 1983, Reconnaissance geologic map of the Spanish Peaks Wilderness Study Area, Huerfano and Las Animas Counties, Colorado: U.S. Geological Survey, Miscellaneous Geologic Investigations Map MF-1542-A, scale 1:50000.
- Cordell, L., Keller, G.R., and Hildenbrand, T.G., 1982, Complete Bouguer gravity map of the Rio Grande Rift, Colorado, New Mexico, and Texas: U.S. Geological Survey, Geophysical Investigations Map GP-949, scale 1:1000000.
- Danilchik, W., Schultz, J.E., and Tremain, C.M., 1979, Content of adsorbed methane in coal from four core holes in the Raton and Vermejo Formations, Las Animas County, Colorado: U.S. Geological Survey, Open-File Report OF-79-762, scale 1:48800.
- Danilchik, W., 1979, Geologic and coal outcrop map of the Madrid quadrangle, Las Animas [County], Colorado: U.S. Geological Survey, Open-File Report OF-79-377, scale 1:24000.
- Danilchik, W., 1979, Geologic and coal outcrop map of the Weston quadrangle, Las Animas County, Colorado: U.S. Geological Survey, Open-File Report OF-79-927, scale 1:24000.
- Dempsey, W.J., and Page, E., 1963, Aeromagnetic map of parts of southern Colfax, northern Mora, and western Harding Counties, New Mexico: U.S. Geological Survey, Geophysical Investigations Map GP-355, scale 1:250000.
- Harbour, R.L. and Dixon, G.H., 1956, Geology of the Trinidad-Aguilar area, Las Animas and Huerfano Counties, Colorado: U.S. Geological Survey, Oil and Gas Investigations Map OM-174, scale 1:31680.
- Harbour, R.L. and Dixon, G.H., 1959, Coal resources of the Trinidad Aguilar area, Las Animas and Huerfano Counties, Colorado: U.S. Geological Survey, Bulletin 1072-G, scale 1:31680.
- Johnson, R.B., Wood, G.H., and Harbour, R.L., 1958, Preliminary geologic map of the northern part of the Raton Mesa region and Huerfano Park in parts of Las Animas, Huerfano, and Custer Counties, Colorado: U.S. Geological Survey, Oil and Gas Investigations Map OM-183, scale 1:63360.
- Johnson, R.B., 1969, Geologic map of the Trinidad quadrangle, south-central Colorado: U.S. Geological Survey, Miscellaneous Geologic Investigations Map I-558, scale 1:250000.
- Luedke, R.G. and Smith, R.L., 1978, Map showing distribution, composition, and age of late Cenozoic volcanic centers in Arizona and New Mexico: U.S. Geological Survey, Miscellaneous Investigations Series Map I-1091-A, scale 1:1000000.

- Luedke, R.G., 1993, Maps showing distribution, composition, and age of early and middle Cenozoic volcanic centers in Arizona, New Mexico, and west Texas: U.S. Geological Survey, Miscellaneous Investigations Series Map I-2291-A, scale 1:1000000.
- Molenaar, C.M., Cobban, W.A., Merewether, E.A., Pillmore, C.L., Wolfe, D.G., and Holbrook, J.M., 2001, Regional stratigraphic cross sections of Cretaceous rocks from east-central Arizona to the Oklahoma Panhandle: U.S. Geological Survey, Miscellaneous Field Studies Map MF-2382.
- Northrup, S.A., Sullwold, H.H., MacAlpin, A.J., and Rogers, C.P., 1946, Geologic maps of a part of the Las Vegas basin and of the foothills of the Sangre de Cristo Mountains, San Miguel and Mora Counties, New Mexico: U.S. Geological Survey, Oil and Gas Investigations Preliminary Map OM-54, scale 1:42240.
- Pillmore, C.L., 1964, Geologic map of the Catskill SW quadrangle, Colfax County, New Mexico: U.S. Geological Survey, Open-File Report OF-64-123, scale 1:24000.
- Pillmore, C.L., 1965, Geologic map of the Catskill NE quadrangle, Colfax County, New Mexico: U.S. Geological Survey, Open-File Report OF-65-122, scale 1:24000.
- Pillmore, C.L., 1965, Geologic map of the Catskill SE quadrangle, Colfax County, New Mexico: U.S. Geological Survey, Open-File Report OF-65-121, scale 1:24000.
- Pillmore, C.L., 1966, Geologic map of the Catskill NW quadrangle, New Mexico and Colorado: U.S. Geological Survey, Open-File Report OF-66-104, scale 1:24000.
- Pillmore, C.L., 1969, Geologic map of the Casa Grande quadrangle, Colfax County, New Mexico and Las Animas County, Colorado: U.S. Geological Survey, Geologic Quadrangle Map GQ-823, scale 1:62500.
- Pillmore, C.L. and Scott, G.R., 1994, Geologic map of the Clifton House quadrangle, showing fossil zones in the Pierre Shale, Colfax County, New Mexico: U.S. Geological Survey, Geologic Quadrangle Map GQ-1737, scale 1:24000.
- Scott, G.R., 1986, Historic trail maps of the Raton and Springer 30' x 60' quadrangles, New Mexico and Colorado: U.S. Geological Survey, Miscellaneous Investigations Series Map I-1641, scale 1:100000.
- Scott, G.R., 1986, Geologic map and structure contour map of the Springer 30' x 60' quadrangle, Colfax, Harding, Mora, and Union Counties, New Mexico: U.S. Geological Survey, Miscellaneous Investigations Series Map I-1705, scale 1:100000.
- Scott, G.R., and Pillmore, C.L., 1993, Geologic and structure-contour map of the Raton 30'x 60' quadrangle, Colfax and Union Counties, New Mexico, and Las Animas County, Colorado: U.S. Geological Survey, Miscellaneous Investigations Series Map I-2266, scale 1:100000.
- Staatz, M.H., 1986, Geologic map of the Pine Buttes quadrangle, Colfax County, New Mexico: U.S. Geological Survey, Geologic Quadrangle Map GQ-1591, scale 1:24000.
- Staatz, M.H., 1987, Geologic map of the Tres Hermanos Peak quadrangle, Colfax County, New Mexico: U.S. Geological Survey, Geologic Quadrangle Map GQ-1605, scale 1:24000.
- Tur, S.M. and Flores, R.M., 1980, Lithologic descriptions of measured sections of Upper Cretaceous Trinidad Sandstone, northern Raton Basin, Colorado: U.S. Geological Survey, Open-File Report OF-80-818, scale 1:24000.
- Wanek, A.A., Read, C.B., Robinson, G.D., Hays, W.H., and McCallum, Malcolm, 1959, Geologic map of the Philmont Ranch quadrangle, New Mexico: U.S. Geological Survey, Open-File Report OF-59-126, scale 1:48000.
- Wanek, A.A., 1962, Geologic map of the southeastern part of the Raton coal field, Colfax County, New Mexico: U.S. Geological Survey, Open-File Report OF-62-148, scale 1:48000.

- Wanek, A.A., 1963, Geology and fuel resources of the southwestern part of the Raton coal field, Colfax County, New Mexico: U.S. Geological Survey, Coal Investigations Map C-45, scale 1:48000.
- Wanek, A.A., Read, C.B., Robinson, G.D., Hayes, W.H., and McCallum, Malcolm, 1964, Geologic map and sections of the Philmont Ranch region, New Mexico: U.S. Geological Survey, Miscellaneous Geologic Investigations Map I-425, scale 1:480000.
- Wood, G.H., Johnson, R.B., Eargle, D.H., Duffner, R.T., and Major, Harold, 1951, Geology and coal resources of the Stonewall-Tercio area Las Animas County, Colorado: U.S. Geological Survey, Coal Investigations Map C-4, scale 1:31680.
- Wood, G.H., Johnson, R.B., and Dixon, G.H., 1956, Geology and coal resources of the Gulnare, Cuchara Pass, and Stonewall area, Huerfano and Las Animas Counties, Colorado: U.S. Geological Survey, Coal Investigations Map C-26, scale 1:31680.

7.0 APPENDICES

APPENDIX A

Advantages and Limitations of Different Methods for Assessing Natural Fractures in the Raton Basin of Colorado and New Mexico

Presented at:

The Conference on Naturally Fractured Reservoirs, hosted by the Mewbourne School of Petroleum and Geological Engineering and the Oklahoma Geological Survey, Oklahoma City, OK, June 4, 2002. The presentation was accompanied by the 20-page proceedings paper in Appendix A.

Citation:

Rautman, C.A., Cooper, S.P., Arnold, B.W., Basinski, P.M., and Lorenz, J.C., 2002, Advantages and limitations of different methods for assessing natural fractures in the Raton Basin of Colorado and New Mexico: Conference on Naturally Fractured Reservoirs, June 3-4, 2002, Oklahoma City, OK

Advantages and Limitations of Different Methods for Assessing Natural Fractures in the Raton Basin of Colorado and New Mexico

Christopher A. Rautman¹, Scott P. Cooper¹, Bill W. Arnold¹, Paul M. Basinski², Thomas H. Mroz³, and John C. Lorenz¹

¹Sandia National Laboratories, Albuquerque, New Mexico
 ²El Paso Production Company, Houston Texas
 ³National Energy Technology Laboratory, Morgantown, West Virginia

ABSTRACT

A suite of three sets of fracture data, derived from outcrops, wellbore-image logs, and core in the Raton Basin, NM, provides an opportunity for comparison. Each data source provides a unique view of the fracture system, and a model based on any single source is significantly different from one derived from the combined data.

The dominant fractures in outcrop are present in sandstones and carbonates. Two types of fractures can be related to horizontal compressive stresses derived from Laramide thrusting at the western edge of the basin: extension fractures that strike approximately east-west, and conjugate fracture pairs where the bisector of the acute fracture-intersection angle is horizontal and also strikes east-west. Shear planes sub-parallel to bedding are also present but are commonly obscured.

In contrast, wellbore-image data suggest that the dominant subsurface fractures consist of conjugate fractures with an east-west strike and a vertical acute-angle bisector, and that they are preferentially developed in shales and coals. Vertical fractures in sandstones, common to outcrops, are relatively rare in the image logs. Wellbore-image and related logs also highlight bedding-parallel shear planes that are associated with zones of more intense fracturing, and give an indication of the present-day, maximum horizontal compressive stress orientation.

Data from an associated, extensive data base of small-diameter cores show four fracture sets: vertical extension fractures similar to those in outcrop except that they are developed in shales and siltstones; conjugate shear fractures with a vertical acute-angle bisector similar to those seen in the wellbore-image logs; small scale thrust faults; and randomly oriented compaction fractures. Identification of fracture strikes is not possible from unoriented drill core.

Each fracture data set has advantages and limitations. Cores and logs are biased against intersecting vertical fractures. Logs provide better vertical coverage than cores and give indications of fracture orientation, but do not provide any information on fracture surface or mineralization characteristics. Outcrops may display fracture patterns related to stresses that have not affected equivalent subsurface strata, and fractures in shales are poorly exposed in the outcrop, yet outcrops provide three-dimensional data. Reliance on any single data source for fracture detection and characterization results in an incomplete fracture model.

INTRODUCTION

Naturally occurring fractures are important in the production of hydrocarbons in many sedimentary basins. In fact, fractures (natural or induced) may be the only means of establishing commercial production from reservoirs with low matrix permeability. Additionally, in some non-conventional reservoirs, including the coal bed methane projects now being widely developed in the United States, cleats and fractures are the principal permeable conduits for the production of natural gas.

Given the importance of naturally occurring and induced fractures to successful hydrocarbon production, a major challenge facing explorationists is how best to characterize the fracture system of a given basin or potentially productive unit. An integrative study of fracturing and its relationship to the inferred evolution of stresses is underway in the Raton Basin of northeastern New Mexico and southeastern Colorado. Observations are being compiled from surface outcrops around the margins and within the basin, down-hole geophysical imaging logs, and extensive cored stratigraphic test wells drilled for an ongoing coal bed methane and fractured sandstoneplay.

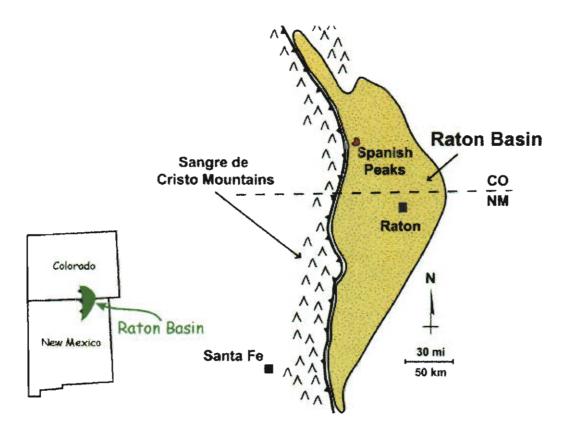
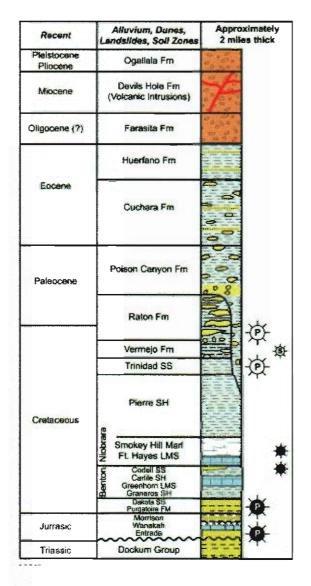
Each principal source of data provides a unique view of the overall fracture system. However, results to date suggest that each unique view is somewhat biased, and that integration of multiple data sources is required for development of a complete fracture model. This report describes some preliminary observations from the higher stratigraphic units within the Raton Basin, and it discusses the relative advantages and limitations of each of the different observational methods.

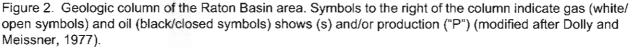
THE RATON BASIN PROJECT

Location and Geologic Overview

The Raton Basin (fig. 1) is an elongate, asymmetrical, Laramide sedimentary basin divided roughly in half by the Colorado-New Mexico state line. The western margin of the Late Cretaceous Rocky Mountain Foreland Basin in this area has been uplifted and deformed by Laramide uplift and east-directed thrusting of the Sangre de Cristo basement block. Coarse-grained, arkosic sediments were shed eastward into a subsiding Raton Basin, now isolated from the main foreland basin by tectonic activity. A generalized stratigraphic section of the Raton Basin is presented in figure 2.

The principal preserved basin fill of the Raton Basin includes the Vermejo Formation (Late Cretaceous in age), the Raton Formation (latest Cretaceous and Paleocene) and the Poison Canyon Formation (Paleocene). Younger deposits, now preserved only within the Colorado portion of the basin, consist of the Cuchara, Huerfano, and Farasita formations (Eocene–Oligocene?). Overlying Miocene sediments of the Devils Hole Formation contain abundant volcanic debris, much of which is correlative with the emplacement of the shallow intrusive centers now known as the Spanish Peaks. Intrusive sills and smaller laccoliths, as well as bedding-discordant dikes, are present in many locations throughout the basin. In parts of the basin, the topographic surface is underlain by portions of the Ogallala Formation (Plio-Pleistocene) of the High Plains.


Figure 1. Index map showing the location and extent of the Raton Basin in northeastern New Mexico and southeastern Colorado.

The younger Tertiary sediments and volcanic rocks (Cuchara Formation and overlying rocks) have been removed from the New Mexico portion of the basin by erosion. Sills throughout the basin have been inferred to have been intruded at reconstructed depths of at least 5,000 ft, and the total thickness of cover that may have been removed from the New Mexico portion of the basin may exceed 8,000 ft (Hemmerich, 2001).

The principal methane production and potential resource is associated with thin, now relatively shallow (~1500–2500-ft depth) coal seams of in the Upper Cretaceous and Lowermost Tertiary sedimentary section. However, numerous thick, naturally fractured, low-permeability sandstones are interbedded in this portion of the sedimentary sequence, and these fractured units may contain significant gas resources for which the source rocks are the included coals. The existence and extent of fractured sandstone reservoirs in the Raton Basin is yet to be determined.

The presence of numerous bedding-parallel igneous sills within the section suggests an unconventional stress state, wherein the overburden stress was not necessarily the maximum principal stress at the time of intrusion during deep burial. Additionally, the deeper mid-Tertiary burial and later exhumation of the New Mexico portion of the basin, in conjunction with heating related to subvolcanic intrusive activity late in the geologic history of the area in a complex and poorly understood sequence of events, has resulted in a basin in which the fluids are underpressured at present. The stress field has also been reconfigured by late Tertiary uplift and erosion and by regional extension related to the opening of the Rio Grande Rift. Because stress systems con-

trol both the formation of natural fractures and the response of those fractures to pore-pressure changes during production and recovery of hydrocarbons and related fluids, understanding of the geometry of both stresses and fractures would be a significant step toward optimizing recovery of natural gas from the Raton Basin.

Fracture Studies in Outcrop

Outcrop studies have focused on exposures of resistant Dakota Sandstone and stratigraphically higher rock units along the margin of the main Raton Basin, as well as on resistant sandstones and coals of the Raton Formation within the basin. A large number of fractures in outcrop appear to be near-vertical extension fractures. These features occur throughout the vertical section in the New Mexico portion of the basin, and they appear to be oriented roughly east-west and normal to the bounding thrust of the Sangre de Cristo Mountains (figs. 3-4).

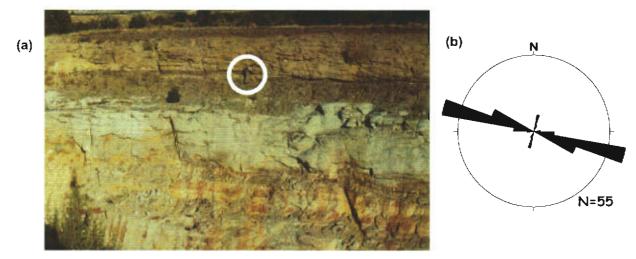


Figure 3. Near-vertical, uniformly dipping extension fractures in the Trinidad Sandstone. (a) Roadcut exposure (note circled geologist for scale); (b) rose diagram of fracture strikes.

Figure 4. Near-vertical, parallel extension fractures in outcrop of a sandstone unit of the Vermejo Formation (Upper Cretaceous).

A somewhat less-evident style of fracturing is vertically dipping conjugate-fracture pairs. These sets are developed both in sandstones and in limestones (fig. 8), and there appears to be spatial and/or stratigraphic variation in the orientation of the acute-angle bisectrix of the conju-

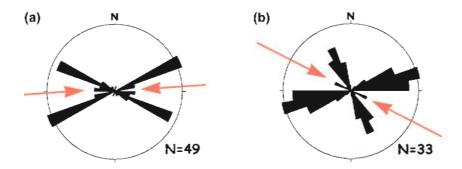


Figure 5. Rose diagrams showing differing orientations of fracture strikes for conjugate fracture sets in different positions within the Raton Basin. (a) South-eastern portion, Ft. Hayes Limestone; (b) eastern portion, Dakota Sandstone. Approximate acute-angle bisectrices shown by red arrows (dips are essentially vertical).

gate pairs (fig. 5). The bisector of the acute angle formed by the conjugate fracture pair reflects the orientation of the maximum principal stress during formation.

There are also more complex styles of fracturing and additional potential spatial controls on fracturing at the basinal scale. Figure 6 shows an example of a highly fractured outcrop of Dakota sandstone. However, this outcrop is located on the western margin of the Raton Basin near the bounding thrust fault, and the strata are, in fact, overturned. The nature and orientation(s) of the different types of fractures at this location have not yet been determined.

At another location, both sandstones and included sills exhibit parallel fracture patterns that are suggestive of vertically dipping conjugate shears (fig. 7). However, closer examination of

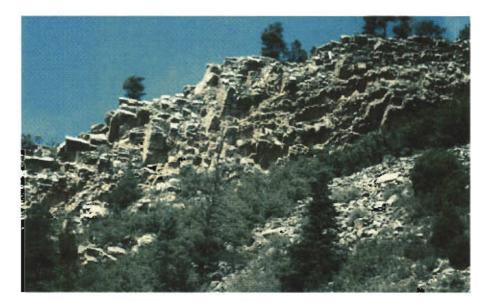


Figure 6. Factures developed in an outcrop of the Dakota Sandstone at the western margin of the Raton Basin close to the bounding thrust fault. Unit is overturned at this location.

(a)

Figure 7. Parallel extensional fracturing in sandstone and igneous sill. (a) normal outcrop view; (b) view looking vertically downward, showing parallelism of fractures.

Figure 8. Conjugate fracture sets developed in outcrop of the Ft. Hayes Limestone Member of the Niobrara Formation (Upper Cretaceous). View is vertically downward.

the outcrop indicates that the fracture surfaces exhibit definite plumose structures, implying that the style of fracturing is almost unquestionably extensional in nature. Such close-up examination of what are moderately large mesoscale features is possible only in outcrop exposure, and the angular relationships alone might lead to a wholly different structural interpretation.

Large-scale regional changes in fracturing styles are suggested by the sequence of rose diagrams presented in figure 9. These orientation measurements are all from sandstone and have been collected from a west-to-east transect through the north-central Raton Basin along the course of the Purgatoire River. Notable is the change from two intersecting sets of extensional fractures

on the west closest to the bounding thrust fault and the later Rio Grande Rift, through a single dominant set of extensional fractures in the central portion of the basin, to a set of conjugate shear fractures closer to the eastern margin of the basin. Although speculative at this time, the presence of north-trending extensional fractures in the westernmost portion of the Raton Basin is compatible with an influence of east-west directed extension associated with opening of the Rio Grande Rift to the west of the Sangre de Cristo Mountains.

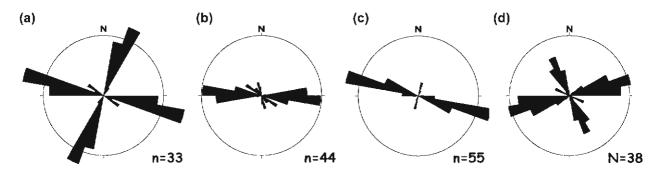


Figure 9. West-to-east transect of the Raton Basin along the Purgatoire River valley just north of the New Mexico-Colorado state line showing differences in fracture style with position within the basin. All fractures are in sandstone. (a) Two perpendicular sets of extensional fractures; (b) a single set of extensional fractures; (c) a dominant set of extensional fractures with a weak secondary set at 90 degrees and with a slightly different implied orientation of maximum horizontal compressive stress than (b); (d) conjugate shear fractures with a bisecting minor set of extension fractures.

Fracture Studies Through Wireline Geophysical Imaging

Two principal types of downhole geophysical imaging tools have been used to date for observation of fracture patterns in the subsurface: the Formation Micro-Imager (FMITM) log and the Anisotropic Dipole Imager (DSITM) log¹. FMI and DSI logs have been run in selected full-diameter wells for El Paso Production Company as part of their El Paso-Raton, LLC, coal bed methane project.

Formation Micro-Imager Log

The FMI or microresistivity logging tool provides imaging of the formation based on the correlation of eight very high-resolution, shallow resistivity traces measured around the circum-ference of the wellbore. Real-time orientation knowledge of the position of the downhole tool allows measurement of both the dip and strike of bedding, fractures, and faults. Fractures that are open to invasion by the drilling mud are distinguished from closed fractures based on contrasts in electrical resistivity of the mud and the formation. Analyses of fracture orientations in this study have focused on open or partially open fractures for which an apparent hydraulic aperture has been estimated. Open fractures are more likely to interact with the local stress state and are more relevant to gas and water flow within the formation.

¹ The use of trade, product, industry, or firm names is for descriptive purposes only and does not imply endorsement by the Sandia National Laboratories or by the U.S. Government.

Fractures in the wells examined to date exhibit two more-or-less well-defined fracture sets. One set, striking roughly east-west, dominates the data from one borehole, whereas a second borehole in the same part of the basin exhibits two subequally developed populations. These fracture sets are shown both in rose-diagram format and on lower-hemisphere stereonets in figure 10.

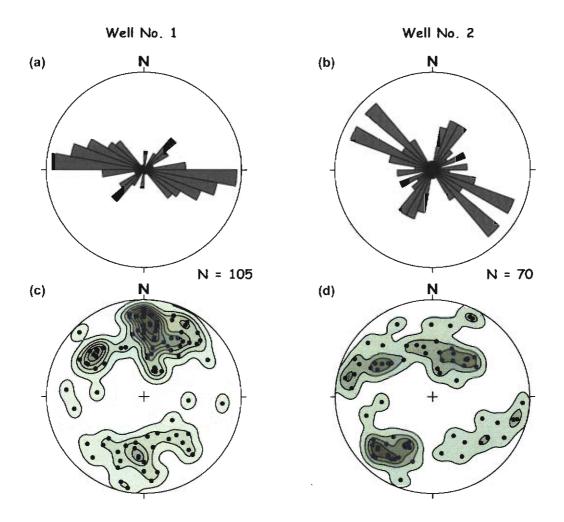


Figure 10. Orientations of open and partially open fractures as inferred from FMI logs from two holes in the southernmost Colorado portion of the Raton Basin. (a) and (b) Rose diagrams of fracture strikes; (c) and (d) lower-hemisphere stereonet diagrams for the same fracture populations shown in the rose diagrams immediately above showing poles to the fracture planes.

The stereonet presentation of figure 10(c) indicates that the east-west fracture set in the one borehole exhibits a dominantly southward dip. The less well-developed set, striking north-east-southwest, also dips southward (indicated by the cluster of poles in the northwest quadrant). Relatively few of the northeast-trending fractures appear to exhibit northerly dips.

The distribution of orientations in the second well for the northeasterly striking fractures, shown in figure 10(d), also indicates a dominance of generally southeastward dips, although the

spread of these orientations appears more broad. Dips of the second, although numerically dominant set in this second borehole exhibit roughly equal number of fractures dipping southwest and northeast. North-dipping fractures of this set exhibit more steeply dipping fracture planes than do the southwest-dipping fractures.

Dipole Sonic Log

The DSI (or dipole sonic imager) logging tool detects anisotropy of the sonic shear-wave velocity within the formation. The acoustic anisotropy measured by this tool may be intrinsic in nature or stress induced. Intrinsic anisotropy is caused by preferential textural or fracture orientations within the rock, whereas stress-induced anisotropy is imparted by differences in the horizontal stress state. The direction of fast shear-waves in the medium is aligned parallel either to the dominant intrinsic features or to the maximum horizontal stress. A consistent azimuth of maximum shear-wave velocity in a well, without a corresponding preferred fracture orientation or textural trend, is generally interpreted to be indicative of the direction of maximum horizontal stress.

The DSI logs that have been examined thus far from the northernmost New Mexico and southernmost Colorado portion of the Raton Basin exhibit quite similar characteristics with relation to the direction of horizontal stress throughout the penetrated section, as indicated by the four rose diagrams of figure 11. The mean maximum horizontal compressive stress is just slightly east of north in three of the four drill holes and only very slightly west of north in the fourth. The fact that the maximum horizontal stresses inferred from the DSI logs are highly consistent and oriented almost perpendicularly to the dominant trend of the fractures identified by the FMI analysis suggests that the measurements are, in fact, reflecting the true in-situ stress conditions. The presence of some two dozen borehole-wall breakouts on the eastern and western sides of the drill holes also suggests that the present-day maximum horizontal compressive stress is oriented north-south.

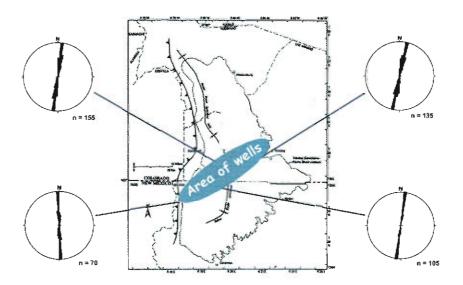


Figure 11. Rose diagrams showing consistency in orientation of present-day maximum horizontal stress in the central Raton Basin, as determined from DSI logging tool data. Precise locations obscured to protect proprietary data.

The variability of the maximum horizontal stress appears to decrease with depth, suggesting an increase in the anisotropy ratio of the stresses in the horizontal plane with increasing depth. The standard deviation of measured azimuths below roughly 1,200 ft is less than half the variability observed for measurements taken above this depth. In addition to a decrease in variability of orientation with depth, the inferred mean horizontal compressive stress appears to rotate to a more north-south orientation in observations made below 1,200 ft in depth. This trend is quite evident in the drill hole represented by figure 12.

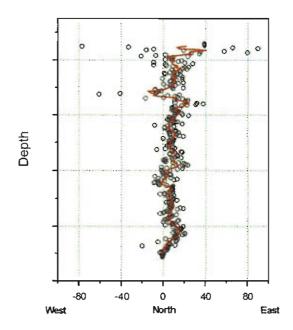


Figure 12. Measured azimuths of the maximum horizontal compressive stress (open circles) at 5-ft intervals inferred from DSI logs as a function of depth from a well drilled in the southernmost Colorado portion of the Raton Basin. The solid line indicates a 50-ft moving-average orientation. 200-ft depth ticks.

Fracture Studies of Continuous Core

Continuous wireline, small-diameter (NX- or HQ-type; approximately 2.0–2.5-inch maximum diameter) cores have been obtained from a 18 holes drilled as stratigraphic tests from near the surface to the Trinidad Sandstone (fig. 2) by El Paso-Raton, LLC, and its predecessor organizations operating a coal bed methane play, principally in the New Mexico portion of the Raton Basin. Core recovery for three holes examined in detail thus far is generally excellent. Layout of the core under quasi-controlled conditions in a core warehouse allows close examination of fractures, including measurement of dip (relative to the core-axis only in unoriented drill core), fracture coatings, mineralization and alteration of the fracture or adjoining wall rock, the nature of fracture terminations, associations with specific lithologic types, and the presence or absence of striae (slickensides) on the fracture surface(s). Evaluation of fractures observed in core is probably less advanced than analyses of fracturing in the Raton Basin by the other two methods. However, the preliminary data suggest that there are four distinctly different types of fractures. Near-vertical extension fractures (zero to about 10 degrees to core axis; fig. 13) are well developed locally in the section overlying the Trinidad Sandstone. Although some extension fractures are present in sandstones, the overwhelming dominant lithologic association of near-vertical fractures is with finer-grained rocks, principally siltstones and silty mudstones. Not all vertical fractures are necessarily parallel. Some instances of near-vertical fractures can be demonstrated to exhibit strikes nearly 90-degrees apart. Extension fractures are almost the only class of fracture present in the more massive sandstone intervals; multiple near-parallel sets of fractures separated by a centimeter or less [fig. 13(b)] may also be present in these lithologic horizons. Plumose structure (fig. 14) may be present on some of these fractures.

Figure 13. Near-vertical (approximately parallel to core axis) extension fractures in sandstones of the Raton Formation in core. Stratigraphic top is to the left. (a) Typical expression; (b) example of parallel fracturing.

A small number of intervals of intrusive igneous rock have been logged in the core from the Raton Basin. These intervals are inferred to represent sills on an outcrop scale, although smaller-scale cross-cutting relationships with the host rock, mostly carbonaceous mudstone and

Figure 14. Plumose structure on an extension-fracture surface in core from the Raton Formation.

coal, are visible in core. The intrusive rocks are broadly intermediate in composition, porphyritic, and somewhat altered. The only class of fracturing observed in the small set of sills logged to date are near-vertical extension fractures.

What appear to be conjugate fracture sets are present in the core, again principally associated with the finer grained portion of the lithologic section. These fractures dip dominantly between 20–30 and 70 degrees (forming angles of 30 to 70 degrees to the core axis); strike orientations are unknown, as none of the stratigraphic-test core was oriented during collection. Demonstration of the conjugate nature of fractures is difficult in drill core that is only 2 or so inches in diameter. However, reconstruction of significant lengths of core to its original continuous relative position by matching drilling- and handling-induced breaks does demonstrate the alternate-dipping nature of at least some inclined fractures in these cores (fig. 15). The acute-angle bisectrix of identifiable conjugate fracture sets, which reflects the orientation of the principal compressive stress at the time of formation, may be either near vertical or in the horizontal plane; however vertical principal compressive stresses appear to be predominant.

Because of the dominance of finer-grained lithologies associated with these inclined/conjugate fracture sets, a large number of fracture planes exhibit poorly to well-defined slickensides indicative of relative movement. The majority of slickensides rake roughly 10 to 20 degrees to the dip of the overall fracture plane, as indicated in figure 16(a). A very few slickensides rake at a high angle, 70–80 degrees, to the dip of the fracture plane [fig. 16(b)]. Slickensides may also be present on "bedding" planes that are nearly perpendicular to the core axis. Compositional layering may be present at significant angles to the nominally normal-to-core-axis direction, indicating local cut-and-fill sedimentary structures. That the sense of shearing is aligned with the orientation of fractures themselves is demonstrated by the photograph of figure 17.

A third, although rare, class of fracture observed in drill core consists of inclined fractures for which reverse-sense movement (thrust faulting) can be demonstrated. Such movement is strongly indicated by slight step features on the fracture surfaces that are most compatible with a reverse sense of movement. Very thin (less than one millimeter) carbonate coatings on some



Figure 15. Reconstruction of in-situ core configuration for a reconstructed four (4) feet of core demonstrating the conjugate nature of a fracture set (solid arrows) in siltstone of the Raton Formation. The dashed lines indicate matched halves of the same fracture plane; Stratigraphic top is to the left and the core reads like a book from left to right and from top to bottom; scale is in centimeters.

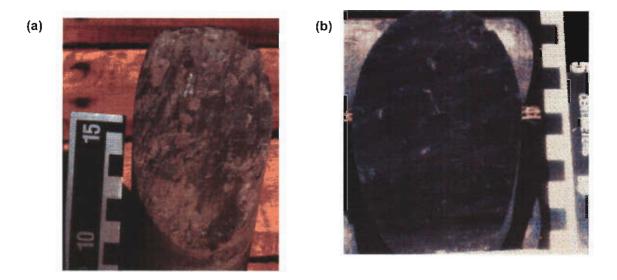


Figure 16. Examples of slickensides on fracture surfaces in siltstone from the Raton Formation. (a) Slicks rake at a low angle to the dip of the fracture; (b) slicks rake at a high angle to dip. Stratigraphic top is up in both images; scale is in centimeters.

slickensides also can be interpreted as suggesting deposition in pressure "shadows" of slight irregularities on the fracture surface. In some cases, the impression is that the last sense of movement was more-or-less up-dip.

An additional class of fracturing observed in core is ubiquitously distributed throughout the fine-grained portion of the section, particularly in the mudstones. These features appear to be randomly oriented "compaction" fractures (fig. 18). Typically, a compaction fracture is of short extent (many are less extensive than the diameter of the core), abruptly curved or otherwise non-

Figure 17. Shear fractures in muddy siltstone of the Raton Formation. Note alignment of slickensides on the outward-facing fracture with the dip direction of the other two fractures.

planar, slickensided, and can be observed to die-out into unfractured material over a short distance. Additionally, previously unbroken core may fracture (at least partially) along these planes during handling associated with examination of the core. Given the markedly different initial porosities and mechanical properties of muddy sediments and sands shortly after deposition, it would not seem surprising that significant differential compaction during dewatering and consolidation might occur, creating these fractures a syndepositional features.

Figure 18. Compaction fracture in fine-grained silty mudstone of the Raton Formation.

Calcareous coatings are evident on many fractures seen in the core. At least two types of calcite are present: white and reddish orange (iron stained). Most observed calcite coatings coat only part of the fracture, and may be observed to fill irregularities associated with slickensides and other mesoscopic irregularities on the fracture planes. Typically, these fractures are open (pieces separated) in the core box; these coatings are dislodged relatively easily from the fracture wall. In distinct contrast, some fractures are completely healed ("tight") by carbonate minerals. These "vein-fill" fractures may be either completely or partially filled by white carbonate material. Mesoscopic porosity up to a millimeter or two in diameter is visible in some of the wider (2–3-mm maximum width) vein-fill-type fractures. Interestingly, carbonate fracture coatings are more abundant in the finer-grained lithologies, and may be present even in the so-called compaction fractures, including those initially tight features that open up upon handling of the core during logging activities.

DISCUSSION

The purpose of this paper is not only to describe the location-specific (preliminary) results of ongoing fracture studies in the Raton Basin, but also to compare and contrast the advantages and limitations of three different methods for assessing the natural fracture system: outcrop studies, downhole geophysical imaging, and core examination. Using each of the observational methods separately, it is possible to construct separate "fracture models" to summarize briefly the more general interpretations obtained to date.

Fracture Model Based on Outcrop Observations

Based solely on the observations possible in outcrops, the conceptual model of fracturing in the Raton Basin can be summarized as follows:

- 1. Vertical extension fractures and vertical conjugate fracture sets dominate the sequence,
- 2. Strikes of extension fractures are dominantly east-west,
- 3. Strikes of the acute-angle bisectrix of conjugate fracture sets are also east-west, implying an east-west orientation for the maximum horizontal compressive stress during formation of these fractures,
- 4. Fractures are concentrated in brittle rock types: sandstones, limestones, and intrusive sills, and
- 5. There is abundant evidence for thrust (reverse-motion) faulting on a mesoscopic (outcrop) scale.

Fracture Model Based on Borehole Imagery

Based solely on the results of the downhole geophysical imagery (DSI and FMI logging tools), the conceptual model of fracturing in the Raton Basin may be summarized as follows:

- 1. Fracturing appears dominated by east-west striking, inclined conjugate fracture sets,
- 2. Fractures are concentrated in finer-grained strata and coals,
- 3. The maximum present-day horizontal principal stress is probably oriented north-south,
- 4. Open fractures (under the prevailing stress regime) are oriented east-west; this may be important evidence with respect to the open or closed nature of certain fracture sets, and
- 5. There is some evidence for thrust (reverse-motion) faulting.

Fracture Model Based on Core Examination

Based solely on examination of small-diameter continuous core, the conceptual model of fracturing in the Raton Basin may be summarized as follows:

- 1. Both near-vertical extension fractures and inclined, probable conjugate fracture sets are present; strikes of fractures cannot be determined from unoriented core,
- 2. Fractures are distinctly more abundant in finer grained strata, including both mudstones and silty units,
- 3. Compaction fractures are ubiquitous in the most fine-grained rock types; these fractures were sufficiently open at one time to allow the deposition of thin carbonate veinlets, and
- 4. There is some minor evidence for thrust (reverse-motion) movement on some fractures; this evidence is on a "micro-" (hand-sample) scale, in contrast to a mesoscopic outcrop scale.

Biases and Differences Identifiable in the Three Fracture Data Sets

The first and most obvious difference among the three fracture data sets, and one that would be capable of inducing significant bias in resulting interpretations, is the difference in fracture abundances identifiable through outcrop studies vs. those studies that emphasize subsurface observations. Fractures observable in outcrop are dominated by those that are present in brittle rock types, specifically sandstones, limestones, and sills. Although both near-vertical extension fractures and conjugate fracture sets were identified in outcrop, the profound dominance of fracturing in the finer and more ductile rock types identifiable where exposures are not biased by weathering and erosion is completely missed. Mudstones and siltstones are poorly exposed generally in the Raton Basin, and such exposures as do exist are affected by surficial weathering process and by the presence of swelling clays. The bias of outcrop studies generally toward resistant (and typically brittle) rock types is quite well known.

Recognition of the presence of the large suite of very small-scale compaction fractures identified through core examination — and perhaps of the role that may have been played by differential compaction in the development of these and other fractures in fine grained sediments — is not possible using the outcrop data set. The degree of disruption of the mudstones and their included features by surface weathering is simply too extreme. These compaction features also have not been identified in the downhole geophysical imagery, perhaps because they are too small and discontinuous to have attracted attention in the logging of production wells that are of relatively large diameter Although the compaction fractures as we have identified them through core examination are probably not important to permeability of the coal bed methane reservoirs, they nevertheless do appear to be significant features in the subsurface and may provide insights that might be relevant into the origins of other fractures.

A second major difference among the differing data sets is that absolute orientation data are necessarily absent from subsurface studies that utilize unoriented drill core. Given the significant added expense of obtaining oriented cores, the lack of absolute orientation data is not surprising in most stratigraphic studies. The impact of unoriented drill core with respect to absolute fracture orientations (and, indeed, on other types of planar geologic features) is sometimes compensated for by drilling of core holes in other than vertical orientations. The existence of a known fabric to the geology transected by such inclined boreholes ("horizontal" sedimentary bedding in basin interiors, for example), allows general reconstruction of the true orientation of core segments in three-dimensional space, and thus allows reconstruction of the approximate orientations of planar features such as fractures.

In addition, in the case of the Raton Basin coal bed methane play, the lack of oriented core may be mitigated to some extent by the apparently highly consistent orientation of the stress field, at least within limited regions. Throughout many of the producing areas drilled to-date, drillinginduced fractures, specifically those resulting from well stimulation procedures, appear to reflect the north-south maximum horizontal compressive stress deduced from the dipole-sonic logging (e.g., fig. 10). Although one must be wary of circular reasoning when extending such inferences into other parts of a basin where the stress regime may be different, this may be an situation where "external" information from a relatively small number of drill-stem tests can provide significant insight into the orientations of fractures at depth.

Another bias that affects data acquired from vertical boreholes, whether that data is from core examination or from downhole geophysical measurements, is the well-known bias against intersecting near-vertical fractures. This bias may account for the apparent lack of vertical extension fractures observed in the downhole geophysical imagery data set compared especially to the results of the outcrop studies and the core examination. Still another potential effect when comparing fracture-frequencies to lithology between drill hole and outcrop studies is the bed-thickness effect. If the resistant layers in outcrop are more massively bedded than the (poorly exposed) finer-grained strata, fracture spacings may be more widely spaced in the more brittle rocks, further decreasing the likelihood of encountering numerous fractures in core or log-based studies.

Alternatively, any individual vertical borehole may yield an unreasonably high estimate of the frequency of vertical fracturing if the vagaries of locating the hole collar lead to drilling the hole down a local zone of anomalously high fracture intensity (or even an individual fracture). Additionally, unless drilling procedures are closely controlled (e.g., penetration rates and resulting weight-on-bit), the coring operation itself may induce near-vertical fractures in certain rock types and under certain in-situ stress regimes. Petal fractures (fig. 19), which are also generally interpreted to be coring-induced, have been observed in some intervals of core.

Interpretation of stress conditions across the basin and across the differing fracture data sets is, of course, one step removed from the more-or-less objective description of extant fractures. However, at this preliminary stage in this study, some pronounced differences in stress inferences have become apparent. These involve principally the description and interpretation of conjugate fracture sets.

Specifically, the dominance of one or the other direction of conjugate fracture pairs appears potentially different between outcrop studies and the downhole imagery interpretations. Comparison of the rose diagrams of figures 5 and 10(a) and (b) indicates markedly subequal proportions of orientations in outcrop and markedly unequal proportions of orientations from the downhole geophysics. Additionally, although there is some spatial variability in orientation of the inferred maximum horizontal stress in the outcrop data, this variation is on a basinal scale (fig. 9) and in all cases is compatible with broadly east—west oriented compression.

Figure 19. Drilling-induced petal fracture in siltstone of the Raton Formation. Stratigraphic top is to the left.

Perhaps a final, illustrative bias or difference among the three data sets for the purposes of this discussion involves the time-sequence of changes in the stress regime across techniques. This example involves the (direct?) inference of the current stress regime showing the orientation of the maximum horizontal compressive stress as north-south using the DSI logging tool. Although the orientations of the principal horizontal stress shown by the rose diagrams of figure 11 is fully consistent with the current-day extensional regime that produced the Rio Grande rift to the west of the uplifted Sangre de Cristo basement block (fig. 1), this orientation is at almost 90 degrees to the direction of movement(s) along the thrust faults separating the basin from the basement block to the west. Thus, although there is no overt conflict in the observations because the stress field is known to have changed through time, knowledge of the timing of changing tectonic regimes and the age of formation of different fracture features is required for proper interpretations in any local area.

CONCLUSIONS

The existence of fracture data sets from three distinctly different sources in the Raton Basin project, and the both obvious and more subtle-but-yet significant differences among them, has prompted more than one wag to draw comparisons with the well-known parable regarding the three blind men and the elephant. Each of the proverbial men examines a different portion of the beast — the trunk, a leg, the tail — and arrives at a completely different conclusion regarding the overall nature and characteristics of the elephant. Although the differences among the three Raton Basin data sets may not be quite so glaring, and indeed, the commonalities among the three data sets led to identification of vertical extension fractures, inclined conjugate fracture sets, the existence of thrust-type displacements, and a profound reorientation of the stress regime at some time during the geological history of the basin, it is clear that the most complete model of natural fractures in a coal bed methane or fractured sandstone reservoir system is likely to be one that combines observations and interpretations from all three methods of observation.

The project is as-yet in an early stage of investigation. Future activities will focus on resolving issues related to spatial variability of orientations of different fracture types and the implications of such spatial variability to the stress history and the types of fractures and orientations to be expected at any given locality of interest. Additional emphasis will be placed on understanding the fracture characteristics of the various sills, dikes, and sill complexes that are a characteristic feature of the Raton Basin. The disparate locations studied by the geophysical investigations, core study, and outcrop exposures with respect to the topographically and geologically prominent intrusive center of the Spanish Peaks may significantly impact our understanding of the overall fracture system. Additionally, intrusive relationships among dikes and sills and their individual fracture systems, together with potential age-dating of selected intrusive rocks may provide important constraints on the change from a compressive stress regime to one of regional extension.

REFERENCES

- Dolly, E. D., and Meissner, F. F., 1977, Geology and gas exploration potential, Upper Cretaceous and Lower Tertiary strata, northern Raton basin, Colorado, Exploration frontiers of the central and southern Rockies: Rocky Mountain Association of Geologists Field Conference Guidebook, p. 247-270.
- Hemmerich, M., 2001, Cenozoic denudation of the Raton Basin and vicinity, northeastern New Mexico and southeastern Colorado, determined using apatite fission-track thermochronology and sonic log analysis: M.S. thesis, New Mexico Institute of Mining and Technology, Socorro, N. Mex.

ACKNOWLEDGMENTS

Ronald E. Graichen, of Winlock, Washington, assisted in logging the core provided by El Paso Production, operator of the El Paso-Raton, LLC, operation in northeastern New Mexico. The New Mexico Bureau of Geology and Mineral Resources curates core from the Raton Basin project and provided examination facilities.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy, under contract DE-AC04-94AL85000.

CONTACT INFORMATION

Christopher A. Rautman Sandia National Laboratories Underground Storage Technology Department P.O. Box 5800; MS-0706 Albuquerque, NM 87185 505-844-2109 carautm@sandia.gov

APPENDIX B

Methodology for Specifying Failure Conditions for Sedimentary Rocks

Introduction

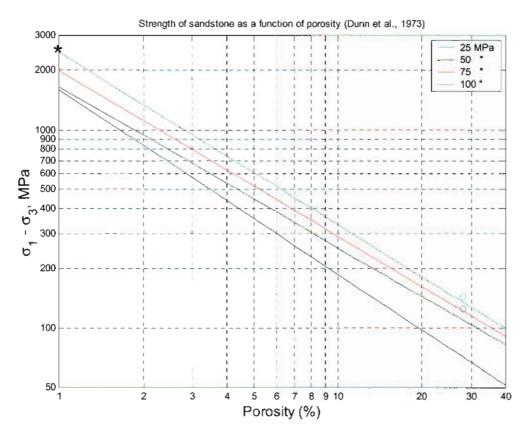
A critical need for the mechanical modeling of a geological structure from the point of view of a rate-independent, pressure-dependent constitutive model is the failure condition. A failure condition may be specified by several different but uniquely related functions. Some of these are the Mohr (or Mohr-Coulomb), the Griffith, and the Drucker-Prager. These can be examined in the book on rock mechanics by *Jaeger and Cook* (1969). For simplicity in this discussion I will use the most basic relation of standard rock testing; that is, maximum principal stress difference as a function of confining pressure (minimum principal stress). For the confining pressure range of interest to us, this relation is approximately linear such that

$$\sigma_1 - \sigma_3 = \sigma_0 + (B - 1) \sigma_3. \tag{1}$$

Here, $\sigma_1 > \sigma_3 > 0$ are the maximum and minimum compressive stresses, respectively. The coefficient B-1 derives from the simpler but equivalent relation

$$\sigma_1 = \sigma_0 + B \sigma_3. \tag{2}$$

The constant σ_0 is the unconfined compressive strength.


We begin to break the problem down by recognizing that in the geographic and geologic area that concerns us, there are at least 4 sedimentary rock types that will need to be included in the mechanical analysis (igneous rocks and unconsolidated surface materials are excluded): sandstone, limestone, shale, and coal. This is further complicated by the fact that there may be several different varieties of each rock.

The direct approach to this type of problem is to measure in the laboratory, for the 4 or more types of rocks encountered, the parameters required by the constitutive models of the codes used for the boundary value problem.

In a layer-cake problem, where there are not too many layers, and the layers are continuous across the model, the direct approach would make sense. If, however, there are, say, three different sandstones and two different limestones and possibly two types of shale this would lead to a very large amount of testing because to establish (1) requires tests at a minimum of two confining pressures. In addition some replication would be desirable. Given the time and budgetary constraints of the project, it may be best to address the issue of material properties using the methodology described in below.

Strength of sandstones

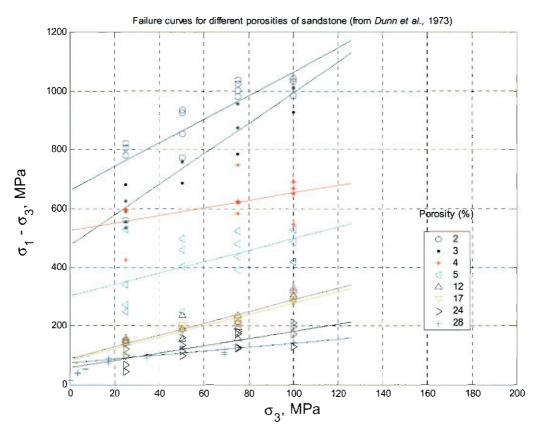

To the uninitiated it may seem that every sandstone with a different name would have a different and completely unpredictable set of material properties. Similarly there are a myriad of different limestone and shale formations, and so on. For the case of sandstones, it has been convincingly shown, that an underlying, intrinsic property of this rock type controls the strength (*Dunn et al.*, 1973). This intrinsic property is the porosity. Figure 1 shows regression curves for maximum principal stress difference (hereafter referred to more simply as stress difference) versus porosity in percent in log-log space.

Figure 1: Maximum stress difference at failure for various sandstones plotted against porosity. Lines for the four different confining pressures indicated in the upper right. Circles are Sandia data for Castlegate sandstone of 28% porosity. The confining pressures for Castlegate are indicated by the same color code as the lines: cyan is 100 MPa, and (light) green is 50 MPa.

This plot was constructed for a variety of sandstones with porosities ranging from 2% to 24%. The asterisk indicates the strength of the mineral quartz, that provides an upper bound on strength for quartzose rocks at vanishing porosity. Also shown is our own data (*Olsson*, unpublished; *Olsson*, 1999) for Castlegate sandstone that has a porosity of 28%. This provides and independent check of the relations given in *Dunn et al.* (1973). The sandstones studied by *Dunn et al.* (1973) had different types of cement, suggesting the dominance of the porosity as the most influential variable.

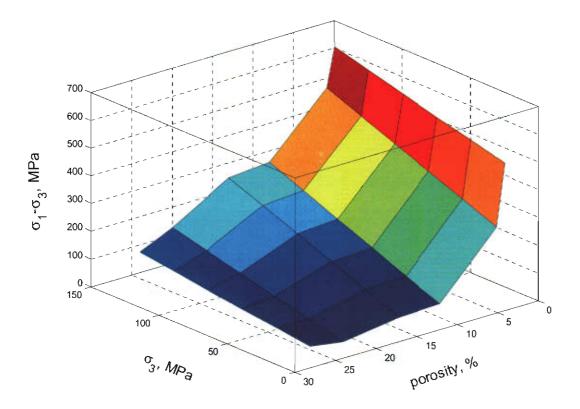

Figure 2 shows this data as a plot of equation (1) for the different porosities studied by *Dunn et al.* (1973).

Figure 2: Strength versus confining pressure for sandstones of differing porosities. The 28percent-porosity rock is from *Olsson* (unpublished, and 1999) for Castlegate sandstone.

The diagram in Figure 2 can be considered a contour map of the strength of sandstones. The individual contours are the failure curves for the individual rocks. Interpolation looks to be straight forward as there are no sharp kinks etc., the surface is just a sloping, plane for rocks with porosity between 3% and 24%. In fact, the rocks with the lowest porosities, 2 and 3%, were actually quartzites; that is, they had undergone some amount of metamorphism, destroying the porosity through grain growth. Therefore, for normal sedimentary sandstones, the two curves at the top can be deleted.

In Figure 3, the data have been replotted from a different perspective in the same 3-space (σ_3 , porosity, $\sigma_1 - \sigma_3$) to emphasize the simplicity of the interrelationships of these variables. The data for the two quartzites have been omitted as there is none of this very strong metamorphic rock in the modeled area. The lines in the (σ_3 , $\sigma_1 - \sigma_3$) planes are linear fits to the strength-confining pressure data. (The surface in this figure is not a regression surface.)

Figure 3: Strength versus confining pressure and porosity for sandstones. Same data set as Figure 2 with the quartzites omitted.

One of two approaches could now be taken. Either actually determine the porosities of the sandstones of interest, or simply choose a value that is thought to be representative of the types of sandstones that may be found in a particular area such as aeolian, beach, or deltaic.

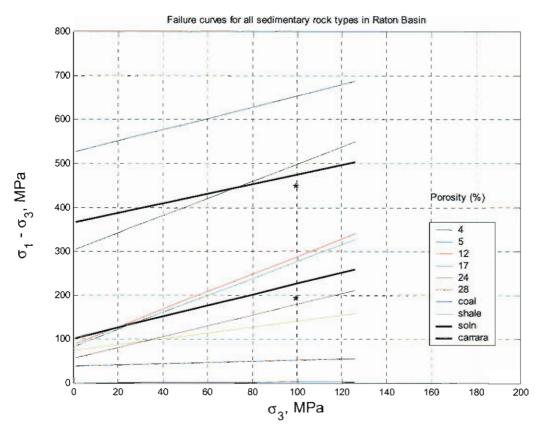
Strength of shale

Shales, which are clastic rocks of measurable porosities, do not fit into this scheme because the minerals are layered silicates and deformation can be intra- and inter-granular. Also, the rock is very anisotropic in its properties. It is fortunate that there exist data on the strength of Pierre shale (*Kirby and McCormick*, 1984) for confining pressures that include the range we might be interested in. In Figure 4 data for Pierre shale has been added to the data set.

Strength of coal

Coal is another important rock in the basin. Fortunately there is a set of data for a subbituminous coal from Wyoming (*Kirby and McCormick*, 1984) that may be similar in its mechanical properties to the coal in the section from the Raton basin. The failure curve for coal has also been added to the strength plot in Figure 4.

Figure 4: Strength map for clastic rocks and coal that may be typical of the Raton basin. Same as Figure 2 with the addition of curves for Pierre shale and sub-bituminous coal from Wyoming. Note that shale has a very low σ_0 and vanishingly small (B-1). See Table 1.


Strength of limestone

The last rock type that concerns us for modeling the basin mechanics is limestone. As with sandstone, previous work by *Olsson* (1974) shows that an intrinsic variable controls the strength of calcite based rocks--limestones and marbles. The controlling intrinsic variable for limestone strength is the grain size. *Olsson* (1974) showed that the strength varies as the inverse of the square root of the grain size, and that this can be explained in terms of the length of slip bands or twin lamellae in calcite. The strongest limestones are those with smallest grain size, and Solenhofen limestone is one of the finest grained limestones ever studied, with an average grain diameter of 0.005 mm. A search of the literature showed that the other end of the grain size continuum was occupied by Yule and Yamaguchi marbles with a grain size of 3.5 mm. Data at different confining pressures is tabulated for Solenhofen and Carrara marble in *Kirby and McCormick* (1984). Carrara has a grain size of 2.2 mm and is thus very near to the lower bound in strength. In fact because the strength varies only slowly with grain size at these large sizes, the data for Cararra is assumed to be representative of the weakest limestones. The strength curves for these two rocks, Solenhofen and Carrara, are taken to serve as upper and lower bounds, respectively, on the strength of limestones. To compare the potential range of limestone strength with that of the clastic rocks, I have added the curves to the plot of Figure 4 and plotted all data needed for the Raton basin in Figure 5. The range of possible limestone strengths lies within the potential range of sandstone strengths. Further, the pressure dependence of carbonate rocks, as given by B-1, is somewhat less than for the sandstones.

Hugman and Friedman (1979) extended the microstructural basis for strength of carbonate rocks to include several other limestones and dolomites. As a check on the upper and lower bounds shown in Figure 5, I have plotted their data (only obtained at 100 MPa confining pressure) for the two extremes of grain size they studied 0.22 and 1.56 mm as stars. The agreement is very good.

As with the porosity for sandstones, the most objective method to estimate the strength of the limestones present in a region would be to determine the grain size. But again, it may be possible to apply geologic reasoning to choose a representative grain size and thus an appropriate failure criterion.

Failure parameters σ_0 and B-1 are summarized in Table 1 for all the rocks discussed above.

Figure 5: Failure curves for all major sedimentary rocks found in the Raton basin. All limestones fall between the two heavy black lines. The individual data points have been omitted for clarity. The two asterisks are for data from *Hugman and Friedman* (1979).

It is clear from Figure 5 that any estimate of sandstone and limestone failure criteria will give strengths far greater at all confining pressures than either coal or shale. Thus the presence of coal or shale layers will induce a very strong anisotropy in the sedimentary stack. If they were to be found in more lensoidal shapes, they would act as soft inclusions. This would appear to very much complicate the construction of a mechanical stratigraphy.

Mohr representation for the data

Some algebraic manipulation will show that σ_o and (B-1) of equation (1) can be related to C and ϕ of the Mohr (-Coulomb) relation

$$\tau = C + \tan\phi \sigma \tag{3}$$

-

where τ is the shear stress and σ is the normal stress at the point of tangency of the failure envelope to the maximum stress circle at failure. The slope of the failure line is tan ϕ where ϕ is the angle of internal friction. The relations between the constants in (1) and (3) are:

 $\sin\phi = \tan(B-1)/(2 + \tan(B-1))$

 $C = \sigma_o \tan\phi/\tan(B-1)$.

The parameters C and tan ϕ are listed in Table 1 as well as the parameters σ_o and B-1 for equation (1).

Rock Type	σ _o (MPa)	B-1	C (MPa)	tanφ
Sandstone				
porosity = 2%	662	4	148	0.89
3	474	5.2	95	1.04
4	526	1.28	174	0.42
5	303	1.95	88	0.57
12	88	2.00	25	0.58
17	83	1.94	24	0.57
24	57	1.22	19	0.41
28	74	0.66	29	0.26
Pierre shale	0.26	0.028	0.13	0.01
Coal	39	0.15	18	0.07
Solenhofen limestone	366	1.09	127	0.38
Carrara marble	102	1.25	34	0.42

 Table 1: Failure parameters for sedimentary rocks.

What about joints, faults and bedding surfaces?

So far we have considered intact rock strength. What do we do about the many discontinuities such as joints and bedding surfaces in the modeled volume? The simplest approach for like rock-on-rock, i.e., a joint through a bed, would be to apply

$$\tau = \mu \sigma \tag{3}$$

where τ is shear stress required for slip, σ is the normal stress, and μ is the coefficient of friction. The stresses τ and μ are referred to the plane of slip. According to *Byerlee* (1978), for many rock types at normal stresses below about 100 MPa, $\mu = 0.85$. My own experiments on surfaces of various kinds of tuff give $\mu = 0.6$ and greater. Therefore, it would be conservative to consider 0.85 as an *upper bound* on friction.

There appears to be little or no data concerning sliding of one rock type against another. The question of the magnitude of the strength of an interface between shale and a stronger rock thus has no clear answer, but it must be bounded above by the shear strength of the weaker material

Interrelationship of Intact failure strength to frictional strength

This section is just a note to provoke thought on the concept of intact strength for layers that may have joints in them. Figure 6 is a sketch of how the frictional strength interacts with the intact strength for a given rock. The two circles represent failure stresses at two confining pressures for a rock and the failure envelope (blue line $tan\phi = 0.6$) is drawn tangent to the circles. The red line is the failure curve for frictional sliding based on Byerlee's law, $\mu = 0.85$. For a particular state of stress in the region where the red line lies below the blue line, failure is predicted to occur at shear stress below intact strength on planes of orientation lying between E and F. The angle θ is measured between the normal to the sliding plane and the maximum compression direction. At any normal stress above (to the right) of the intersection of the blue and red lines, failure is by intact rock fracture. Note that if $\mu = 0.6$, the friction line would lie parallel to the intact failure line, and sliding would generally precede/preempt 'intact' failure in rock layers that contained fractures.

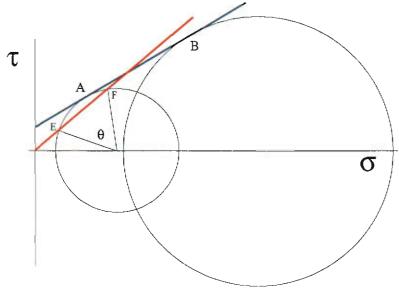


Figure 6: Mohr plot for intact (blue, $tan\phi = 0.6$) and friction on interface (red, $\mu = 0.85$). Angular range over which slip occurs before intact failure given by θ .

Summary

This discussion suggested that it may be possible to choose reasonable strength parameters for the sedimentary rocks occupying the Raton basin without a systematic laboratory testing program. The proposed methodology is based on the proven concept that microstructural properties are related to strength for sandstones and limestones.

It is suggested that frictional strength may be chosen with acceptable accuracy by taking Byerlee's law (coefficient of friction = 0.85) as the upper bound.

Some simple interrelationships between intact and frictional strength were reviewed.

APPENDIX C

Calculated Reflection/Transmission Coefficient Curves for Shale overlying Basalt

Attached are three plots depicting seismic reflection and transmission coefficients, as functions of the angle of incidence θ of a plane P-wave onto a plane shale-basalt interface. The three plots correspond to different values of the seismic parameters assigned to the shale and basalt units:

Case 1: Strong impedance contrast.

Case 2: Average impedance contrast.

Case 3: Weak impedance contrast.

Values of compressional (P) wavespeed α , shear (S) wavespeed β , and mass density ρ assigned to shale (medium 1 - overlying) and basalt (medium 2 - underlying) are indicated on each plot. Reflection and transmission coefficient curves are displayed for the full range of incidence angles of the plane P-wave: $\theta = 0^{\circ}$ corresponds to normal incidence and $\theta = 90^{\circ}$ corresponds to grazing incidence.

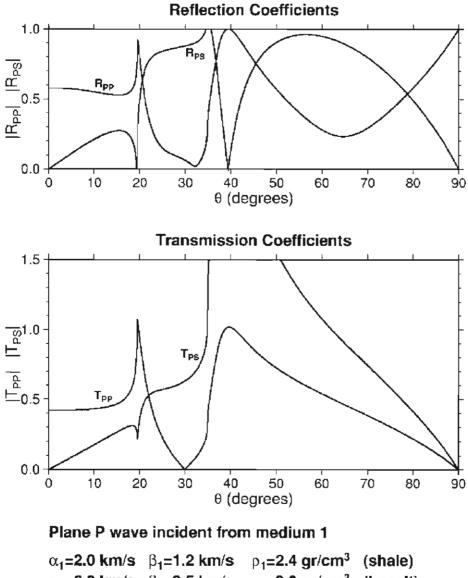
The reason for considering three different cases is that the literature suggests that P wavespeed α and mass density ρ of both shale and basalt can vary quite widely, depending upon porosity, fluid saturation, mineral content, depth of burial, age, fracturing, vesiculation, etc. I selected values of α and ρ for the three cases from a brief literature search, and then calculated S wavespeed β by using the common assumption that the Poisson ratio of the two media is equal to 0.25.

On each plot, the top panel displays reflection coefficients and the bottom panel displays transmission coefficients. The curve that is most relevant to your situation is the "P-to-P" reflection coefficient curve labeled " R_{PP} " in the top panel. This curve is interpreted as the amplitude of a reflected plane P-wave, generated by an incident plane P-wave with unit amplitude onto the shale-basalt interface.

Clearly, these R_{PP} reflection coefficient curves exhibit significant variability between the three cases. Also, each curve varies strongly over incident angle θ in any individual case. The peak in the curve (at $\theta \approx 20^{\circ}$ for case 1, $\theta \approx 30^{\circ}$ for case 2, $\theta \approx 68^{\circ}$ for case 3) is referred to as a "critical angle effect", and indicates a very strong reflection characteristic. However, for most conventional seismic reflection work, the data acquisition geometry is such that the angle of incidence of the downgoing P-wave onto a subsurface reflecting horizon is less than the critical angle. Thus, we should concentrate on the portions of the R_{PP} curves ranging from $\theta = 0$ up to $\theta = \theta_{crit}$.

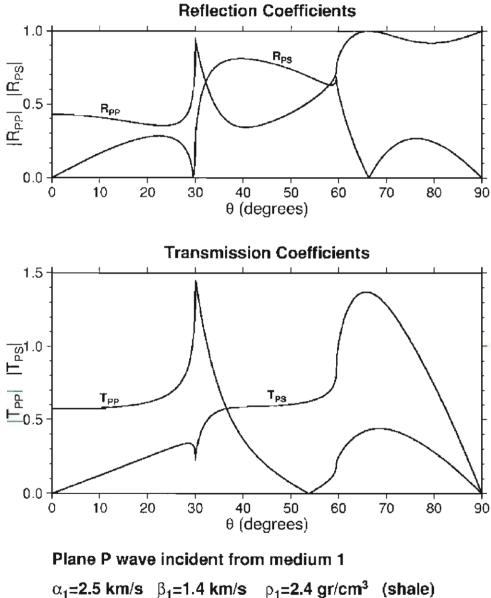
For the low angle (i.e., near-normal incidence) range, the numerical values of the three R_{PP} reflection coefficient curves are quite large. Conventional wisdom is that a shallow subsurface interface typically has a seismic reflection coefficient of about ~0.04, and a deep interface has a reflection coefficient of about half of that (~0.02). Thus, the present reflection coefficients are

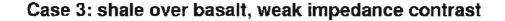

significantly larger in magnitude. Indeed, a reflection coefficient in the range of 0.4 to 0.6 (as in cases 1 and 2) would be regarded as atypically large. Even the weak impedance contrast case 3 yields a reflection coefficient above 0.1. Hence, *in the absence of other perturbing influences*, one would expect to observe a significant seismic reflected arrival (PP) from a shale-basalt interface of this type.

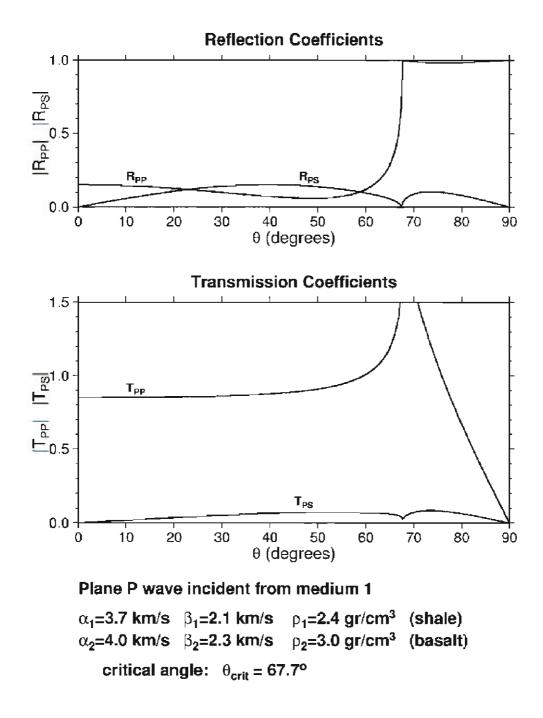

Of course, there are many reasons why a PP reflection might not be observed in the field recorded and processed seismic data. The two that we have discussed are 1) the subsurface shale-basalt interface is significantly more rugose than a simple plane, and hence would tend to scatter rather than coherently reflect seismic energy, and 2) a disturbed and/or highly variable shallow subsurface zone is scattering and attenuating the seismic waves, both downgoing and upcoming. I agree with the assessment made from the plotted field shot gathers that there is a noticeable "reflection event dimout" over a portion of the seismic line of interest (between shot points labeled 1101 and 1501). Subsequent processing of these data cannot be expected to create reflection event that are lacking in the field-recorded data. However, I do not understand why this event dimout constitutes strong evidence for a lack of a shallow subsurface problem affecting seismic reflection quality.

Dave Aldridge

Geophysical Technology Department Sandia National Laboratories Albuquerque, New Mexico, USA, 87185-0750


505-284-2823 dfaldri@sandia.gov





 $\begin{array}{ll} \alpha_1 = & 2.0 \ \text{km/s} & \beta_1 = & 1.2 \ \text{km/s} & \rho_1 = & 2.4 \ \text{gr/cm^3} & (\text{shale}) \\ \alpha_2 = & 6.0 \ \text{km/s} & \beta_2 = & 3.5 \ \text{km/s} & \rho_2 = & 3.0 \ \text{gr/cm^3} & (\text{basalt}) \\ & \text{critical angles:} & \theta_{\text{crit}} = & 19.5^\circ, \ 34.9^\circ \end{array}$

APPENDIX D

Raton Basin Field Trip August 4&5, 2003 Vermejo Park & Southern Colorado

John C. Lorenz Scott P. Cooper Matt Herrin Russell G. Keefe

TABLE OF CONTENTS

Field Trip Stops

Actual order taken on August 4th & 5th: Day 1: Stops 1, 2, 3, 4, 6, 9, 8, 7 Day 2: Stops 11, 12, 13, 14

Stop 1: Overview—Raton overlook and K/T boundary site

The Raton Basin (Figure 1) is a 150 x 120 mi north-south trending basin (Tremain, 1980) wherein the coal section covers an area of over 2100 square miles. It is bordered on the west by the Sangre de Cristo Mountains, to the north by the Wet Mountains, to the northeast by the Apishapa Arch, to the east by the Las Animas Arch and to the southeast and south by the Sierra Grande Uplift. The basin was formed during the Laramide orogeny as tectonic activity uplifted the Sangre de Cristo Mountains and created numerous folds and reverse faults across the basin. The western margin of the basin has numerous thrust faults and is highly deformed. In contrast the eastern limb gently dips, 1-2 degrees, toward the west. The basin is highly asymmetrical with its synclinal axis parallel and near to the Sangre de Cristo uplift.

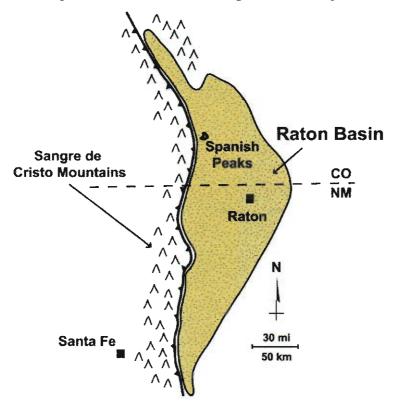


Figure 1: Map of the greater Raton Basin

Tertiary deposition within the basin was directly tied to ongoing orogenic activity. In Late Cretaceous time the Raton area was the southern extension of the Rocky Mountain Foreland Basin. Formations deposited along what was then the coast of the Western Interior Seaway included the Pierre Shale, Trinidad Sandstone and the Vermejo Formation (Figure 2). East directed thrusting continued and eventually isolated the Raton Basin from the main foreland basin as evidenced by conglomerates within the Raton Formation. Tectonic activity continued into Paleocene time with the associated deposition of the Poison Canyon Formation. Further activity continued into Eocene time with deposition of the Cuchara, Huerfano and Farasita Formations. It is only within Eocene time that the Sangre de Cristo Mountains became a source of sediment (Merin et al., 1988; Tyler et al., 1995).

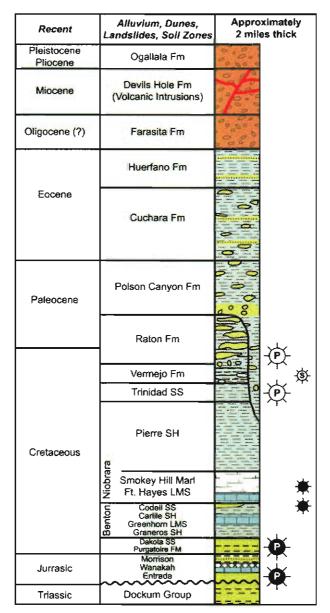


Figure 2: Geologic column of the Raton Basin area. Symbols to the right of the column indicate gas (white/open symbols) and oil (black/closed symbols) shows and/or production (modified after Dolly and Messier, 1977).

Igneous rocks intruded the Raton Basin complex during the mid- to late Tertiary eras. These intrusives are in the forms of stocks, laccoliths, sills and dikes (Figure 3). The densest area of intrusive activity centers around the Spanish Peaks and are 22-25 million years old (Penn and others, 1992). Numerous dikes and sills are also found throughout the basin (Figure 3). Recent sheet basalts capping the mesas in the Raton/Trinidad area are dated at 3.5 to 7.2 mya (Baldwin and Meulberger, 1959). The youngest volcanics are in the Capulin area, dated at 18,000 to 4500 years old (Kudo, 1976).

This geologic sequence of events (deposition, coupled tectonism with deposition, and volcanic intrusion) has combined to make the Raton basin a complex system.

Figure 3: Map of larger scale intrusions within the Raton Basin. Due to the map scale numerous small dikes and sills are not shown. Volcanic intrusions are paleostress indicators.

K/T Boundary

K/T boundary Ir anomaly is 5 cm below a thin coal bed and at the top of a 2-3 cm thick kaolinite clay bed at this locality (Pillmore and Flores, 1984).

Stop 2: Fractures in road cut through Vermejo Fluvial sandstone, north and south sides of NM 555

This fluvial sandstone in the lower part of the Vermejo Formation is cut by numerous vertical extension fractures that strike essentially east-west, with a secondary/younger set of fractures striking north-south. Fractures cut vertically through the entire thickness of the two-meter-thick sandstone, and are stained with iron oxide. Some have remnant plumes suggesting an origin in extension. Maximum fracture spacing is half of the bed thickness, and most fractures are considerably more closely spaced. A well drilled into this sandstone would have good access to gas in the porosity via the fractures. Fractures of the same sets are more closely spaced in the thinner-bedded, more heterogeneous strata that are interbedded with the channel sandstone near the top. Most cleats in the associated coals are parallel to fractures in the sandstones, but locally cleating is oblique to the fractures, especially where sandstones directly overlie coal, suggesting that some shear occurs near this contact.

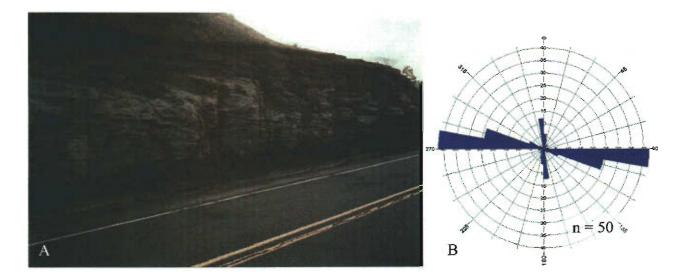


Figure 4: A) Fractures in fluvial sandstones of the Vermejo Formation on Hwy 555, and B) their orientations

Stop 3: Sills along the Canadian River north of Hwy 555

At this stop sills intrude the Vermejo Formation. A small coal dike, similar to one near the Vermejo Park Ranch headquarters is observed here. Coal liquefies at 450 degrees F. Transfer of plane of intrusion of sill suggests pushing the center of the earth down but this is probably an illusion. The sedimentary units are probably caught between the leading edge of two sills (or a bifurcation of a single sill). Fractures in the sills and adjoining sedimentary rocks can be similar.

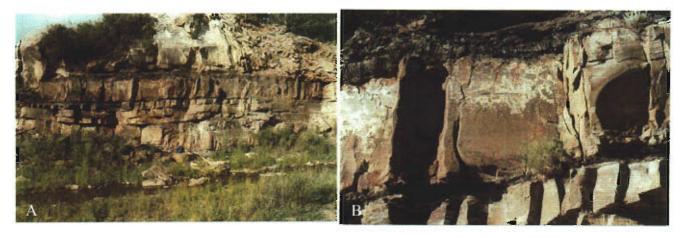


Figure 5: A) Sills at this location can be difficult to distinguish from the baked siltstone units they intrude. B) Plume structures on fractures in sills. A thin coked coal bed overlies the sill.

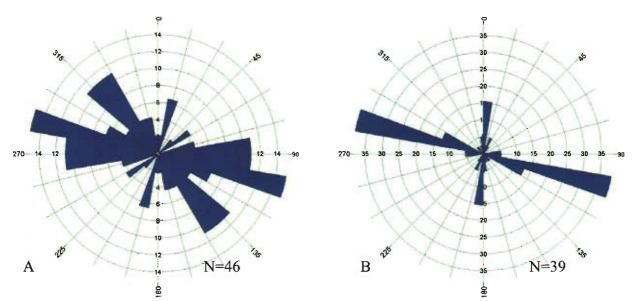


Figure 6: Fracture orientations within A) siltstone units, and B) sills.

Stop 4: The "Whale" syn-depositional structure between mile markers 12 and 13, south side of NM 555.

This large (20 meters diameter) sandbody of ambiguous origin was referred to by Pillmore as a "foundered" sandstone in a photo caption found in a NMGS field guidebook. The unit was deformed by rotation around a horizontal, southeast-northwest trending axis (down on the northeast, up on the southwest) during deposition. Some of the muddy overbank strata were incorporated into the rotating unit and are now overturned. The overturned strata are found adjacent to the upper, western margin of the unit. Similarly deformed overbank strata are vertical on the lower, western margin of the unit. Evidence of syn-sedimentary deformation includes consistently steepening bedding within the sandstone and drag/smear near the lower contact. A two-meter-thick coal thins over the top of this unit, suggesting that it was a topographic high during deposition of the coal. The coal was apparently incorporated into the rotating block on the northeastern side, where the fluvial sandstone is considerably thicker than on the southwestern side.

The origin for this feature is ambiguous, but it may be related to syn-sedimentary deformation of more obvious genesis (slumping and intraformational thrusting) found elsewhere in the basin.

Figure 7: Syn-sedimentary deformation in "The Whale"

Figure 8: Progressively steeper bedding within the sandstone at lower edge of "The Whale". The black line was added to highlight bedding.

Stop 5: Syn-depositional fold in the Poison Canyon Formation along Hwy 555.

Laramide west-to-east thrusting formed the Sangre de Cristo Mountains and the Raton basin. The views at this local highlight the large-scale nature of this tectonic event.

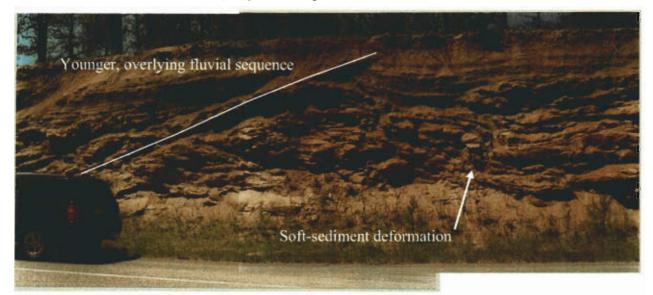


Figure 9: Prograding fluvial sequences and soft-sediment deformation structures within the Poison Canyon Formation can be observed here.

Stop 6: Raton Conglomerate, Reed Canyon

Conjugate fractures dictated by the more brittle nature of the quartzose Raton Conglomerate indicate a different mechanical response to the same compressive stresses than less brittle rock units. Conjugate fracture systems are better connected and should provide a better reservoir plumbing system.

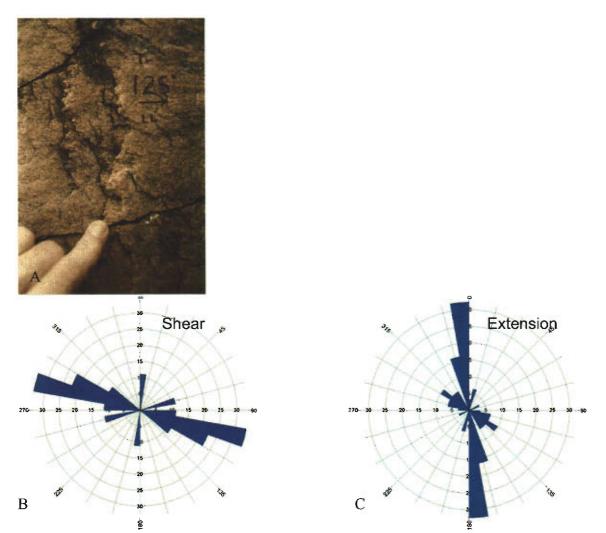


Figure 10: A) Steps instead of plumose structures on fracture surfaces indicate an origin in shear rather than extension. Shear indicators were found in the Raton Conglomerate in many locations around the Vermejo Park Ranch. Rose diagrams show difference in dominant orientation for shear fractures (B) versus extension fractures (C).

Stop 7: Trinidad thrust, west gate to Vermejo Park Anticline.

Figure 11: Thrust within the Trinidad Sandstone places lower *Ophiomorpha* burrow bearing sandstone against upper non-*Ophiomorpha* bearing sandstone (approximately 10-15 meters of vertical offset).

Figure 12: Photograph of back thrust, striking parallel to the thrust fault but dipping east to intersect it.

Figure 13: Photograph of minor thrust fault within Trinidad sandstone on west rim of the anticline, 4-5 miles to north of the thrust at stop 7. Orientation and sense of motion are similar.

Stop 8: Castle Rock Park stop with discussion concerning production.

Figure 14: Photograph of Bubbling Springs at east end of Castle Rock Park. Castle Rock, a remnant channel sandstone with cross-stratification indicating north-south paleoflow, is in the middle right of photograph.

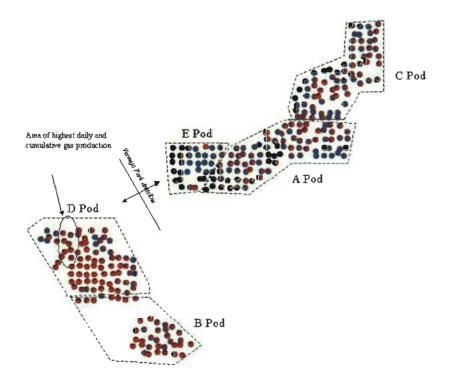


Figure 15: Pie chart map showing relative amounts of water (blue) and gas (red) produced on a daily averaged basis. The best gas producers of the lease are near where we are standing.

Stop 9: Overturned Dakota Sandstones at the western edge of the basin.

From our last stop, we drive toward the western edge of the structural basin. Note that as we drive down section, formations dip to the east at increasingly steeper angles, until at this stop the beds of the Dakota Formation are overturned to the west.

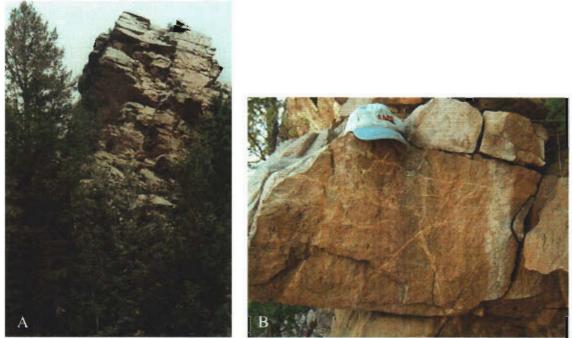


Figure 16: A) overturned wall of Dakota Formation. B) deformation bands within the well-silicified Dakota sandstone.

Deformation bands typically form in high porosity sandstones suggesting they formed early before the Dakota Sandstone was altered to its current low-porosity, well-silicified state. Bed-parallel stylolite surfaces and well developed bed-normal shear planes are also common at this location.

Detail of rollover sandstone and bounding fault: damp geologist for scale

Close-up of 15 cm thick fault smear (knile for scale). Smear consists of amorphous clay with coaly inclusions, suggesting incorporation/injection along the fault prior to https://cation.

Fault surface where it cuts across sandstone (clip-board with pencil for scale). Lowrallel finantions suggest some inclusation of the sand but fack of gouge and sinckensides indicates it was not significant.

Photomosauc of syn sectimentary growth faulting at the Maloya Lakin solikway, Sugarite Stam Park, New Monto

Sandstone thickens and rolls over into an east-west trending fault, implying that faulting was contemporaneous with deposition. Measured sections through the associated coaly strata suggest that the three-meter thick sandstone with lateral-accretion bedding to the right of the fault is equivalent to sandstone at the base of the exposure to the left of the outcrop, not to the rolled-over sandstone in the graben. Offset along the fault is therefore about 27 m.

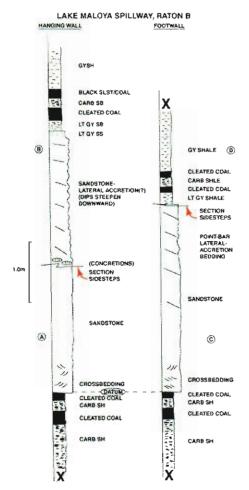


Figure 17: Composite sections through the sandstones and coals left and right of the fault (as indicated on the photomosaic/line drawing on previous page).

The sections above show that the sandstone at the lower left and associated coals—not the rollover sandstone in the graben—correlate best to the sandstone at the upper right.

Stop 11: Morley anticline

Morley, Colorado a coal-mining ghost town situated at the center of a small-scale anticline on Interstate 25.

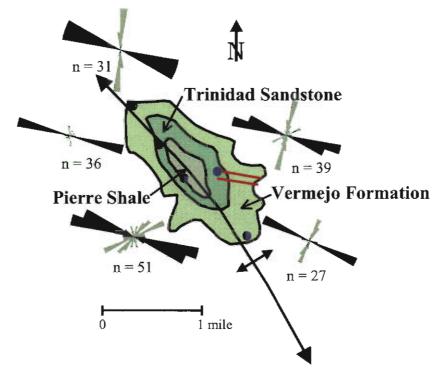


Figure 18: WNW primary extension fracture set is observed across the anticline. Base map after R.B. Johnson (1969), modified from field observations.

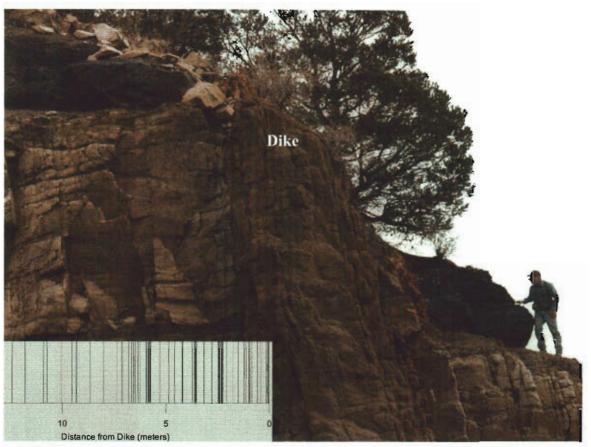


Figure 19: Fracture scan line shown above illustrates that the fractures within the Vermejo formation are related to emplacement of an igneous dike at SE side of the Morley anticline.

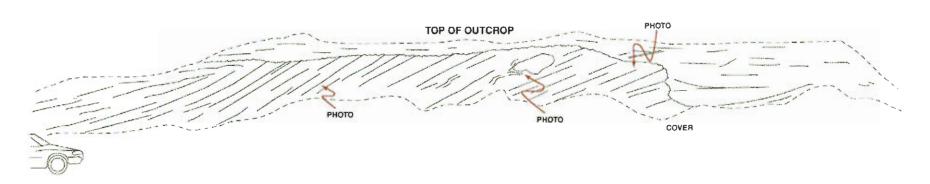
Stop 12: Synsedimentary deformation north of Cokedale, Colorado

This is one of numerous places within the Raton basin, typically in the Vermejo Formation, where syn-sedimentary deformation of the relatively unlithified strata took place. This deformation seems to have been related to down-slope slumping of sediment on a steep depositional slope, possibly aided by contemporaneous thrusting from the tectonic belt at the western margin of the basin.

A thrust fault is inferred to underlie the inclined strata because of the soft-sediment back thrusting found elsewhere (west of Ludlow) in similar features, and because of the compressive flow structures within the inclined strata. The angle of dip on these strata is too great to be a primary sedimentary feature. The strike of the thrust is assumed to be parallel to the strike of the inclined strata.

Deformation along this thrust apparently diverted drainage on the overlying depositional surface, as reflected by crossbedding vectors in the overlying sandstone that trend parallel to the strike of the inferred thrust and normal to the regional Late Cretaceous depositional slope.

Soft-sediment back-thrusting is less obvious than at Ludlow but present. Horizontal compression in the pre-lithification stage is also suggested by the blunt edge of the sandbody at the upper right and the apparent flow of the shaley sediments around it.



Angular relationship and erosional unconformity between inclined overbank strata and flat-lying fluvial strata above.

Thicker sandstone of the main fluvial channel to the right of previous photo, in erosional contact laterally against the deformed overbank strata that constrained the channel axis

Line drawing from above photomosaic

Figure 20: Fluvial channel sandstone adjacent to and overlying/truncating deformed overbank strata. Dip of the deformed strata suggests thrusting towards 340°.

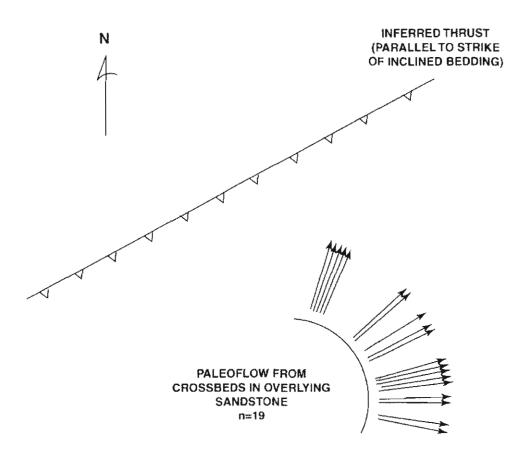


Figure 21: Paleoflow vectors derived from crossbedding measurements in the fluvial sandstone indicate flow towards the northeast, parallel to the strike of the inferred thrust fault.

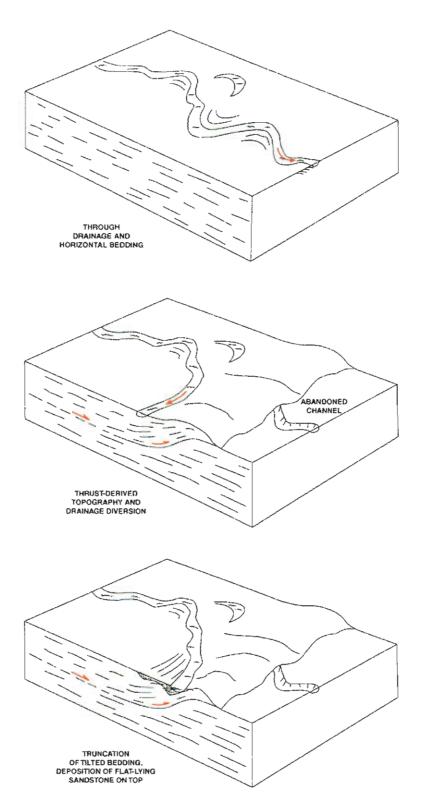


Figure 22: Suggested model to explain pre-lithification tilting and backthrusting of strata, with flat-lying fluvial strata in erosional contact above, at Ludlow and Cokedale sites.

Stop 13: Valdez sills

Stop 13, near milepost 50 on Highway 12 west of Trinidad, provides an interesting comparison of fracture orientation within sandstones, an igneous sill, and cleats within a coal bed. Extension fracture orientation is well constrained within a series of 10-30 cm thick sandstones above an igneous sill. Interestingly there is some parallelism between fracture orientation in these sandstones and the underlying dike. A comparison of the rose diagrams shows a slightly more distributed pattern and an extra set of fractures that strike NW-SE within the sill. The parallel nature of fractures in these differing rock units can be very apparent in the outcrop. Cleats within coals at this location have a more diverse pattern than the sandstones or the sill. In part this is due to different orientations of face cleats also having associated butt cleats at near right angles to the face cleat. It is also possible the diverse cleat pattern is due to compaction.

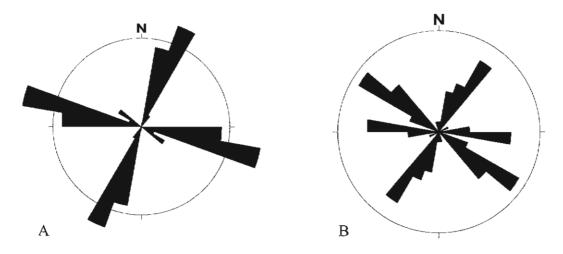


Figure 23: Rose diagram of fracture orientations within (A) sandstones, and (B) sill. There is a parallel relationship between many of the fractures within these two units of differing composition and age.

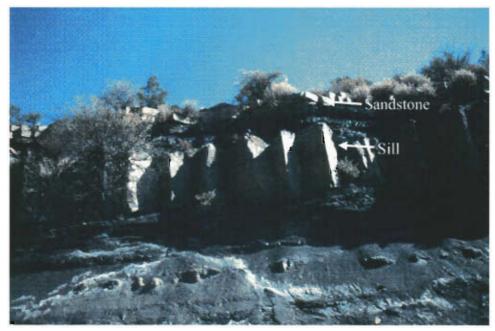


Figure 24: Photograph of a portion of the stop 13 outcrop. Sandstones overlie the igneous sill.

Figure 25: This photograph, oriented with the viewer looking straight down, illustrates the parallel nature of fractures in a sandstone and an igneous sill. The upper red colored rock unit is a sandstone. The intersection of two fractures forms a wedge pointing toward the top of the photograph within this unit. The dark colored wedge in the rock below the first wedge is within an igneous sill. Note the parallel nature of fractures within these two very different u nits and the repetitive nature of these fractures.

Stop 14: Walsenburg dike

Evidence for high horizontal compressive stresses normal to dike walls during intrusion is present in a small borrow pit on the north side of the Walsenburg dike half a mile west of where the road north out of town cuts the dike. Thin sandstone beds contain small thrust planes that dip towards and away from the dike at shallow angles (less than 30 degrees). The thrust planes have dip-slip slickenlines that trend normal to the dike walls. These thrust planes suggest that the maximum compressive stress in the strata next to the dike was normal to the dike at the time of intrusion, despite the fact that the strike of the dike indicates that this was the orientation of the minimum regional compressive stress.

The numerous dikes are cut with myriad fractures. These fractures are typically of three sets, 1) oriented vertically, parallel to the fracture walls, 2) oriented vertically but normal to the fracture walls, and 3) oriented horizontal to sub-horizontal, normal to the fracture walls. Various phases of mineralization and extensive weathering along the fractures suggest that the fractures in the dikes formed a well connected plumbing system that allowed the percolation of mineralizing and weathering fluids, and that may have allowed the escape of much of the natural gas in the basin, leading to it's present-day underpressured condition.

Figure 26: Low-angle thrust plane sown here has slickenline lineations striking perpendicular to the wall of the igneous dike.

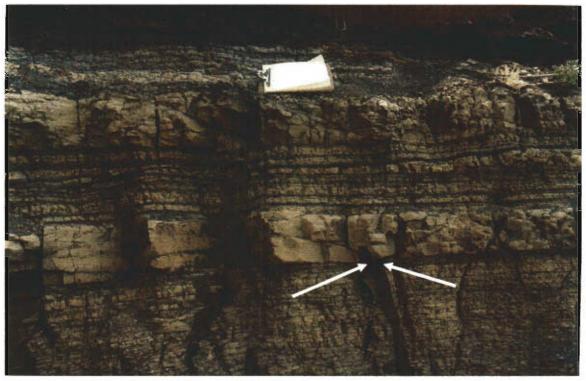


Figure 27: The thrust planes shown here indicate that the maximum compressive stress was normal to the dike at the time of intrusion. White arrows point in the direction and intersection point of two low angle thrust planes.

Core Log Reports: Constance N. Knight

Constance N. Knight Independent Geologist

1800 Washington Ave Golden, CO 80301 720-530-1387

This appendix contains core-logging reports prepared for the Sandia National Laboratory. These reports are part of a larger structural geology study being completed by John Lorenz and Scott Cooper. In that some reports refer to observations described in the earlier reports, it may help the reader to know the order in which the cores were logged. The cores were logged in the following order:

NLBSU 34 NLBSU 31 NLBSU 32 NLBSU 30

El Paso Well No: VPRCH 30

Summary of Fracture Characteristics Described in Core

Submitted to Sandia National laboratory Raton Basin Project By Constance N. Knight

Introduction

Well No. 30 VPRCH was cored continuously from near surface to a total depth of 1401 feet. The objective of this evaluation is to describe attributes of naturally occurring fractures below a depth of 1182'. Cores from the upper portion of the Vermejo Formation were not sent to Denver. Sandia personnel will log these cores at a later date. The entire core below a depth of 1182 feet was carefully examined for fracture occurrence. All natural fractures were logged with respect to: depth, host lithology, fracture dip, surface characteristics, and angular relationships with one another. Only one induced petal fractures was observed in this core.

Core from this well possessed a significant number of natural fractures. The purpose of this report is to summarize fracture characteristics and to compare fracture characteristics with those described in other wells. The first half of this report provides summary and specific information about the fractures. The second half provides photographs showing distinguishing features of the fracture types and the fracture angular relationships

Summary of Fracture Characteristics

Total fractures described: 219

All percentages presented below are presented as a fraction of the total 219 fractures unless otherwise noted.

Host Lithology

Host Lithology	Percentage of Fractures	
Shale and claystone *	46%	
Siltstone	38%	
Sandstone	14%	
Conglomerate	2%	

* Almost all fine-grained clastics were determined to be shale.

Most (83%) of the described fractures occur in fine-grained rocks (siltstone and shale). Most of the fractures in described in previously logged cores (VPRCH 34, 32, and 31) also occur in fine-grained rocks. In this well, the number of extension fractures is approximately equal to the number of shears. (In well VPRCH 31, the majority of the fractures are extensional; in VPRCH 34 the majority of the fractures are shears; well VPRCH 32 has approximately the same number of extension fractures and shears.)

Types of Fractures (Extension vs. Shear)

Type of Fracture	Percentage	
Extensional Fractures (Most fractures have surface plume structures. Some fractures also have evidence of shear, but this is usually not well displayed)	54%	
Shears with a vertical component of relative motion	39%	
Horizontal shears or bedding plane slip	7%	

Number of Fractures sorted by Lithology

Lithology	HZ Shears	Shears <35°	Shears 40°-65°	Shears 70°-90°	Extension Fractures
Sandstone	0	2	1	1	27
Siltstone	3	9	12	6	53
Shale	12	16	31	8	33
Conglomerate	0	0	Ō	0	4
Coal	0	0	0	1	0
Totals	15	27	44	16	117

The table above shows five types of natural fractures. Fractures within these five categories are also presented with a Gamma Ray log as Figure 1. Fractures were identified as shear fractures only if they had evidence that movement had occurred, such as the presence of slickensides, surface polish, etc. Many fractures identified as extension fractures had plume structures, however some extension fractures were identified on the basis of angular relationships to other extension fractures and steep (vertical) dip angles.

Two intervals of highly broken core were identified as possible fault zones. These intervals possessed a large number of shear fractures. Possible fault zones are indicated on Figure 1 and are listed below.

Possible fault zones: Intervals characterized by highly broken core and numerous shear fractures:

1307.3 - 1310.2 1369.9 - 1370.8

Shears Sorted by Dip Angle and Rake

Shear Angle	Percentage of total 219 fracs.	Rake Range	Apx. Avg. Rake	Comments Regarding Rake
Shears <u><</u> 35° dip	12%	5-90*	43°	62% of the shears $\leq 35^{\circ}$ -exhibit rake.
Shears 40°- 65° dips	20%	5-90*	27°	68% of the shears with dips of 40° - 65° exhibit rake
Shears 70° - 90° dips	7%	5-80	33°	56% of the fractures with dips of 70° - 90° exhibit rake.

The majority of the shear fractures exhibit oblique slip as evidenced by various amounts degrees of rake.

*Two fractures in this dip category have two sets of slickensides, which implies that these fractures may be recording two episodes of shearing.

* Two fractures in this dip category have two sets of slickensides, which implies that these fractures may be recording two episodes of shearing.

Relative Movement on Shears

When it was possible the relative movement on shears was observed. The table below presents the depths host lithology, and characteristics for 1 shears.

Depth	Depth Lithology		Lithology Dip		Rake	Relative Movement	
1291.6	Shale	90	0	Vertical/reverse			

Fracture Fillings

Information regarding fracture fillings includes: 1. Percentage of filling material in individual fractures; 2. Mineralogy of the filling material; and 3. Fracture-aperture measurements. Percentages of filling materials were estimated by examining the facture

faces. Some fractures appeared to be 100% filled with cementing material. However some such fractures exhibit well develop druze. The presence of druze implies that these fractures are partially open. The best druze development is associated with those fractures having the largest fracture apertures.

% Fracture Filled	No. Extension Fractures	No. Shears < 35°	No. Shears 40°-65°	No. Shears 70° - 90°	
< 10%	16	5	9	4	
10% - 25%	10	6	12	5	
26% - 49%	24	7	15	3	
50% - 74%	14	3	2	3	
75% - 100%	53	5	6	1	
Total	117	26	44	16	

The table below summarizes fracture-filling data. These data should be used as estimates, not exact measurements.

Visual inspection at 10X revealed that approximately half of the extension fractures are less than 75% filled with cement. Several well-defined open extension fractures in sandstones exhibited less than 10% fracture filling. This is a contrast with most cored extension fractures found in the previous three logged wells. Extension fractures in other wells generally contained more cement (75% -100%). It is acknowledged that in some cases cementing materials were probably destroyed in the coring process.

For shear fractures, the degree of cementation is more variable than for extension fractures. Again, the estimates presented here should be considered to be imprecise variables.

Numbers of Fractures filled with Various Cements					
Cement Type	Extension Fractures	Shear Fractures			
CaCO ₃	95	43			
Clay	0	15			
Clay and CaCO ₃	0	13			
CaCO ₃ and pyrite	8	0			

The dominant fracture cement was calcite. Commonly extension fractures cemented with only calcite were relatively easy to break apart. Also, some of these fractures exhibited druze. However the occurrence of druze was less than in previously logged cores. The finer the fracture aperture, the finer the druze crystals.

Fracture Apertures

Fracture apertures range from <0.1 - 1.0 mm., with the average aperture approximately equal to 0.2 mm. In general the extension fractures observed in this well had smaller apertures and finer druze crystals than those observed in previously logged wells (VPRCH 34, 31, and 32). The following table lists fracture aperture measurements of healed fractures. In the case of open fractures with well-developed druze, the aperture measurement represents the thickness of the druze. Most of the estimates are from healed fractures.

Depth	Type of Fracture	Aperture mm	Druze
1121.5	Extension		
1183.1	Extension	0.6 - 1.0	Trace
1183.8	Extension	0.6 - 1.0	Trace
1196	Extension	<0.1	
1197.6	Extension	0.1	Trace
1198.5	Extension	0.1	
1225.8	Extension	0.1	
1226	Extension	0.1	
1226.5	Extension	0.2	Good
1227	Extension	0.4	Excel
1234.5	Extension	0.2	Good
1235.7	Extension	0.2	
1238.8	Extension	0.2	Good
1241.7	Extension	0.2	Excel
1252.2	Extension	0.2	V. fine
1252.2	Extension	0.2	V. fine
1252.8	Extension	0.2	V. fine
1255.8	Extension	0.1	Scattered - fine
1255.8	Extension	0.1	Scattered - fine
1284.4	Extension 0.1-0.3		Excel - fine
1288.5	Extension <0.1		No
1288.5			No
1288.6	Extension	<0.1	No
1294.4	Extension	<.01	
1294.6	Extension	<.01	
1294.8	Extension	<.01	
1312	Extension	0.2	No
1312.8	Extension	0.1	No
1313.2	Extension	0.2 - 0.5	No
1314.5	Extension	0.1	No
1314.9	Extension 1		No
1341.7	Extension	0.1	No
1341.9	Extension	0.1	No
1354.9			
1366.2	Extension 0.2-0.4		Scattered
1374.3	Extension 0.3		Scattered
1374.7	Extension	0.3	Scattered
1376.2	Extension	0.1 - 0.6	Scattered, fine

Fracture Spacing

Fracture spacing was determined for both extension and shear fractures. Two tables are presented below: one pertaining to extension fractures, and one pertaining to shears. For many fractures a "true" spacing (spacing perpendicular to the fracture surfaces) is measured. In cases where the vertical spacing of fractures would not permit such a measurement, the apparent spacing (vertical depth from one fracture midpoint to another) was measured. The true fracture spacing $= \sin (\dim \angle) x$ (observed fracture spacing). True spacing measurements are presented in red, whereas observed fracture spacing measurements are presented in black.

Depth	Fracture Spacing
1135.5	0.03
1183.1	.05-0.1
1197.6	0.1
1198.5	0.01 - 0.03
1204.6	0.2
1218.9	0.02
1219.7	0.1
1220.3	0.15
1225.8	0.01-0.03
1226.5	0.17
1227	0.1
1234.5	0.06
1241.7	1
1252.2	0.05
1252.8	0.2
1255.8	0.05
1255.8	0.05
1288.5	0.1 - 0.3
1288.5	0.1 - 0.3
1320	0.02
1341.7	0.1
1343	1.1
1374.3	0.3

	Shear Fracture Spacing	
Depth (ft)	Fracture spacing (ft)	Fracture Dip Angle
1136.3	0.1	60
1187.2	0.4	45
1226.2	0.2	70
1227.4	0.03-0.1	80
1245.8	0.05	60
1347.2	1	20
1348.2	0.05	30
1348.5	0.25	30
1357.7	0.2	25

Relationship of Fractures to sHmax Defined by a Possible Petal Fracture at 1295.5 feet

Depth	Orientation Relative to Petal	Type of Fracture	
1294.4	Parallel	Vertical Extension	
1294.6	Normal	Vertical Extension	
1294.8	Parallel	Vertical Extension	
1298.8	Normal	Vertical Extension	
1298.9	30° Counter clockwise *	Vertical Extension	

Only one possible petal fracture was identified. (See photos below.)

* See core photos on Page 16.

Summary of Fracture Strike Relationships

Because this core was not oriented, fracture dips and strikes cannot be directly obtained. However, the following table presents fracture strikes relationships that may be helpful in relating core to outcrop data. The number in each box refers to the number of fracture relationships. Fracture intersections in the $10^{\circ} - 30^{\circ}$ and $61^{\circ} - 89^{\circ}$ categories are mostly 30° and 60° intersections. Fractures in the $31^{\circ} - 60^{\circ}$ category are mostly approximately equal to 45° .

Intersection	Number of Fractures with Various Intersection Relationships						
Angle	EX/	EX/Thrust	EX/>35	EX /	>35° Shear / >35°	>35° Shear	Thrust/ Thrust
	EX		°Shear	>70°	Shear	/ Thrust	
				Shear			
Parallel Strike	51	6	17	8	15	5	6
10° - 30° (30) 61° - 89° (60)	8		8	1	3	1	1
31° - 60°(45)					7	1	
Normal (90°)	13	1	5			7	

EX/EX - Intersection of two extension fractures

EX/Thrust – Intersection of an extension fracture and a low angle shear (< 35°)

EX/>35° Shear – Intersection of an Extension fracture and $a > 35^\circ$ shear

EX/>70° Shear – Intersection of Extension fractures and a vertical (or near vertical) shear

>35° Shear/>35° Shear --Intersection for two higher angle shears

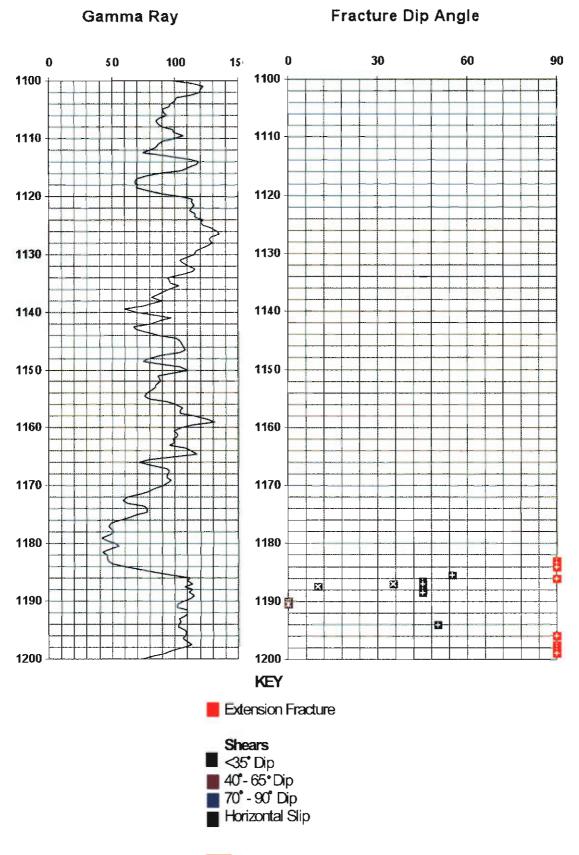
 $>35^{\circ}$ Shear /Thrust – Intersection of a higher angle shear ($>35^{\circ}$) and a low angle shear

(< 35°)

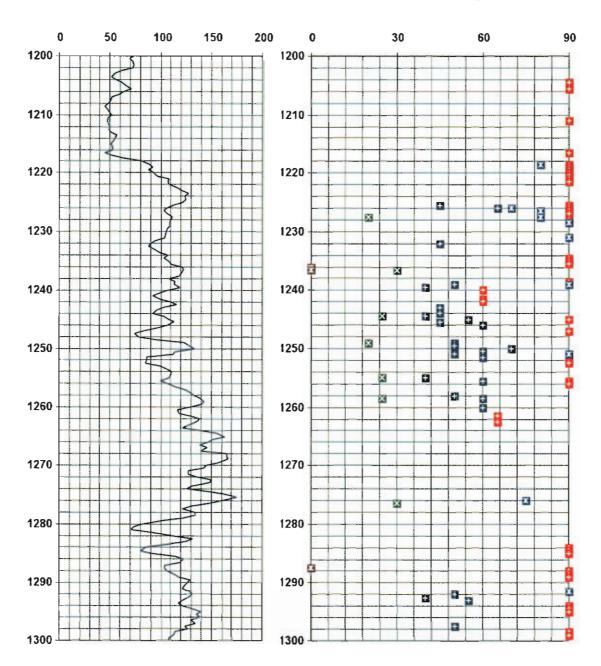
Fracture Length

Fracture length data for extension fractures and shears are presented below. Data for complete fractures (those fractures that possessed two terminations within the core) are presented separately from those of other fractures. For fractures that had one or no terminations within the core, a minimum fracture length is given.

Fracture Lengths for Extension and Sheer Fractures						
	No. Fracs	Extension Fracture Lengths		21	Shear Fracture Lengths	
		Length Range (ft)	Average Length (ft)	No. Fracs	Length Range (ft)	Average Length (ft)
Complete fracture in core	26	0.1 - 1.2	0.4	2	0.1 - 0.9	0.5
Minimum Fracture Length	103	0.2 - 2.9	0.5	82	0.05 - 1.0	0.3


Miscellaneous Notes Regarding Fracture Characteristics

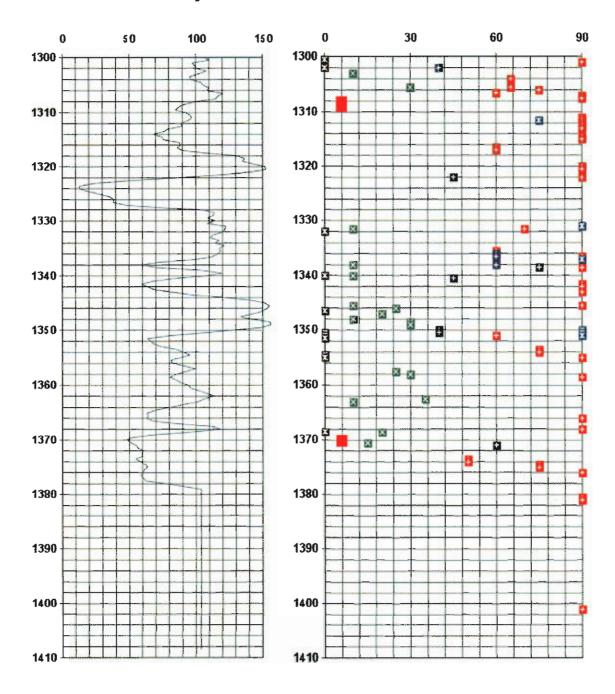
As previously noted, open extension fractures in well VPRCH 30 have less cement than in previously logged cores. It is acknowledged some of the fracture-filling materials have probably been destroyed in the coring and core-retrieval process. However, it is significant that many open vertical fractures in sandstones possess very little cement. Perhaps these fractures are propped open in the subsurface by differential horizontal stress.


In previous reports the possibility of fracture reactivation has been suggested. On page 7 of this report, the table shows that the strikes of most vertical shears are parallel to strikes of extension fractures. These strike relationships are also presented in some of the following photos.

The following photos are presented to document the types of factures and the fracture angular relationships. Several shears showed multiple sets of slickenlines. One example is shown in this report. In addition, two examples of fracture splays are presented in the photos below.

Figure 1: VPRCH 30 Gamma Ray Log and Fracture Summary

Possible Fault Zone



Gamma Ray

Fracture Dip Angle

Gamma Ray

Fracture Dip Angle

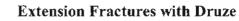
Core Photographs

Examples of Extension Fractures

Parallel Vertical Extension Fractures

Depth: 1204' Host Rock: Sandstone Fracture spacing: 0.2 ft.

These fractures occur as open fractures in the core. Unlike most vertical fractures described in previously logged cores, these fractures possess little cement (5-10%).


Parallel Vertical Extension Fractures

Depth:1219' Host Rock: Siltstone Fracture Spacing: 0.02 ft

Sometimes vertical fractures occur in a "stair-step pattern".

Fracture A:

Β.

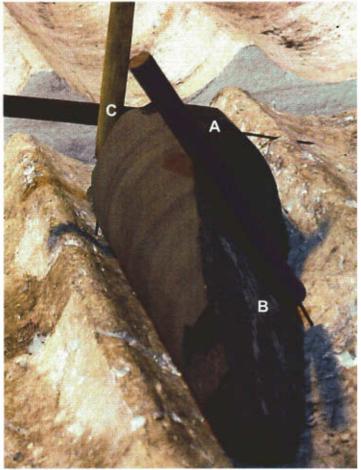

Depth:	1226.5'
Host Rock:	Shale
Dip.	Vertical
Aperture:	0.2 mm

Fracture B:

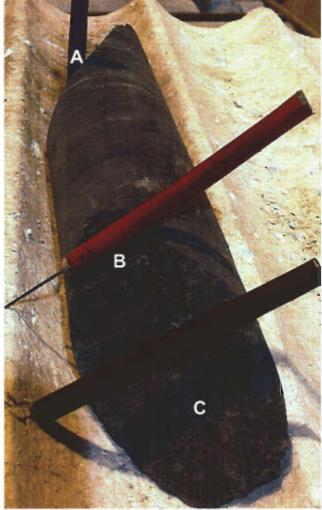
1242.2'
Siltstone
80°
0.2 mm

Fracture C:

Depth: 1320' Host Rock: Shale Dip: Vertical Spacing: 0.02 ft


244

Healed Vertical Extension Fractures


- A: Depth: 1252' Host Rock: Sandy Siltstone Spacing: 0.05 ft. Aperture: 0.02 mm. Fine Druze present
- B: Depth: 1314.5' Host Rock: Sandstone Spacing: 0.04 ft. Aperture: 1.0 mm. Druze not apparent

Strike Relationships of Three Extension Fractures

Depth:	1284'
Host Rock:	Siltstone

Fractures A and C are vertical extension fractures with strikes normal to one another. Fracture B is near vertical. The strike intersection angle of fractures A and B is 30°. All fractures have well developed fines druze. Fracture apertures range from 0.1 mm to 0.3 mm.

Strike Relationships of Three Extension Fractures

Depth:	1305' – 1306
Host rock:	Siltstone

Dip Angles: Fracture A - 65° Fracture B – vertical Fracture C - 60°

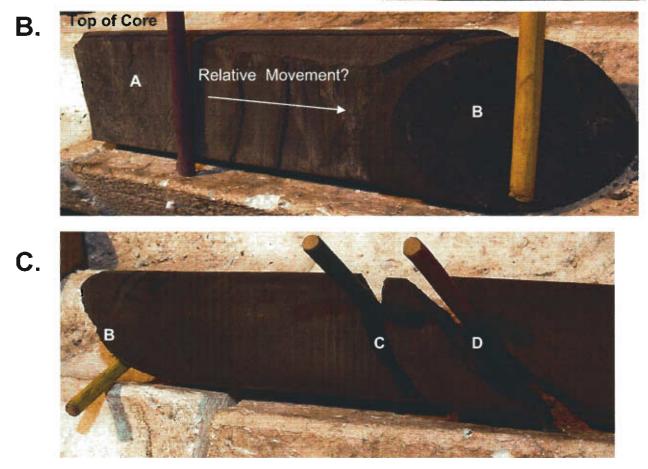
Fractures B and C are parallel. The strike intersection angle for Fractures A and B is 30° .

Α.

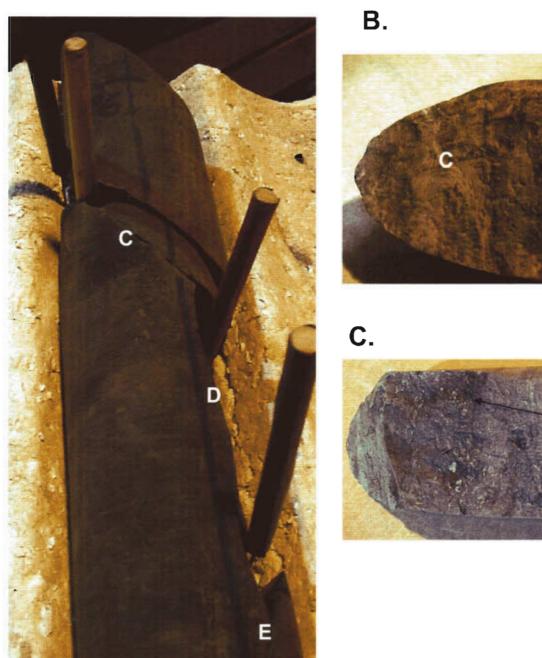
- A: Possible petal fracture in a highly carbonaceous shale. Depth: 1295.5'
- B: The purple stick shows the strike of the petal fracture at 1295.5'. The red and yellow pencils show the strikes of two vertical extensions fractures that have a strike intersection angle of 30°. The extension fracture marked with the red stick strikes approximately normal to the petal fracture. The extension fracture marked with the yellow stick strikes approximately 30 clockwise from the petal fracture.

Examples of Shears

A: Fault Gauge Associated with Shear

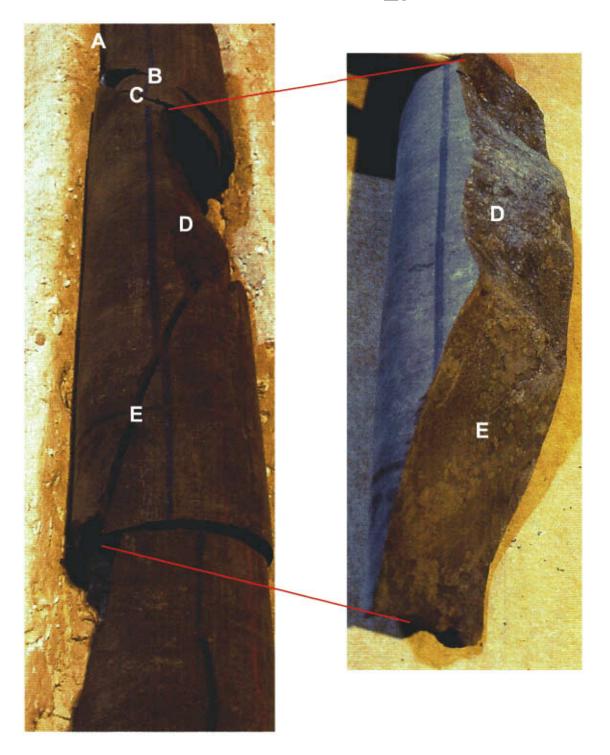

Depth:1251.1'A.Host Rock:SiltstoneFracture Dip:65°Approximately0.7' fault gauge.Possible slickenlines areshown with an arrow.

B: Vertical fracture and Shear

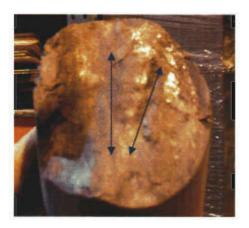

Depth: 1291' – 1292' Host Rock: Siltstone Fracture A: Vertical Fracture B: 50° Dip

The upper termination of Fracture A is in siltstone, and the lower termination is at Fracture B. The fracture resembles vertical extension fractures; however it the fracture surface is smooth, and no plume structure is apparent. Fracture A and B are parallel

C: Continuation of the core seen in Figure B. Fractures C and D strike normal to Fracture C.



Parallel Shears and Extension Fracture


The photos shown in Figures A through E are from core depths 1336' - 1337'.

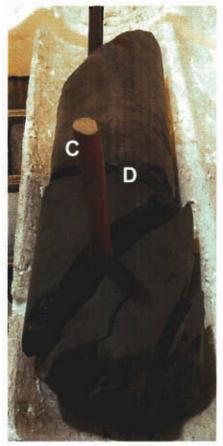
Fracture A is a vertical extension fracture. Fractures B and C are 60° dipping shears. The surface of Fracture C is shown in Figure B. Both fractures B and C exhibit 0° rake. Fracture D (shown in figure C) is classified as a vertical shear. The fracture surface is non-planar. (See figures C and D.) Near vertical slickenlines and patches of slickencryst are present on the surface of Fracture D.

Ε.

Fracture E is a vertical fracture that intersects Fracture D. The strikes of the two fractures intersect at a 0° to a 30° angle. The surface of the fracture is smooth and has patches of slickencryst.

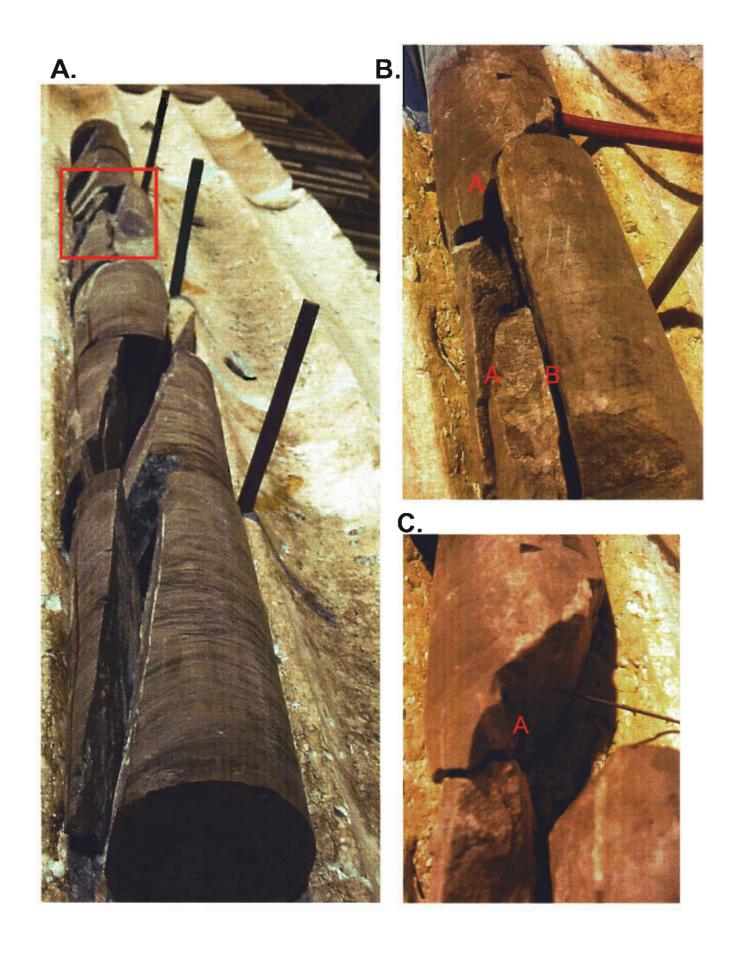
Shear with possibly two sets of Slickenlines

Depth:1349.9Host Rock:ShaleDip Angle:40°

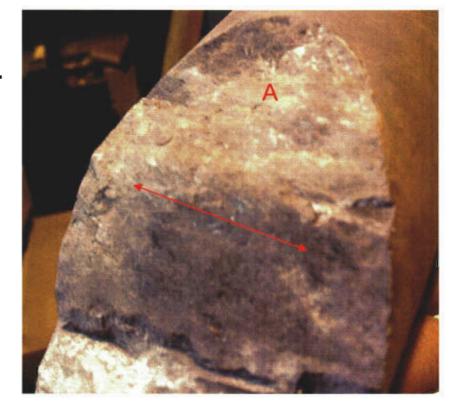

Fracture Splays

Shear fracture and Parallel Splay:

Depth:	1245
Host Rock:	Shale


Fracture A: 45° dip

Shears B, C, and D are dip at 60° angles. Shears B ad C have 30° rake. Shear D has 0° rake.



Fracture Splay and Evidence of Lateral Slip - See next page

Photo A (on the next page) shows several feet of core with near vertical extension fractures. The colored probes are footage markers. Photo B. is an expanded view of the portion of the core outlined in red on Photo a. Fracture A is curved. The upper portion of Fracture A dips at a 60° angle, and the lower portion of Fracture A is vertical. Fractures A and B form somewhat of a splay. Photos C. and D. show a closer view of the Fracture A. The upper portion of the fracture has slickenlines with about an 80° rake. The red probe points to this portion of the fractures. The lower vertical portion of the fracture (yellow probe) has an extension plume. Photo E. shows the slickenlines on the upper portion of the fracture. They did not photograph well, but the lines show lateral slip.

Ε.

D.

Extension and Shear Fracture Strike Relationships

С.

В

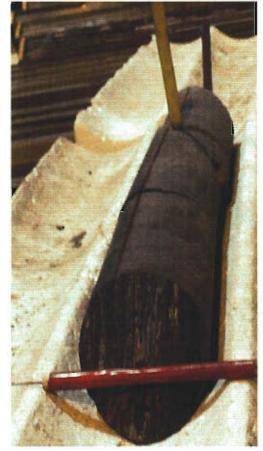
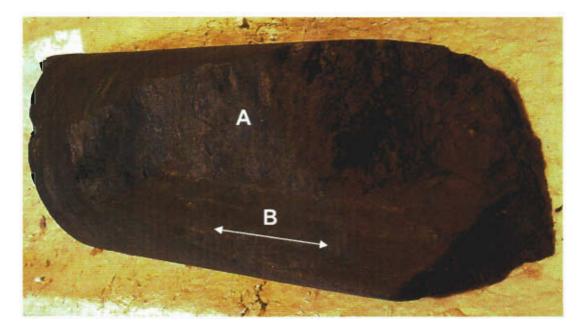

Photo A: Parallel Extension Fracture and Shear Depth: 1226.2' Host Rock: Shale Fracture A is a near vertical shear. Fracture B is a vertical extension fracture

Photo B: Parallel Extension Fracture and Shear

Depth: 1238.8' Host Rock: Shale Fracture A is a vertical extension fracture. Fracture B is a vertical shear

Photo C: Normal Extension Fractures and ShearsDepth:1241' - 1243'Host Rock:SiltstoneFracture strikes are shown with colored probes.The


purple and yellow fractures are parallel extension fractures, each dipping at 60° angles. The red fracture is a 45°-dipping shear.

Extension Fractures and Shears

Fracture strikes are shown with colored probes. All of the fractures are extensional except for the fracture shown with the green probe and marked with an X. The red, brown and green (X) fractures have parallel strikes. The red and brown fractures dip at 60° angles, and the green (X) fractures dips at a 30° angle. The strikes of the blue and yellow fractures are parallel with one another. These two fractures have a strike intersection of 30° with the red, brown, and green fractures. The purple fracture is a vertical shear that strikes normal to the blue and yellow fractures.

Intersecting Extension Fracture and Vertical ShearDepth:1332'Host Rock:Siltstone

Fracture A is a vertical extension fracture. Fracture B is a vertical shear. The strike intersection angle of the two fractures is 30° .

Α

A.: Intersect	ing Vertical Shear and Vertical Extension Fracture
Depth:	1338.8'
Host Rock:	Shale

Fracture A is a vertical shear with a smoothed fracture surface and slickencryst. Fracture B is an extension fracture with a plume structure radiating away from the Shear A. (In some instances, existing fractures form propagation barriers for extension fractures. However, if Shear A had formed prior to the Extension Fracture B, and if Shear A had been a barrier for extension fracture propagation, one might expect the plume to propagate toward Shear A rather than away from Shear A.)

B: Intersecting Thrust and Extension Fracture

Depth: 1370' Host Rock: Sandstone

Fracture A is a 60°-dipping extension fracture. Fracture B is a 15°-dipping shear. The two fracture strikes are normal to one another. Fracture A has approximately 15% cement filling.

El Paso Well No: VPRCH 31

Summary of Fracture Characteristics Described in Core

Submitted to Sandia National laboratory Raton Basin Project By Constance N. Knight

Introduction

Well No. 31 VPRCH was cored continuously from near surface to a total depth of approximately 3,090 feet. The objective of this evaluation is to describe attributes of naturally occurring fractures below the Raton Conglomerate to total depth. The entire core below a depth of 2774 feet was carefully examined for fracture occurrence. All natural fractures were logged with respect to: depth, host lithology, fracture dip, surface characteristics, and angular relationships with one another. Induced fractures were also noted, and wherever possible the orientations of natural fractures were described with respect to induced fractures. The strike of induced fractures parallels the direction of the maximum horizontal *in-situ* stress (sHmax). Since sHmax has been determined at a regional scale through other investigations, relating natural fractures to induced fractures can produce a reasonable estimation of true fracture strike and dip

Core from this well possessed a significant number of natural fractures. Many of the zones described in this report were associated with gas shows. Hopefully that some of the results of this study will aide in evaluating and developing the reservoir.

Summary of Fracture Characteristics

Total fractures described: 220

All percentages presented below are presented as a fraction of the total 220 fractures unless otherwise noted.

Host Lithology

Host Lithology	Percentage of Fractures
Shale and claystone *	42%
Siltstone	36%
Sandstone	21%
Coal	1%

* Almost all fine-grained clastics were determined to be shale.

Most (approximately 80%) of the described fractures occur in fine-grained rocks (siltstone and shale).

Types of Fractures (Extension vs. Shear)

Type of Fracture	Percentage
Extensional Fractures (Most fractures have surface plume structures. Some fractures also have evidence of shear, but this is usually not well displayed)	60%
Shears with a vertical component of relative motion	35%
Horizontal shears or bedding plane slip	3%
Fractures with both well developed plumes and evidence	
of shear, such as slickensides	2%

Extension fractures are the dominant fractures that were described in the VPRCH 31 well. Most "bleeding" gas shows encountered during drilling are associated with the presence of extension fractures.

Lithology	HZ Shears	Shears <35°	Shears 40°- 65°	Shears 70°- 90°	Extension Fractures	Extension/ Shear Fractures
Sandstone		4	1	1	38	2
Siltstone		4	12	10	52	1
Shale	7	8	24	16	36	1
Coal			1		1	
Conglomerate					1	
Totals	7	16	38	27	128	4

Number of Fractures sorted by Lithology

The table above shows five types of open fracture. Fractures within these five categories are also presented with a Gamma Ray log as Figure 1. Fractures were identified as shear fractures only if they had evidence that movement had occurred, such as the presence of slickensides, surface polish, etc. Many fractures identified as extension fractures had plume structures, however some extension fractures were identified on the basis of angular relationships to other extension fractures and steep (vertical) dip angles.

Some fractures have well-defined characteristics of both extension fractures and shears. The implication here is that the fractures initially formed as extension fractures and later were associated with offset movement. Three intervals of highly broken core and a large number of shear fractures were identified as possible fault zones. In some cases, pieces of breccia were also observed. Possible fault zones are indicated on Figure 1. Fault intervals are: 2779.3 - 2780.3, 2789 - 2790, 2792.4 - 2792.7.

Shear Angle	Percentage of total (100) fracs.	Rake Range	Apx. Avg. Rake	Comments Regarding Rake
Shears <u><</u> 35° dip	13%	5-80	40°	44% of the shears $\leq 35^\circ$ exhibit rake.
Shears 40°- 65° dips	32%	5-45*	20°	58% of the shears with dips of 40° - 65° exhibit rake
Shears 70° - 90° dips	11%	5-50*	20°	37% of the fractures with dips of 70° - 90° exhibit rake.

Shears Sorted by Dip Angle and Rake

*Two fractures in this dip category each have two sets of slickensides, which implies that these fractures may be recording two episodes of shearing.

* One fracture in this dip category each have two sets of slickensides, which implies that these fractures may be recording two episodes of shearing.

Reverse offset was observed on several shears. The depths and dip characteristics of reverse shears are shown in the table below.

Reverse Shears			
Depth	Shear Dip Angle		
2790.2	60°		
2816.4	20°		
2895.8	55°		
2965.5	80°		

Relationship of Fractures to sHmax as Defined by Petals

Depth of Fracture	Orientation Relative to Petal	Type of Fracture
2779	20° (measured clockwise)	60° dipping shear
2820	Sub-parallel - 10°	3 extension fractures
2974	Parallel	Extension Fracture

2976	Parallel	Extension Fracture
2977	Parallel	2 Extension Fractures
2978	Parallel	2 Extension Fractures
2979	Parallel	3 Extension Fractures

At several depths extension fractures occur parallel to sHmax. An orientation parallel to sHmax is optimal for gas production.

Relationship of Coal Cleats to sHmax	
Depth	Orientation with respect to sHmax
2813	Parallel

Fracture Fillings

Information regarding fracture fillings includes: 1. Percentage of filling material in individual fractures; 2. Mineralogy of the filling material; and 3. Fracture-aperture measurements. Percentages of filling materials were estimated by examining the facture faces. Many fractures appeared to be 100% filled with cementing material. However commonly such fractures exhibit well develop druze. The presence of druze implies that these fractures are partially open. The best druze development is associated with those fractures having the largest fracture apertures.

In some cases sets of extension fracture were observed to strike perpendicular to one another. It these cases, it was observed that druze were well develop on one set of parallel fractures however poorly developed on the complementary set of fractures. Fractures with the well-developed druze probably parallel the sHmax of the time the druze were formed.

% Fracture Filled	No. Extension	No. Shears	No. Shears	No. Shears
	Fractures	< 35°	40°-65°	70° - 90°
< 10%	12	11	11	10
20% - 25%	2	1	4	3
25% - 49%	10	1	3	4
50% - 74%	6	1	8	3
75% - 100%	98	2	12	7
Total	128	16	38	27

On visual inspection at 10X, most of the extension fractures appeared to be over 75% filled with cement. Extension fractures exhibiting lower percentages of cementation were those extension fractures that were found open in the core boxes. Probably some of the cementing materials were destroyed in the coring process. For shear fractures, the degree of cementation is more variable that extension fractures. The estimates presented here should be considered to be imprecise variables.

Numbers of Fractures filled with Various Cements				
Cement Type	Extension Fractures	Shear Fractures		
CaCO ₃	97	21		
Clay	5	23		
Clay and CaCO ₃	8	10		
Clay and Pyrite	1			
CaCO ₃ and Quartz	1			
CaCO ₃ and pyrite	4			
*CaCO _{3,} - Dead oil stain.	1(depth 2944')			

The dominant fracture cement was calcite. Commonly extension fractures cemented with only calcite were relatively easy to break apart. Also, these fractures commonly exhibited druze. The finer the fracture aperture, the finer the druze crystals. Those fractures cemented with pyrite were difficult to break apart. Such fractures had poor druze development.

Mineralized fractures were observed to extend into coal beds at the following depths: 2993.6, 2996.6, and 3016.9.

Fracture Apertures

Fracture apertures range from 0.1 - 2.0 mm., with the average aperture equal to 0.4 mm. The following table lists fracture aperture measurements of healed fractures. In the case of open fractures with well-developed druze, the aperture measurement represents the thickness of the druze. (Over 95% of the measurements are of healed fractures.)

Depth	Fracture Aperture (mm)	Fracture Type	Druze
2830.5	0.3 - 0.7	Extension	
2837	0.3	Extension	
2849.1	0.3 - 0.5	Extension	
2860	0.2 - 0.3	Extension	
2860.7	0.5	Extension	
2863.9	1.0	Extension	Well-developed (large crystals)
2867.2	1.0 - 1.5	Extension	Well-developed
2873.2	0.2 - 0.3	Extension	
2880.5	0.3	Extension	
2881.5	0.3 - 1.0	Extension	Well-developed
2886.6	0.2-0.3	Extension	Well-developed
2889.5	0.1-0.2	Extension	
2910	0.1-0.3	Extension	
2912	0.1-0.3	Extension	Well-developed

2916.1	0.3	Extension	
2916.5	1.0	Extension	
2917.5	0.1-0.3	Extension	Apparent
2919.7	0.5-1.0	Extension / Shear	
2932.2	0.1-1.0	Extension	Apparent
2958.8	0.5	Extension	
2959.7	0.2-0.3	Extension	Apparent
2960.7	0.2-0.3	Extension	Apparent
2962.2	0.1-0.2	Extension	
2962.3	0.1-0.2	Extension	
2962.6	0.1-0.2	Extension	
2965.4	0.1	Extension	
2965.5	1.0	Shear	
2974.3	0.1-0.2	Extension	
2974.9	0.1-0.2	Extension	Apparent
2979.7	0.1	Extension	
2982	2.5	Extension	Well-developed
2982.5	0.1	Extension	Well-developed
2982.7	0.5-1.0	Extension	Well-developed
2983.1	0.1	Extension	
2983.7	.05-1.0	Extension	
2984.1	.05-1.0	Extension	Apparent
2987.3	0.5 - 0.7	Extension	Apparent
2987.8	0.1-0.6	Extension	Apparent
2987.8	0.1-0.6	Extension	Apparent
2987.8	0.1-0.6	Extension	Apparent
2987.8	0.1-0.6	Extension	Apparent
2988.5	2.0	Extension	Well-developed
2992.2	0.2-0.5	Extension	
2992.3	0.1-0.3	Extension	
2993.2	0.1-0.3	Extension	
3002.3	0.5	Shear	
3009.5	0.1	Extension	
3010.1	0.1-0.2	Extension	
3011.6	0.5	Extension Well-develop	
3012.7	0.3	Extension	Well-developed
3013.3	0.1	Extension	

Fracture Spacing

Fracture spacing was determined for both extension and shear fractures. Two tables are presented below: one pertaining to extension fractures, and one pertaining to shears. Due to the highly fractured nature of this reservoir, for many fractures a "true" spacing (spacing perpendicular to the fracture surfaces) is presented. In cases where the vertical

spacing of fractures would not permit such a measurement, the apparent spacing (vertical depth from one fracture midpoint to another) was measured. The true fracture spacing = $\sin (\dim \angle) x$ (observed fracture spacing). True spacing measurements are presented in red, whereas observed fracture spacing measurements are presented in black. Considering the level of accuracy of this study, the difference between "true" and "observed" spacing is inconsequential

Extension Fi	racture Spacing
Depth (ft)	Fracture Spacing (ft)
2819.1	1.3
2822.9	0.5
2826.7	1.4
2830.5	0.03
2836.1	1
2865.8	1
2867.2	1.8
2912	0.03
2912	0.1
2916.1	0.1
2957.4	0.075
2958.8	.0515
2962.2	0.05
2974.9	0.1
2978.1	0.05
2978.2	0.05
2982	0.05
2982	0.05
2982.7	0.3
2983.1	0.05
2987.8	.02515
2987.8	.02515
2987.8	.02515
2987.8	.02515
2992.2	0.2
2992.3	0.15
2992.6	0.15
2993.4	0.4
3010.1	0.05
3012.7	0.15
3013.3	0.15

	Shear Fracture Spacing					
Depth (ft)	Fracture spacing (ft)	Fracture Dip Angle				
2782.2	0.3	60°				

2782.6	0.4	30°
2788	0.3	80°
2790.2	0.3	60°
2794.2	1.5	75°
2803.1	0.5	70°
2803.5	0.5	70°
2816.8	0.1	80°
2894.8	1.0	50°
2998.3	0.7	55°

Summary of Fracture Strike Relationships

Because this core was not oriented, fracture dips and strikes cannot be directly obtained. However, the following table presents fracture strikes relationships that may be helpful in relating core to outcrop data.

Intersection	Number of Fractures with Various Intersection Relationships						
Angle	EX/EX	EX/Thrust	EX/>35°Shear	>35° Shear / >35°	>35° Shear /	Thrust/ Thrust	
				Shear	Thrust		
Parallel Strike	55	4	5	17	2	1	
Parallel Strike							
Opposite dips	1		1				
10° - 30°	2	1	7	1	1		
31° - 60°	7	1	9	1	2		
61° - 89°			1	1		1	
Normal (90°)	11	3	2	4	2		

EX/EX - Intersection of two extension fractures

EX/Thrust – Intersection of an extension fracture and a low angle shear (< 35°)

EX/>35° Shear – Intersection of an Extension fracture and a higher angle (> 35°) shear

>35° Shear/>35° Shear -Intersection for two higher angle shears

>35° Shear /Thrust – Intersection of a higher angle shear (> 35°) and a low angle shear (< 35°)

Fracture Length

Fracture length data for extension fractures and shears are presented below. Data for complete fractures (those fractures that possessed two terminations within the core) are presented separately from those of other fractures. For fractures that had one or no terminations within the core, a minimum fracture length is given.

Fracture Lengths	Fracture Lengths for Extension and Sheer Fractures						
		Extension Fracture Lengths			Shear Fracture Lengths		
	No. Fracs	Length Range (ft)	Average Length (ft)	No. Fracs	Length Range (ft)	Average Length (ft)	
Complete							
fracture in core	16	0.1 - 1.0	0.4	0			
Minimum							
Fracture	104	0.1 - 6.1	0.7	62	0.05 – 1.2	0.2	
Length							

Some notes about Fracture Terminations and Relative ages of Fractures

The following are some observations to keep in mind as the study continues.

Several fractures have characteristics of both extension and shear, i.e. plume structures and mineralized slickensides. (Usually the slickensides indicate oblique fault motion.) The implication here is that movement occurred after the extension fractures formed.

Also, some shears have two rake orientations. At depth 2920' an original tension fracture possesses two sets of slickenlines. One set exhibits dominantly dip slip movement with a rake of 70° to 80°. The other set of slickenlines are horizontal, implying lateral slip.

Two 60° dipping shears each possess two sets of slickenlines. The rakes of each are $(0^{\circ}, 20^{\circ})$ and $(10^{\circ}, 45^{\circ})$. In well VRPCH 34, a 50° dipping shear was observed to have two sets of slickenlines with rakes of 40° and 70.

In three cases, extension fractures were observed to terminate at shear fractures. The shears may have existed prior to the extension fractures, thus forming a "barrier" for extension fracture propagation. It is also possible that the extension fractures came first and then were offset for the shears.

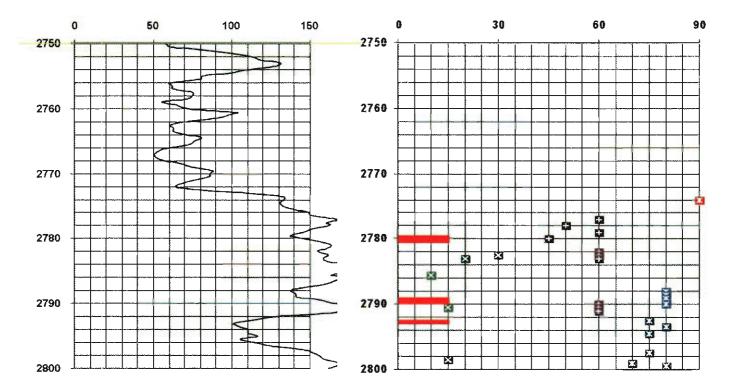
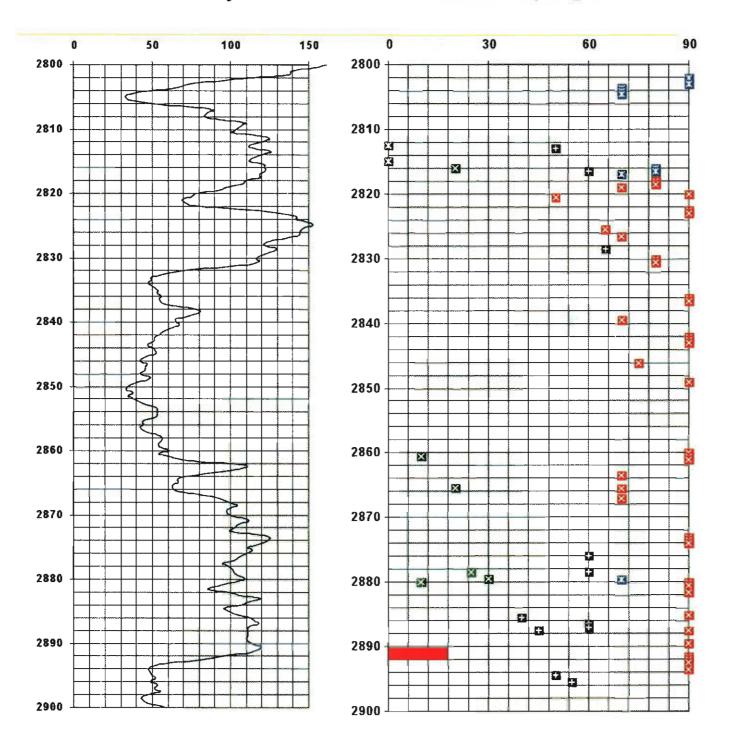
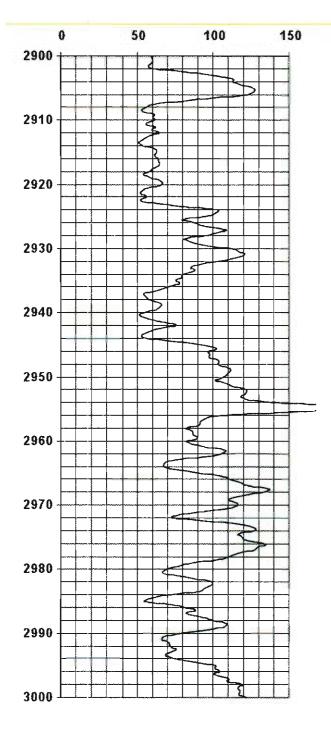
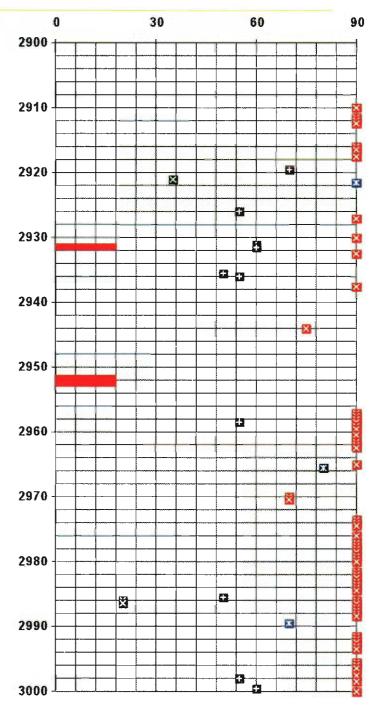

In some cases where an sHmax determination can be made, druze development is more complete on extension fractures parallel to sHmax (as opposed to fractures normal to sHmax). This implies that the sHmax existing when the fractures became mineralized is the same as it is today. Perhaps the extension fractures were formed in the recent stress regime – in other words, the fractures are young.

Figure 1: VPRCH 31 Gamma Ray Log and Fracture

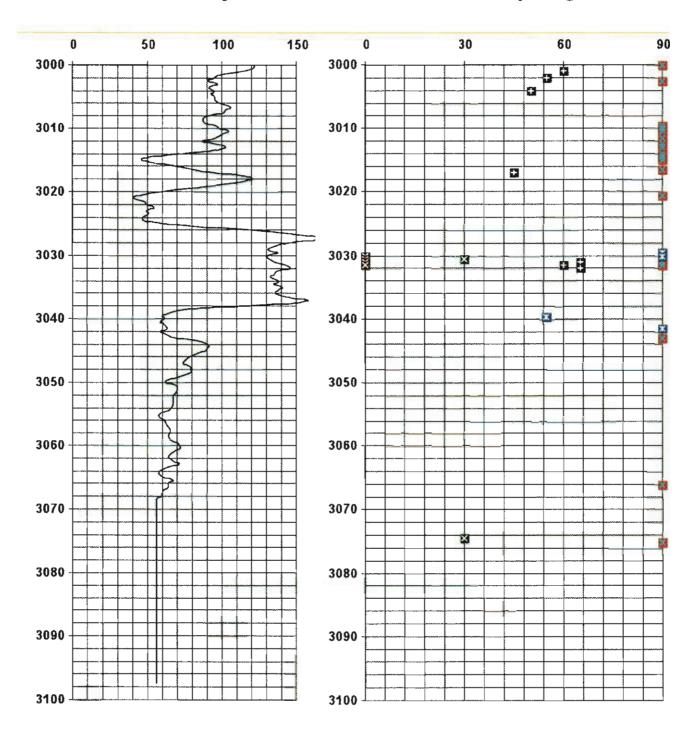

Gamma Ray

Fracture Dip Angle


Gamma Ray


Fracture Dip Angle

Gamma Ray


Fracture Dip Angle

Gamma Ray

Fracture Dip Angle

Photographs are presented here to document some of the observations described above. (Over 150 photos were taken and are available digitally.)

Core Photographs – Examples of Shears

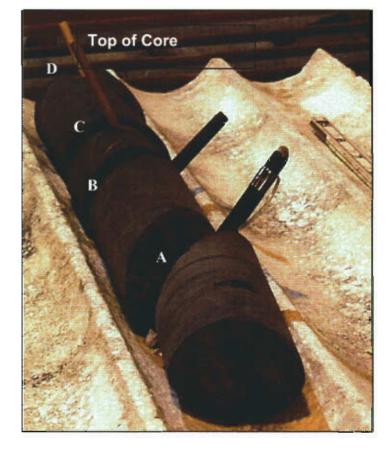
Possible Fault Zone

Depth: 2779'-1780'

Lithology: Shale

Slickensides and surface polish are common on core pieces. Pieces of breccia, possibly fault breccia, are also present within this interval.

Breccia


Two sets of shears with parallel to sub-parallel fracture strikes

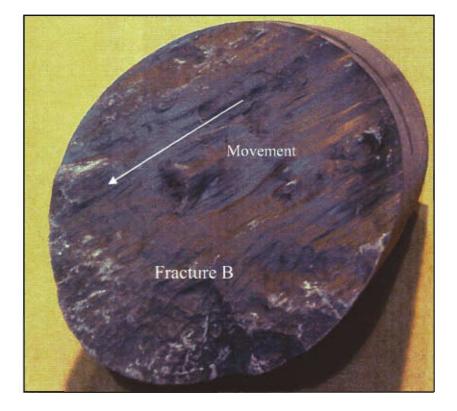
Depth: 2782'

Host Rock: Shale

Fracture dips: A=60°, B=30°, C=60°, D=60°

The lower set of fractures (A&B) dip in opposite directions from the upper set (C&D). Pens, which are aliened with rake striations, indicate that movement on the lower set of fractures was normal to that on the upper set of fractures.

Shears with Parallel Strikes


Depth: 2791-2792

Host Rock: Shale

The photo above shows orientations of shears with respect to one another. The photo on the right shows the surface of Fracture B

Dip angles: $A = 80^{\circ}$ $B = 60^{\circ}$ $C = 60^{\circ}$ $D = 60^{\circ}$

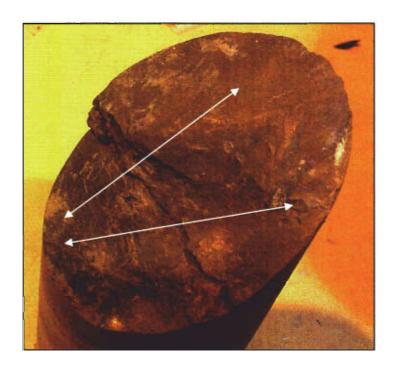
Surface markings on Fracture B imply reverse movement.

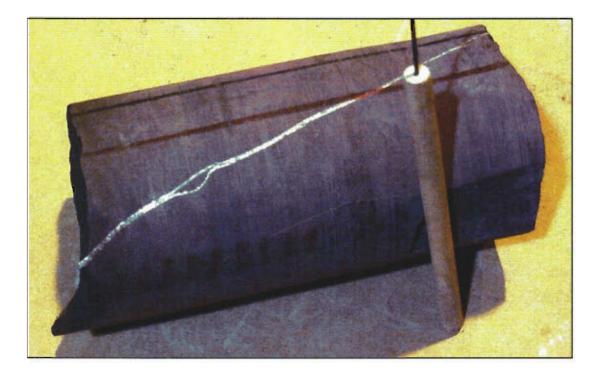
Shear Fracture

Depth: 2936'

Host Rock:ShaleFracture Dip:55°Rake:20°

This is a typical shear in shale. Slickenlines are shown with an arrow.



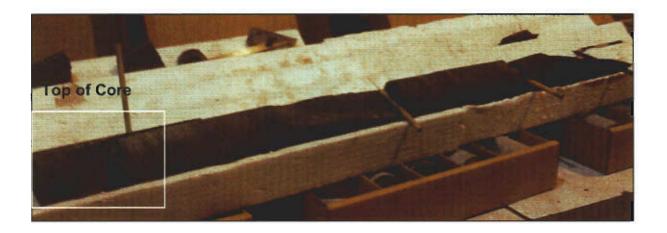

Shear with two sets of slickenlines

Depth: 2876

Host Rock: Shale

Fracture Dip: 50° Although not clear in this photo, this fracture face shows two sets of slickenlines with rakes of 10° and 45°. This shear strikes 50° relative to an extension fracture above.

High Angle Reverse Fault


The upper photo shows the fracture in tact. The lower photo shows the fracture surface.

Depth: 2965

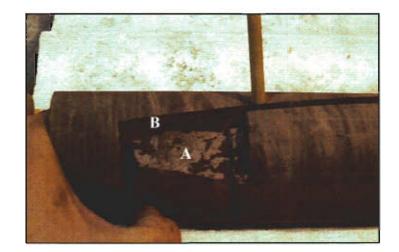
Host rock: Shale Dip Angle: 80° Fracture filling: CaCO₃ Rake: 5° Fracture aperture: 1.0 mm

Core Photographs – Examples of Extension Fractures

Orientation of Extension Fractures relative to sHmax

Depth: 2817.3 - 2820.8 - An expanded view of the outlined area is presented below

Host Rock: Siltstone

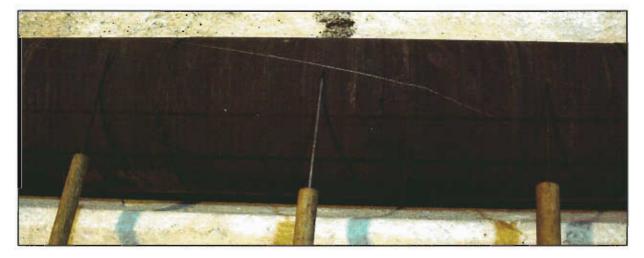

A petal fracture is present in highly carbonaceous shale near the bottom of this cored interval. Strikes of extension fractures are shown with pencils. Three extension fractures (including Fracture A defined above) are parallel to the petal and thus to sHmax. Fracture B (defined below) is normal to sHmax.

Extension Fractures with Perpendicular Strikes (Section of core outlined above)

Depth: 2817.3 -

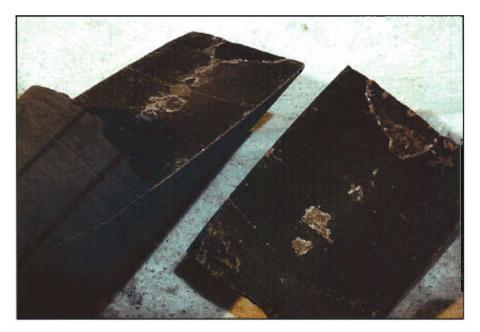
Host Rock: Siltstone Fracture Filling: CaCO₃

These two extension fractures have normal strikes. Fracture A, which is oriented parallel to present day sHmax, has better druze development than fracture surface B, which is normal to present day sHmax, This implies that the sHmax existing when the fracture was mineralized is the same orientation as that today.



Druze on extension fracture surface

Depth: 2864'


Host Rock: Sandstone (fg) Fracture Dip: 70° Fracture Filling: CaCO₃ and Quartz

Three Parallel Hairline Extension Fractures

Depth: 2873'

Host Rock: Siltstone Fracture Dip: Vertical Fracture Apertures: 0.2 – 0.3 mm Fracture Filling: CaCO₃

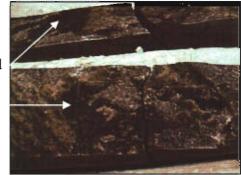
Extension Fracture (This fracture is the middle fracture in the photo shown above.)

Depth: 2873.5 Host Rock: Siltstone Note finely crystalline druze on fracture surfaces

Extension Fracture

Depth: 2883 - 2885.5

Host Rock:Silty shaleFracture Lengths:2.2'Fracture apertures:0.3 - 1.0 mmFracture Filling:CaCO3


Most of the fracture surface exhibits plume structures. However there is a suggestion of oblique slickenlines and surface polish on some of the surfaces

Slickenlines indicating oblique slip

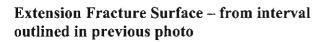
Mineralized Plume structure

Extension Fractures with Parallel and Normal strikes

Depth: 2912 - 2916

Host Rock:Sandstone (fg)Fracture Apertures:0.1 - 0.3 mmFracture Filling:CaCO3 with trace patchy pyrite

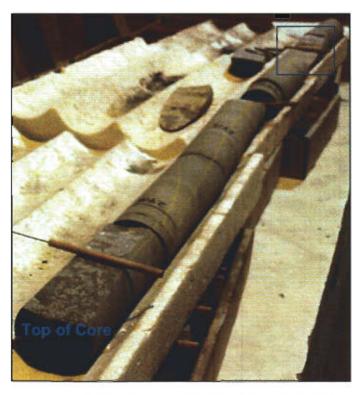
The pens parallel fracture strikes. Note the finely crystalline druze on fracture surfaces. The fracture spacing shown in the lower portion of the core is 0.1'.


Extension Fractures with Parallel Strikes

Depth: 2917' - 2922'

Host Rock: Sandstone (cg)

Fracture length:0.6Fracture Apertures:0.1 - 1.0 mm.Fracture Filling: $CaCO_3$


The pens parallel the fracture strikes. Note well-developed drews on fracture surfaces.

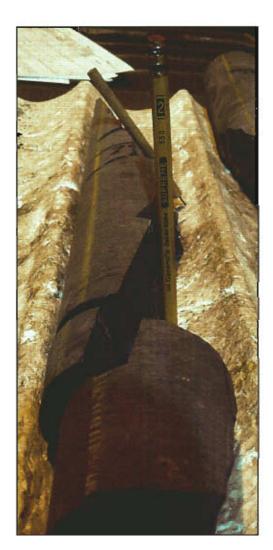
Depth: 2920

Host Rock: Sandstone (cg) Fracture Filling: CaCO₃

This mineralized surface shows two sets of slickenlines. One set implies oblique motion, while the other implies lateral slip.

Closely Spaced Hairline Fractures

Depth: 2932'


Host Rock:	Sandst	one (vfg)
Fracture Lengt	th:	0.2 – 0.9 ft.
Fracture Spaci	ng:	.02' to 0.1 ft.
Fracture Fillin	g:	CaCO ₃
Fracture Apert	ures:	0.1 - 1.0 mm

Two Intersecting Extension Fractures

Depth: 2973

Host Rock: Sandstone (vfg) Fracture Dips: Vertical Fracture Filling: $CaCO_{3}$, trace pyrite Apertures: 0.1 - 0.2 mm

These two fractures dip in opposite directions and have a strike intersection of 45°. Drews is present, but not as well developed as in other sections of sandstone.

Orientation of Extension Fractures relative to *insitu* stress

The photo on the upper left shows a petal (induced) fracture at depth 2977.7'. This induced fracture, which identifies the orientation of sHmax is located at the top of the core photo to the right. The pens indicate fracture strikes and show that the lower two natural fractures strike parallel to the petal fracture.

Host Rock: Shale Fracture apertures: 0.1 mm. Fracture Filling: CaCO₃

Two Intersecting Extension fractures

Depth: 2992' Host rock: Siltstone

Fracture Apertures: 0.2 to 0.5 mm Fracture Filling: CaCO₃

Fracture-strike Intersection: 60°

Mineralized Extension Fracture in Coal

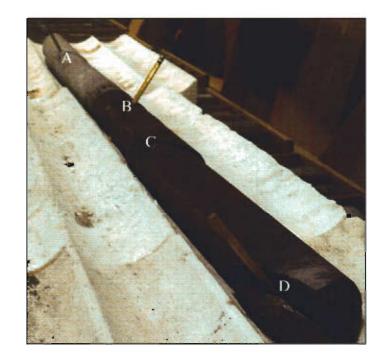
Depth: 3016'

Extension fractures identified in upper beds extend into the coal. Mineralized fractures were also found in coals at other depths (2993.6 and 2996.6).

Core Photographs – Examples of Extension / Shear Relationships

Intersecting Shears

Intersecting Shears and Two Extension Fractures

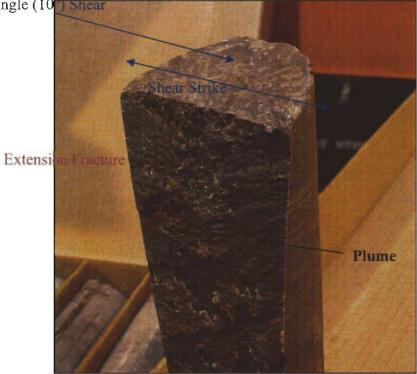

Depth: 2830-31'

Two shear fractures have a strike intersection of 60° . Two extension fractures are parallel. The strike of shear fracture A is normal to the strike of extension fractures B and C.

Three Extension Fractures and on Low Angle Shear

Depth: 2863'-2865'

Extension fractures A, C, and D are parallel to one another. These strikes are normal to low angle shear B. The dips on the extension fractures are 70°. The dip on Shear B is 20°.


Low Angle (10) Shear

Intersection of a Low Angle Shear and a Vertical Extension Fracture

Depth: 2880'

Host Rock: Shale

The strike of the extension fracture is parallel to that of the thrust shear

Intersection of a Low Angle Shear and a Vertical Extension Fracture

Depth: 2887'

Host Rock: Shale

Extension fracture A and low-angle shear B have parallel strikes.

Top of Core

Extension Fracture and Shear

Depth: 2932-2935.5

This interval shows the strike relationship of a vertical extension fracture in sandstone and a 55° - dipping shear in shale. The pencils are aligned parallel to fracture strike. The strike intersection of these two fractures is 35° .

Vertical Fracture with Deal Oil Residue

Depth: 2944.1

Host rock: Sandstone

This fracture is highly cemented, and the break along the fracture is non-planar. The rock surrounding this fracture is well indurated and difficult to break apart.

El Paso Well No: VPRCH 32

Summary of Fracture Characteristics Described in Core

Submitted to Sandia National laboratory Raton Basin Project By Constance N. Knight

Introduction

Well No. 32 VPRCH was cored continuously from near surface to a total depth of 1433 feet. The objective of this evaluation is to describe attributes of naturally occurring fractures below the Raton Conglomerate to total depth. The entire core below a depth of 1090 feet was carefully examined for fracture occurrence. All natural fractures were logged with respect to: depth, host lithology, fracture dip, surface characteristics, and angular relationships with one another. Induced fractures such as petal fractures were not observed in this core.

Core from this well possessed a significant number of natural fractures. The purpose of this report is to summarize fracture characteristics and to compare fracture characteristics with those described in other wells. The first half of this report provides summary and specific information about the fractures. The second half provides photographs showing distinguishing features of the fracture types and the fracture angular relationships

Summary of Fracture Characteristics

Total fractures described: 414

All percentages presented below are presented as a fraction of the total 414 fractures unless otherwise noted.

Host Lithology

Host Lithology	Percentage of Fractures	
Shale and claystone *	45%	
Siltstone	35%	
Sandstone	16%	
Igneous Intrusion	4%	

* Almost all fine-grained clastics were determined to be shale.

Most (80%) of the described fractures occur in fine-grained rocks (siltstone and shale). Most of the fractures in described in previously logged cores (VPRCH 34 and VPRCH 31) also occur in fine-grained rocks. However, in contrast with the core from VPRCH 31, in which most of the fractures were dominantly extensional, the majority of the fractures in Well VPRCH 32 are shears.

Type of Fracture	Percentage
Extensional Fractures (Most fractures have surface plume structures. Some fractures also have evidence of shear, but this is usually not well displayed)	40%
Shears with a vertical component of relative motion	52%
Horizontal shears or bedding plane slip	8%

Types of Fractures (Extension vs. Shear)

Shears are the dominant fractures the VPRCH 32 core. At least 4% of the total fracture population possessed both plumes as well as evidence of shears, such as slickensides.

Number of Fractures sorted by Lithology

Lithology	HZ Shears	Shears <35°	Shears 40°-65°	Shears 70°-90°	Extension Fractures
Sandstone	3	3	2	4	56
Siltstone	14	24	35	17	56
Shale	22	40	70	19	34
Igneous Sill			1	1	12
Totals	38	67	110	41	158

The table above shows five types of natural fractures. Fractures within these five categories are also presented with a Gamma Ray log as Figure 1. Fractures were identified as shear fractures only if they had evidence that movement had occurred, such as the presence of slickensides, surface polish, etc. Many fractures identified as extension fractures had plume structures, however some extension fractures were identified on the basis of angular relationships to other extension fractures and steep (vertical) dip angles.

Approximately 4% of the total number of fractures has well-defined characteristics of both extension fractures and shears. The implication here is that the fractures initially formed as extension fractures and later were associated with offset movement. It is

possible that other steeply dipping fractures possess characteristics of both extension and sheer fractures, but that these features were not obvious in the cored sample.

Eight intervals of highly broken core were identified as possible fault zones. These intervals possessed a large number of shear fractures. Possible fault zones are indicated on Figure 1 and are listed below.

Possible fault zones: Intervals characterized by highly broken core and numerous shear fractures:

1094-1099.5 1238.8 - 1239.1 1243 - 1244.5 1247.2-1249.8 1261.8-1262.4 1282-1283.4 1309-1309.9 1377.6 - 1378.5

Shears Sorted by Dip Angle and Rake

Shear Angle	Percentage of total (100) fracs.	Rake Range	Apx. Avg. Rake	Comments Regarding Rake
Shears ≤35° dip	16%	5-90	24°	63% of the shears $\leq 35^\circ$ -exhibit rake.
Shears 40°- 65° dips	26%	5-80*	22°	70% of the shears with dips of 40° - 65° exhibit rake
Shears 70° - 90° dips	10%	5-70*	24°	59% of the fractures with dips of 70° - 90° exhibit rake.

The majority of the shear fractures exhibit oblique slip as evidenced by various amounts degrees of rake.

*One fracture in this dip category has two sets of slickensides, which implies that these fractures may be recording two episodes of shearing.

* One fracture in this dip category has two sets of slickensides, which implies that these fractures may be recording two episodes of shearing.

Relative Movement on Shears

Depth	Lithology	Dip	Rake	Relative Movement
1237.2	Shale	45		Lateral
1379	Shale	90		Lateral
1156.6	Shale	50		Normal
1244.5	Sandstone	60	40	Normal
1262.4	Siltstone	55	20	Normal
1267.3	Shale	90		Normal
1345.5	Shale	90		Normal
1356.5	Siltstone	60		Normal
1093.6	Shale	15	25/5	Reverse
1190.9	Shale	90	20	Reverse
1242.1	Siltstone	60	60	Reverse
1246.3	Siltstone	70	40	Reverse
1268.3	Siltstone	65	45	Reverse
1280.1	Shale	70	45	Reverse
1306.5	Shale	20	20	Reverse
1307.6	Shale	45		Reverse
1307.9	Shale	45		Reverse
1308.2	Siltstone	30		Reverse
1313.8	Shale	15		Reverse
1339.6	Sandstone	80		Reverse
1194.4	Siltstone	45	10	Vertical

When it was possible the relative movement on shears was observed. The table below presents the depths, host lithologies, and characteristics for 21 shears.

Fracture Fillings

Information regarding fracture fillings includes: 1. Percentage of filling material in individual fractures; 2. Mineralogy of the filling material; and 3. Fracture-aperture measurements. Percentages of filling materials were estimated by examining the facture faces. Many fractures appeared to be 100% filled with cementing material. However commonly such fractures exhibit well develop druze. The presence of druze implies that these fractures are partially open. The best druze development is associated with those fractures having the largest fracture apertures.

The table below summarizes fracture-filling data. These data should be used as estimates, not exact measurements.

% Fracture Filled	No. Extension Fractures	No. Shears < 35°	No. Shears 40°-65°	No. Shears 70° - 90°
< 10%	41	23	36	12
10% - 25%	11	15	16	5
26% - 49%	10	13	20	8
50% - 74%	11	8	15	7
75% - 100%	85	8	23	9
Total	158	67	110	41

On visual inspection at 10X, most of the extension fractures appeared to be over 75% filled with cement. Extension fractures exhibiting lower percentages of cementation were those extension fractures that were found open in the core boxes. Probably some of the cementing materials were destroyed in the coring process. For shear fractures, the degree of cementation is more variable than for extension fractures. Again, the estimates presented here should be considered to be imprecise variables.

Numbers of Fractures filled with Various Cements				
Cement Type	Extension Fractures	Shear Fractures		
CaCO ₃	103	80		
Clay	9	36		
Clay and CaCO ₃	7	32		
CaCO ₃ and pyrite	10	4		
*CaCO ₃ , - Dead oil		2		
stain.		2		

The dominant fracture cement was calcite. Commonly extension fractures cemented with only calcite were relatively easy to break apart. Also, these fractures commonly exhibited druze. The finer the fracture aperture, the finer the druze crystals. Those fractures cemented with pyrite were difficult to break apart. Such fractures exhibited poor druze development.

Fracture Apertures

Fracture apertures range from 0.1 - 1.0 mm., with the average aperture equal to 0.3 mm. The following table lists fracture aperture measurements of healed fractures. In the case of open fractures with well-developed druze, the aperture measurement represents the thickness of the druze. (Over 95% of the measurements are of healed fractures.)

Depth	Type of Fracture	Aperture mm	Druze
1128.8	Extension	1	Good
1131.9	Extension	0.3	Apparent
1132.3	70 deg. shear	0.7	Common
1132.3	70 deg. shear	0.7	Common
1135.3	Extension	0.3	

1137	Extension	0.3	
1137.5	Extension	.12 avg, up to 1.0	Apparent
1137.5	Extension	.12 avg, up to 1.0	Apparent
1175.9	Extension	0.1-0.2	
1176.3	Extension	0.1-0.3	
1176.6	Extension	0.3-0.6	
1177.1	Extension	0.4	
1177.3	Extension	0.1-0.3	Excellent
1177.4	Extension	0.1-0.5	Excellent
1181	Extension	0.2	
1188.3	Extension	0.1	
1189.5	Extension	0.2	
1203.8	Extension	0.1	Apparent
1204.2	Extension	0.1-0.4	2
1204.5	Extension	0.1-0.4	
1205.3	Extension	0.1-0.4	
1206.3	Extension	0.1	
1206.8	Extension	0.1	
1207.3	Extension	0.1-0.4	
1208.5	Extension	0.2-0.3	
1208.6	Extension	0.2-0.3	Good
1210	Extension	0.1-0.4	Good
1210.5	Extension	0.5-1.0	Excellent
1212.5	Extension	1.0	Apparent
1213.9	Extension	0.1-0.2	
1215.9	Extension	0.7-1.0	Good
1216.3	Extension	0.1-1.0	Apparent
1216.4	Extension	0.2	Apparent
1217.5	Extension	0.1	
1221.7	Extension	0.1	
1223.4	Extension	0.1	Apparent
1223.4	Extension	0.1	Apparent
1223.4	Extension	0.5-1.0	Apparent
1246.8	Extension	0.1	
1260.6	Extension	0.1	
1266.5	Extension	0.1	
1271.3	Extension/Shear	0.3	Apparent
1287.1	Extension	0.1	
1290.6	Extension	0.2	
1312.6	Extension	0.2	
1315.9	Extension	0.1	
1324.4	Extension	0.1	
1333.3	Extension	0.2-0.3	Apparent
1334.8	Extension	0.1	
1339.6	Extension/Shear	1.0	

1342.7	Extension	0.1-0.2	Very fine
1344	Extension	0.3-0.5	
1344.1	Extension	0.1-0.3	
1345.5	Extension	0.1-1.0	

Fracture Spacing

Fracture spacing was determined for both extension and shear fractures. Two tables are presented below: one pertaining to extension fractures, and one pertaining to shears. Due to the highly fractured nature of this core, for many fractures a "true" spacing (spacing perpendicular to the fracture surfaces) is measured. In cases where the vertical spacing of fractures would not permit such a measurement, the apparent spacing (vertical depth from one fracture midpoint to another) was measured. The true fracture spacing = $\sin (\dim \angle) x$ (observed fracture spacing). True spacing measurements are presented in red, whereas observed fracture spacing measurements are presented in black. Considering the level of accuracy of this study, the difference between "true" and "observed" spacing is inconsequential

Depth	Fracture Spacing
1137.5	.036
1137.5	.036
1162.7	0.15
1175.9	0.15
1176.6	0.1
1188.3	1.2
1204.2	0.05
1205.3	0.8
1206.3	1.0
1208.5	0.07
1208.5	0.07
1208.6	0.07
1210	.050.1
1211.1	.06-1.5
1213.9	1.4
1215.9	.0713
1216.3	0.08
1217.5	0.3
1223.4	0.03
1223.4	0.05
1242.1	0.1
1246.1	1.6
1298	0.02 - 0.1
1303	0.05
1312.6	0.04
1312.7	0.03

1344	0.12
1344.1	0.15
1345.5	0.02-0.1
1375.3	0.1
1412.5	0.03
1413.1	0.3
1413.7	0.2
1414.5	0.13
1414.7	0.05
1422.2	0.1
1423.4	0.03
1424.3	0.15
1425.4	0.87
1425.6	0.05
1425.8	0.03

Shear Fracture Spacing				
Depth (ft)	Fracture spacing (ft)	Fracture Dip Angle		
1123.6	0.4	60		
1164.2	0.2	45		
1166.1	0.2	90		
1167.7	0.3	50		
1168.3	0.8	50		
1223.7	0.5	60		
1223.8	0.2	60		
1237.2	0.1	45		
1239.6	0.2	45		
1239.7	0.2	45		
1240	0.03	45		
1255.2	0.2	25		
1276.8	0.65	60		
1281.3	0.05	65		
1289.6	0.15	55		
1315.6	0.15	45		
1380.2	0.1	70		

Summary of Fracture Strike Relationships

Because this core was not oriented, fracture dips and strikes cannot be directly obtained. However, the following table presents fracture strikes relationships that may be helpful in relating core to outcrop data.

Intersection	Number	of Fracture	s with Various I	ntersection Relation	ships	
Angle	EX/EX	EX/Thrust	EX/>35°Shear	>35° Shear / >35°	>35° Shear /	Thrust/ Thrust
				Shear	Thrust	
Parallel Strike	45	7	23	25	12	
Parallel Strike						
Opposite dips				9	1	6
10° - 30°	7			3	2	1
31° - 60°	7	3	12	14	4	1
61° - 89°	3		2	1		
Normal (90°)	8	6	12	7	3	3

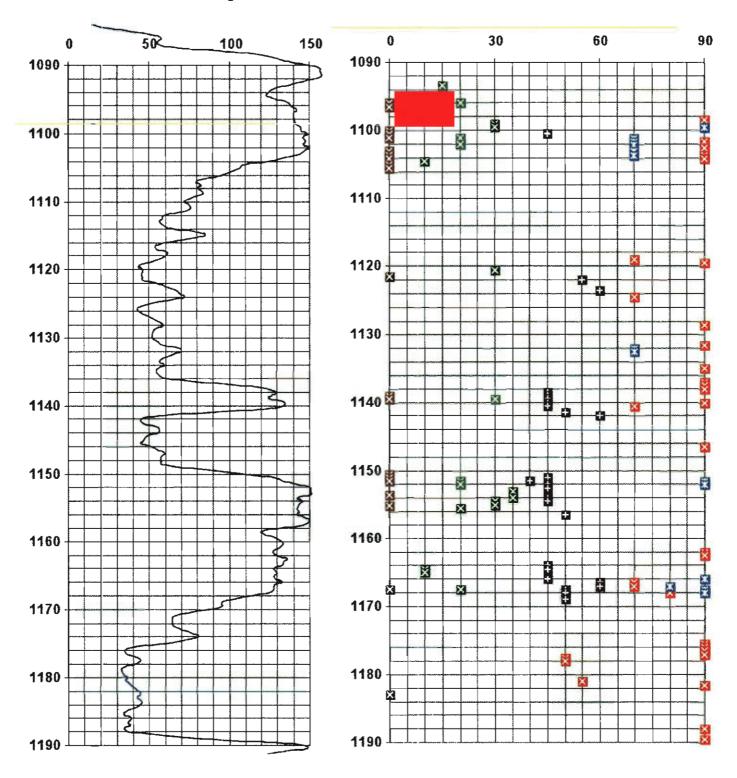
EX/EX - Intersection of two extension fractures

EX/Thrust – Intersection of an extension fracture and a low angle shear (< 35°)

EX/>35° Shear – Intersection of an Extension fracture and a higher angle (> 35°) shear

>35° Shear/>35° Shear –Intersection for two higher angle shears

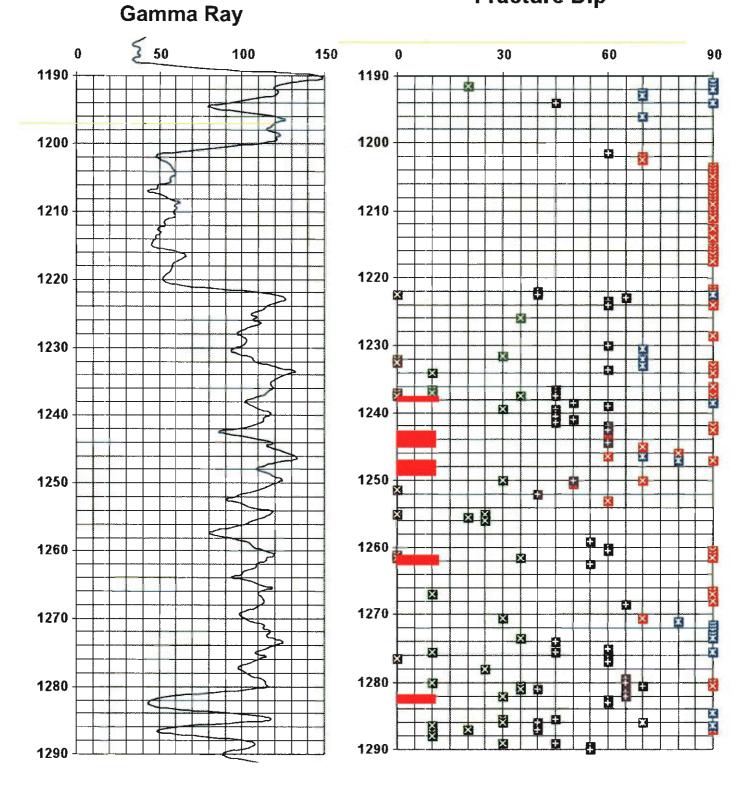
>35° Shear /Thrust – Intersection of a higher angle shear (> 35°) and a low angle shear (< 35°)


Fracture Length

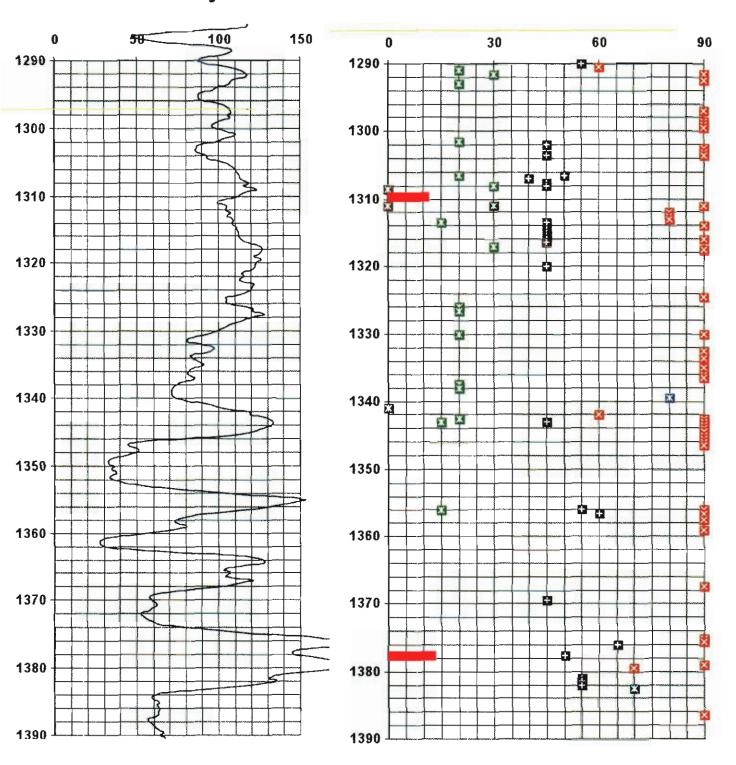
Fracture length data for extension fractures and shears are presented below. Data for complete fractures (those fractures that possessed two terminations within the core) are presented separately from those of other fractures. For fractures that had one or no terminations within the core, a minimum fracture length is given.

Fracture Lengths for Extension and Sheer Fractures						
		Extension Fracture Lengths			Shear Fracture Lengths	
	No. Fracs	Length Range (ft)	Average Length (ft)	No. Fracs	Length Range (ft)	Average Length (ft)
Complete						1
fracture in core	20	0.15 - 0.8	0.4	2	0.3-0.3	0.3
Minimum						
Fracture	122	0.05 - 2.8	0.5	179	0.02 - 0.8	0.16
Length						

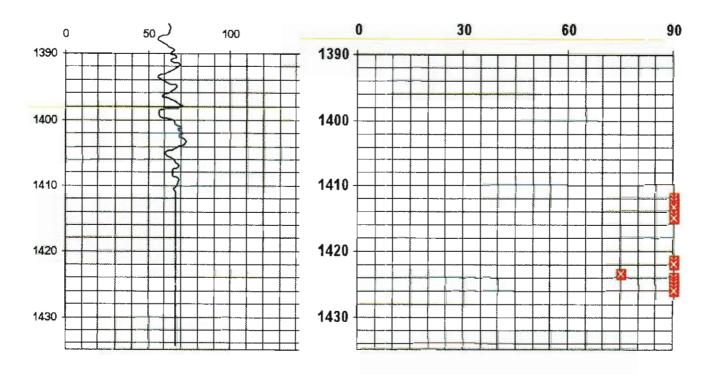
Brief Discussion of Extension Fractures vs. Shears


In this and previous reports, fractures have in classified as either extension fractures or as shears. In most cases vertical, or near vertical, fractures are interpreted as extensional fractures. The VPRCH 32 core exhibited a relatively large number (41) of steeply dipping shears. In some cases, high angle shears parallel extension fractures. This angular relationship might support the reactivation of extension fractures.

Gamma Ray

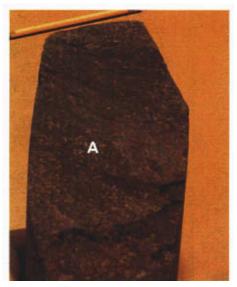

Fracture Dip Angle

Fracture Dip


Gamma Ray

Fracture Dip

Gamma Ray



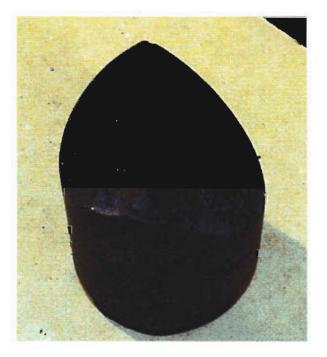
Core Photographs

Examples of Shears

Fracture A

Three Intersecting Shears:

Depth: 1203.8' Host Rock: Shale

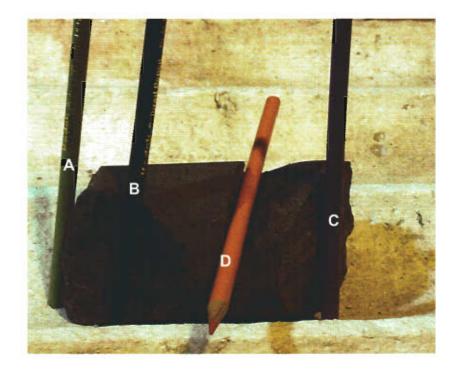

Fractures A and C are parallel; Fracture B is normal to Fractures A and C. Fracture B exhibits oblique normal slip. Fracture A is a near vertical fracture exhibiting oblique slip.

Two Intersecting Parallel Shears

Depth: 1138.9'

Host Rock: Shale

Two parallel shears each dip at a 45° angle.



Parallel Shears

Depth: 1167.4'

Host Rock: Shale

Three shears have parallel strikes shown with the vertical colored pencils. Fractures A and C dip in the same direction. The fracture spacing is 0.3 ft. The Yellow pencil in aligned with bedding-plane slip striations. Bedding plane slip is normal to the strike of the shears.

Two Shears Intersecting at a 45° Angle.

Depth: 1167.8'

Host Rock: Shale

Pencils are aligned parallel to the strike of each fracture.

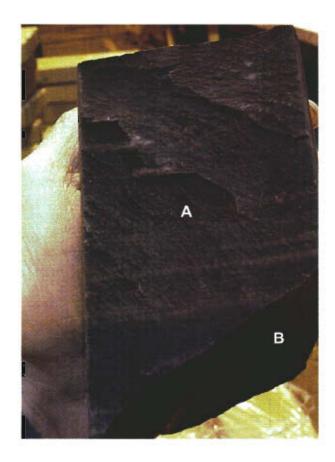
Low Angle Shear With Lateral Slip

Depth: 1191.6'

Host Rock: Shale Dip angle = 30°

Vertical Fracture and Shear

Depth: 1194'


Host Rock: Siltstone

Fracture A Dip Angle = 90° Rake = 45°

Fracture B: Dip Angle = 45° Rake = 10°

Strike Intersection of Fractures A and $B = 60^{\circ}$

The surface of Fracture A has a plume structure. Fracture B shows slickenlines.

Vertical Fracture Exhibiting Lateral Slip

Depth: 1379'

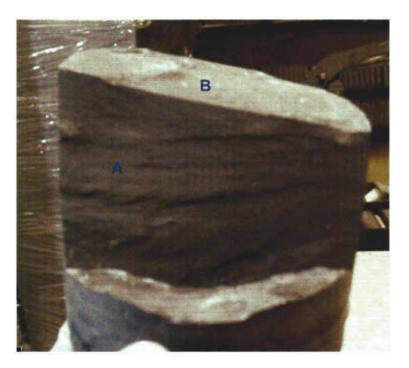
Host Rock: Shale

Dip Angle = 90° Rake = 90°

Vertical Fracture and Low-Angle Shear

Depth: 1267'

Host Rock: Siltstone


Fracture A:

Dip Angle: 90°

Fracture B:

Dip Angle: 10°

Strike Intersection of Fractures: 90°

Reverse Fault

Depth: 1168.3

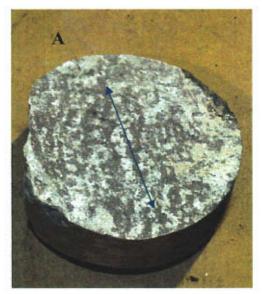
Host Rock: Siltstone

Dip Angle: 50° Rake: 45°

Three examples of Horizontal Beddingplane Slip

Figure A

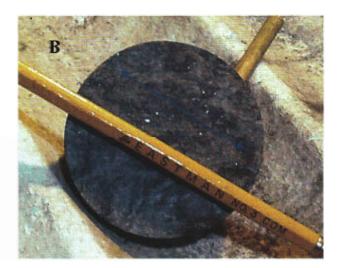
Host Rock: Sandstone (The previous two cores did not have well-defined horizontal slip in sandstones.)


Figure B

Host Rock: Siltstone A Calcite filled horizontal fracture shows slip normal to underlying bedding-slip striations.

Figure C

Host Rock: Sandstone Calcite Filled Horizontal Fracture



Depth: 1105.5

Depth: 1183'

Depth: 1121.8

Depth: 1345

Coal Dike

Depth: 1345 – 1346 Host Rock: Shale This small dike extends over 2.4 feet of core. A coal bed is present at 1345 feet.

Depth: 1346

Examples of Extension Fractures and Extension/Shear Relationships

Termination of an extension Fracture Depth: 1261.1 ' Host Rock: siltstone

Perpendicular Extension Fractures Depth: 1192' Host Rock: Shale

Extension Fracture Depth: 1296' Host Rock: Siltstone

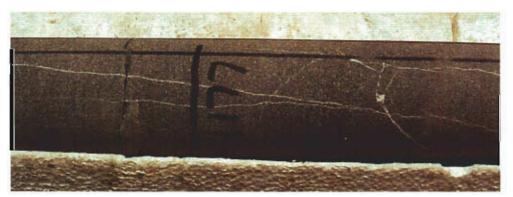
Parallel Extension Fractures Depth: 1204' Host Rock: Sandstone Fracture A may have dead oil stain on the surface. The fracture spacing is 0.05.

Two Intersecting Extension Fractures

Depth: 1208.5' Host Rock: Sandstone

Dip angles: 90°

Strike Intersection Angle: 45° Discoloration may be due to iron staining.


Intersecting Extension/ Shear Fractures

Depth: 1284'

Host Rock: Igneous Sill

Both fractures are vertical. Fracture A appears to be extensional, whereas Fracture B appears to have slickenlines. The strike intersection angle is 60°.

Multiple Extension Fractures

Depth: 1177'

Host Rock: Jøneous Sill

Parallel Extension Fracture and Shear

Depth: 1246'

Fracture A: Host rock: Sandstone Dip Angle = 80° The fracture terminates at the bed boundary.

Fracture B: Host Rock: Siltstone Dip Angle = 40° Shear shows reverse relative movement.

Possible Dead Oil Stain on Fracture

Depth: 1132'

Host Rock: Sandstone

Dip angle = 70°

Fracture was well cemented and difficult to break apart.

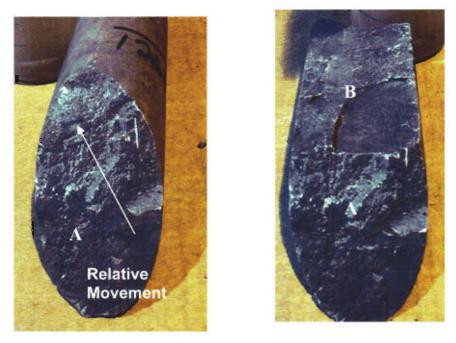
Multiple Extension Fractures

Depth: 1425'

Host Rock: Sandstone. Large druze crystals are present on some of the fracture faces.

Three Intersecting Extension Fractures

Depth: 1201.4 - 1202.4


Fracture dip angles = 60 -70° Host Rock: Sandstone

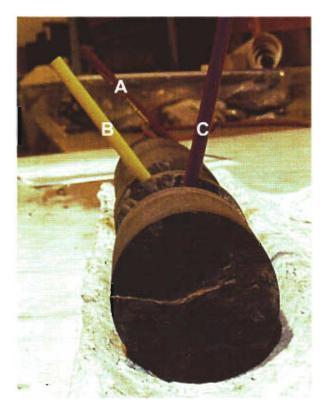
Fractures A and C strike normal to one another. The C-B strike intersection angle is 30° . The A-B strike intersection angle is 60° .

Calcite and Pyrite Fracture Filling

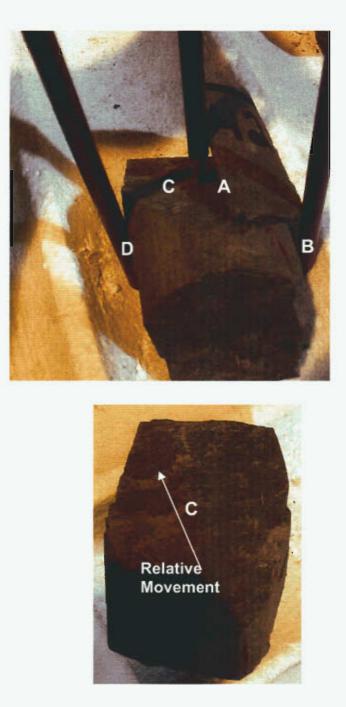
Depth: 1223.4 Host rock: Shale The most common fracture filling is calcite. When pyrite is present, the fractures are more completely cemented and are difficult to break apart.

Intersecting Shear and Extension Fractures

Depth: 1268'


Fracture A is a reverse shear with a 65°- dip angle. Fracture B is a vertical extension fracture that terminates at Fracture A. The two fractures strike normal to one another

Extension Fracture and Shears


Depth: 1230'

Fracture A:	Shear
	Dip angle: 60°
	Rake: 20°
Fracture B:	Extension
	Dip angle: 70°
Fracture C:	Shear
	Dip angle: 70°
	Rake: 10°

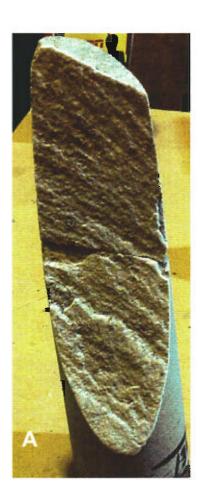
Fractures A and B are parallel. The strike of Fracture C is 45° relative to Fractures A and B.

D Ε F н

One foot of Fractured Core

Depth: 1242' - 1243'

Host Rock: Shale


Fractures A, B, and D are Parallel vertical Extension Fractures. Fracture A terminates at Reverse Shear C. Fractures B and D do not. The strike intersection between A and C is 70° Fractures E and F are shears, each dipping at 60°. The strike of Fracture E is parallel to Fracture C, but the dip direction is opposite. Fracture F strikes 45° relative to Fracture C. Fractures G are two sub-parallel extension fractures. Fracture H is a 40°- dipping shear. Fractures G and H are parallel. The strikes of G and H are parallel to Fracture F, but the dip directions are opposite. **Figure A: Vertical Extension Fracture with Calcite (and Pyrite) Filling** Depth: 1339'

A well- developed plume structure is present.

Two Vertical Fractures with evidence of Shear Movement – Possible Reactivated Fractures

Figure B: Calcite Filled Vertical Reverse Shear Depth: 1271.3'The lower portion of the fracture surface has well-developed druze. The upper portion of the fracture shows a smoothed calcite crust.

Figure C: Vertical Fracture Depth 1286' Host Rock: Shale The Calcite filling of this fracture is highly fractured.

Features Associated with Igneous Intrusion

Figure B: "Stylolitic"-like features Depth: 1222' Host Rock: Igneous Sill Fine quartz veinlets are found at the base of an igneous sill.

Figure C: "Chicken-wire" fracturing Depth: 1219' Host Rock: Igneous Sill A fine network of quartz veinlets are found in an igneous sill.

Fractured Coal Inclusion in Igneous Sill

Depth: 1374'

This small coal inclusion is highly fractured relative to the surrounding igneous rock.

Columnar Jointing

Depth 1352.8'

Host Rock: Altered Coal or High Carbonaceous Shale

Several feet of vertically jointed rock occurs in association with igneous intrusion. Calcite fracture fillings are common.

Interpreted Fault Zones

Possible fault zones (shown on Figure 1) were interpreted where intervals of core were highly broken and also possessed numerous shears. In some cases, "shattered" core, as shown here, is associated with these intervals

Depth: 1239

Depth: 1378'

El Paso Well No: VPRCH 34

Summary of Fracture Characteristics Described in Core

Submitted to Sandia National laboratory Raton Basin Project By Constance N. Knight

Introduction

Well No. 34 VPRCH was cored continuously from near surface to a total depth of approximately 2050 feet. The objective of this evaluation is to describe attributes of naturally occurring fractures below the Raton Conglomerate to total depth. The entire core below a depth of 1740 feet was carefully examined for fracture occurrence. All natural fractures were logged with respect to: depth, host lithology, fracture dip, surface characteristics, and angular relationships with one another. Induced fractures were also noted, and wherever possible the orientations of natural fractures were described with respect to induced fractures. The strike of induced fractures parallels the direction of the maximum horizontal *in-situ* stress (sHmax). Since sHmax has been determined at a regional scale through other investigations, relating natural fractures to induced fractures can produce a reasonable estimation of true fracture strike and dip.

Summary of Fracture Characteristics

Total fractures described: 100

All percentages presented below are presented as a fraction of the total 100 fractures unless otherwise noted.

Host Lithology

Host Lithology	Percentage of Fractures
Shale and claystone *	62%
Siltstone	28%
Sandstone	10%

Almost all fine-grained clastics were determined to be shale.

Types of Fractures (Extension vs. Shear)

Type of Fracture	Percentage
Extensional Fractures (No evidence of shear is present. Most fractures have surface plume structures.)	11%
Shears with a vertical component of relative motion	74%
Horizontal shears or bedding plane slip	15%

Number of Fractures sorted by Lithology

Lithology	HZ Shears	Shears <35°	Shears 40°- 65°	Shears 70°- 90°	Extension Fractures
Sandstone		1	2	2	4
Siltstone	1	.4	13	5	7
Shale	14	13	24	10	
Total	15	18	39	17	11

Shears Sorted by Dip Angle and Rake

Shear Angle	Percentage of total (100) fracs.	Rake Range	Comments Regarding Rake
Shears <35°	18%	0° - 90°	Less than 30% of thrust shears (\leq
dip	1878	0 - 90	35° dip) exhibit rake.
Shears 40°-	49%	0° - 70°	Half of the shears with dips of
65° dips	4978	0' - 70'	40° - 65° exhibit rake
Shears 70° - 90° dips	17%	0° - 30°	60% of the fractures with dips of 70° - 90° exhibit rake.

Relationship of Fractures to sHmax as Defined by Petals

Depth	Orientation Relative to Petal	Type of Fracture	
1879-1880	Normal	Shear/Thrust	
1896-1897	Normal	Shear (10° dip)	
	Oblique (70 deg)	Shear (70 deg dip)*	
1944-1945	Normai	Shear (55 deg dip)	

* Slickenlines are normal to petal

Relationship of Coal Cleats to sHmax		
Depth	Orientation with respect to sHmax	
1746-1748	20 deg (sub parallel)	
1864-1865	Parallel	
1935-1936	Parallel to 10deg (sub parallel)	
1938-1939	Parallel	
1954-1955	Parallel	

Fracture Filling

The following table presents numbers of fractures with respect to the percentage of fracture filling and fracture type. Percentages of filling materials were estimated by examining the facture faces. (Almost all of the described fractures were found open in the core. Only a couple of fractures were healed.)

% Fracture Filled	No. Extension Fractures	No. Shears < 35°	No. Shears 40°-65°	No. Shears 70° - 90°
< 10%	5	11	22	10
20% - 25%	4	3	4	6
25% - 49%		1	5	
50% - 74%		3	6	
75% - 100%	2	0	2	1
Total	11	18	39	17

The following table presents the type of fracture cements described. The most abundant fracture filling is clay.

Numbers of Fractures filled with Various Cements				
Cement Type	Extension Fractures	Shear Fractures		
Clay	3	25		
CaCO ₃	1	8		
Clay and CaCO ₃	1	2		
Quartz		1		
Clay and trace Quartz	3	3		
Dolomite ?		1		
*CaCO ₃ , - Dead oil stn.		1		

*At 1929 ft, a highly mineralized fracture contained possible deal oil residue on the fracture surface. The aperture of this fracture was estimated to be 1 - 2 mm.

Fracture Spacing

Depth	Fracture Type	Dip Angle	*Observed Fracture Spacing ft.
1769	Shear	50°	0.6
1802	Shear	50°	0.8
1886	Shear	50°	0.3
1949	Extension	80°	0.7

Fracture spacing determinations were made at four depths.

* The true fracture spacing (measured perpendicular to the fracture surfaces) = $(sin(dip \angle) x (observed fracture spacing).$

Summary of Fracture Relationships

Intersection	Number of Fractures with Various Intersection Relationships				
Angle	EX/EX	EX/Thrust	EX/>35°Shear	>35° Shear/>35° Shear	>35° Shear /Thrust
Parallel Strike	4			3	
Parallel Strike					
Opposite dips	1	1			
10° - 30°				1	1
31° - 60°			1		
61° - 89°	0			1	
Normal (90°)	1	1	1	3	1

EX/EX - Intersection of two extension fractures

EX/Thrust – Intersection of an extension fracture and a low angle shear (< 35°)

EX/>35° Shear – Intersection of an Extension fracture and a higher angle (> 35°) shear

 $>35^{\circ}$ Shear/ $>35^{\circ}$ Shear –Intersection for two higher angle shears

>35° Shear /Thrust – Intersection of a higher angle shear (> 35°) and a low angle shear (< 35°)

Fracture Length

Fracture length measurements are not reported in this report, because almost all of the fracture terminations were out of the core. Most fracture lengths for all types of fractures ranged from 0.1 to 0.3 feet. More pertinent information will be reported for the other wells.

Examples of Fracture Characteristics and Fracture Relationships

Shears

This information is provided to document shear characteristics and orientation information. Information is organized according to depth.

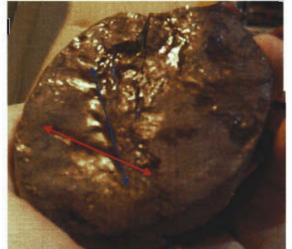
Parallel Shears that dip in opposite directions

Depth: 1743' Fracture description: Fracture dips: 50° Rake: 0°-10° Fracture spacing for each set of shears: 0.2 ft. Fracture strike intersection: 90° Host Rock: Shale

Bedding Plane Slip

Depth: 1752.2', Host Rock: Shale

A three-foot zone of shale from 1751 to 1753 is highly broken. Evidence for fracturing and bedding-plane horizontal slip is ample. Six fractures within two feet of core were described. Also, dislodged pieces of core possessing slickenlines are common. This zone may represent a fault zone intersecting the borehole.



Sheer showing two sets of slickenlines

Depth: **1769.5'** Fracture description: Fracture dip: 50° Rake: 40° and 70° Fracture Spacing: 0.6 ft. Fracture strike intersection: parallel Host Rock: shale

Two episodes of movement are implied by two sets of slickenlines. A fracture 0.6 feet deeper in the core has a subparallel strike to this fracture. The slickenlines of the lower fracture are perpendicular to those showing 40° rake in the photo.

(The slickenlines on this fracture face intersect at a 30° angle. On page 11 two small thrusts are shown to have strikes that intersect at a 30° angle.

Rake: 40°

Rake 70°

Small Reverse Fault

Depth: 1794.3'

Host Rock: Siltstone

Dip of Fault = 60° Rake = 0°

Reverse movement is interpreted from the patchy calcite filling.

Small Thrust Fault

Depth: 1879.3'

Fault Dip = 20° Rake = 0°

This thrust is in a shale bed immediately above a thin coal seam. Petals in the coal indicate that the direction of sHmax is normal to fault movement. This is a small-scale compressional feature.

In all of the coal beds that possess petal fractures, the strike of the coal cleating is parallel or nearly parallel to the strike of the petal fractures.

Petal Fractures

Parallel Shears

Depth: 1886' - 1888' Host Rock: shale

a.) Fracture Dip Directions of two fractures with a strike intersection of 30° are shown with a pen and pencil.

b.) The strike-orientation of Slickenlines on the same shears shown in a.) are now indicated with a pencil and pen. The fractures intersect at a 30° angle, The rakes of the fractures are normal to one another.

Fracture dips: 50° - 55°

Some of the fractures from this interval have parallel dips and parallel rakes. Other fractures have a strike intersection of 30°. However the rakes of the discordant fractures are perpendicular to one another.

Petal Fracture

Depth: **1942'** Host Rock: siltstone

The pencil on this petal fracture is normal to the petal strike and shows an orientation direction normal to sHmax. The pencil is parallel to a plume propagation direction on the fracture surface. The plume indicates that the fracture (which represents the Smax in the local stress region imposed on the formation by the weight of the bit) opened from right to left.

Shear Fracture with Respect to sHmax

Depth: 1942-1945

Fracture Characteristics:

Host Rock: Siltstone Fracture Dip: 55° Fracture Rake: 30°

The pencil shows the direction perpendicular to sHmax defined by the petal shown above. The Pen shows the strike direction of the shear. The strike of the shear is normal to sHmax.

Sear with possible reverse oblique slip

Depth: 1944.6

Photo of fracture surface shown in previous photo.

Host rock:SiltstoneFracture Dip:55°Rake:30°Relative strike:Normal to sHmax

Irregular pattern on surface striations imply possible reverse oblique shear movement.

Sear with possible normal dip slip

Examples of Extension Fracture Characteristics and Fracture Relationships

This information is provided to document extension fracture characteristics and orientation information. Information is organized according to depth.

Extension Fracture

Depth: 1901.4'

Fracture dip = 80°

Host Rock: Siltstone

This hairline fracture is associated with a plume (not well reveled in this photo) and patchy mineralization. When estimating the degree of fracture mineral filling, it is important to consider both sides of the core. Patches of "missing" mineral fracture filling on one side of the core are often found on the opposite side of the core.

Extension Fractures with a 90° intersection

Depth: 1949.7'

Fracture dip = 80° Fracture spacing = 0.7 ft.

Host Rock: Siltstone

Surface View of one Extension Fracture seen in previous photo

Depth: 1949.7'

Fracture dip = 80° Fracture spacing = 0.7 ft. Lower fracture termination: subtle bed boundrary

Host Rock: Siltstone

Plume structure that propagated from bottom to top is apparent.

Intersecting Extension Fractures

Depth:1957.6

Host Rock: Siltstone Dip angles: 90° & 70° Fracture terminations: in lithology

Dip strikes are parallel, but fractures dip in opposite directions with an intersection angle of

Surface View of one Extension Fracture seen in previous photo

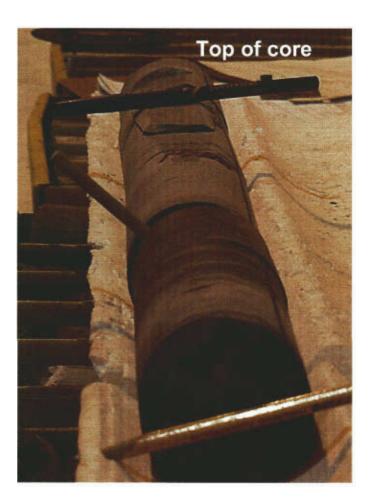
Depth: 1957.6'

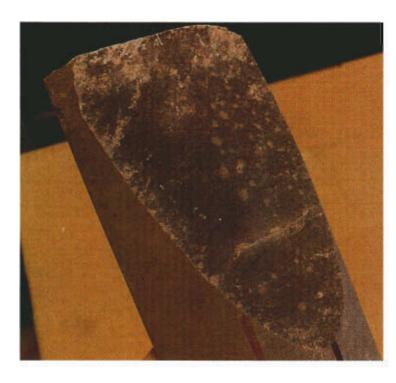
Fracture dip = 70°

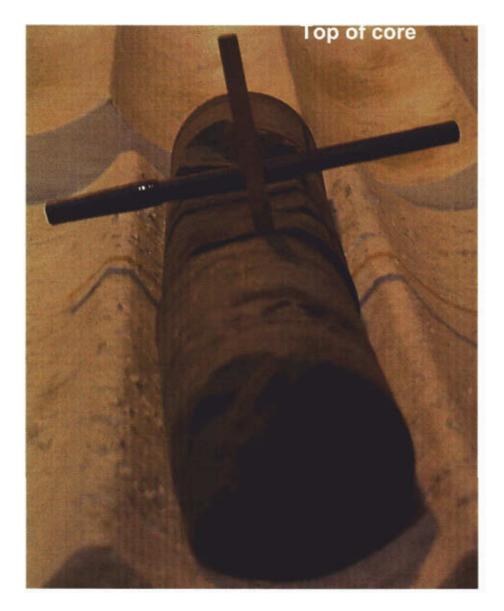
Host Rock: Siltstone

A plume structure that propagated horizontally is apparent. This surface shows patchy calcite fracture filling. Also the surface has an uneven oil stain that exhibits no to dull fluorescence.

Relationship of Extensional Fractures to Thrust Shears


Depth: 1987.1'


The upper blue pen shows the strike to two parallel hairline extension fractures: Host rock: Sandstone Fracture dip angles: 85°


The middle stick shows the strike of a small thrust that separates the sandstone bed from an underlying shale bed. Dip Angle = 25° Rake = 0° The strike intersection of the extension fractures and this thrust is 30° .

The lower pencil shows the strike of a lower small thrust in a shale bed. Dip Angle = 30° Rake = 5° The strike of the extension fractures is parallel to the strike of this thrust.

The relative strike between the two thrusts is 30° . See note at the bottom of page 4.

Relationship of Extensional Fractures to Bedding-Plane Slip Lineations

APPENDIX F

Core Log Reports: Ronald E. Graichen

April 30, 2002

Chris Rautman Sandia National Laboratories P. O. Box 5800 Albuquerque, NM 87185

Dear Chris,

As we last discussed by telephone, I am sending to you all of the completed work on the Raton Basin Project. Enclosed please find: the remaining three original logs from the bottom of CH 5, two photocopy continuous colored logs for CH 4^r and CH 5 and three pages of observation notes that I made while logging the two holes. I have received payment from Sandia for my March billing submittal and I am sending the final billing for April under a separate cover to the appropriate office.

I went through my logging notes, refined them and added some additional insight to the ideas that I generated through observations in the logging process. Though some of these are straightforward and obvious perhaps others may be a bit off-the-wall. All of them are meant to stir the gray matter in search for the truth. I hope these notes add another dimension to the written observations on the logging sheets.

The final task for me was to compare both logs to look for geologic correlation. I chose to make photocopies of each log and to color them before taping them together as a single long continuous log record. Since the holes are quite some distance apart I thought only gross lithologies should be identified by color to provide any hope of correlation identification. Xellow identifies sandstone, orange is siltstone and blue is mudstone. Additionally, I colored in red, all of the coal occurrences at the side of the colored symbol column so they would stand out. The result is two very long ribbons of paper. For comparing them, I laid them side-by-side on my dining room table so the ends could pile up on the floor at each end of the table as needed. This worked well. In the analysis I assumed that the drill hole collars were not significantly different in elevation and I noticed near the top of each hole a thick sequence of predominantly mudstone is present. The sequence of mudstone beds for CH 4 is 102.3 feet thick and 106.8 feet in CH 5. Then magic follows! As you will do the same as I did, notice how similar the logs are in comparing them downward. I think there is remarkable correlation. Even the thin coal beds seem to be well correlated. Perhaps in your close study of these you may find other features that confirm the correlation.

I have made no other copies of the logs and all that I made are returned to you. I particularly enjoyed working with you and in meeting John Lorenz and Scott Cooper. Please give my regards to both of them.

Sincerely

Ronald E. Graichen

361 NIKULA ROAD WEST WINLOCK, WA 98596

Notes: Core Hole 4

Sheet 1 Mudstone often has a breccia texture and it is easily broken during coring. The texture contains multiple orientation slickensides, interpreted to be caused by loading. Some siltstones display worm tracks or bioturbidite features.

Sheet 2 Carbonate in fractures in mudstone beds is discontinuous and patchy but much of this flakes off into the bottom of the core box. What amount of this coating is lost during drilling activity? A coal-like seam in medium to fine sandstone with 55 dip shows strike-slip slickensides indicating local horizontal stress.

Sheet 3 An 82-degree dip, planar slickensided surface shows up-dip drag indicating local reverse faulting.

Sheet 4 Sandstone beds are not fractured. Slickensides in mudstone are not logged unless there is a coating of carbonate on them; it infers a permeable fracture that permitted calcite deposition in a permeable structure. Many clayey slickensides show nearly dip slip movement (0 to 15 degrees). Coal seams are very thin to several millimeters and are common in the thicker mudstone units. Discordant dark "veins" are coal-like and may be stylolite type structures. Some of these do show, under a hand lens, dimple patterns on a broken surface.

Sheet 5 A vertical fracture in mudstone with minor calcite terminates at its top and bottom into mudstones with random orientation slickensides.

Sheet 6 Curved surface clay slickensides contained within compacted mudstone and not showing obvious open permeability do occur with occasional thin coal seams or "veinlets". Their discordant occurrence suggests migration of carbon (coal), and presumably water, during the compaction process. These also occur in coarse sandstone units. How did it get there without this process? This thesis accounts for non-conformable coal occurrences.

General observations not identified to individual log sheets though listed in sequence as observed in core hole 4 follow. Some features seen are repeated deeper in the hole and some are identified as also occurring in core hole 5.

Conjugate shears in mudstone with attendant tension fractures, in classic orientation, are found. The shears are fluted slickensides, usually 15 to 20 degrees rake from paralleling the dip orientation. Shear movement is assumed to be normal, the clay usually doesn't preserve directional evidence, though post mineral filling can show drag direction. A individual shear higher in this hole it did show evidence of this.

The thicker coals, greater than 0.2 feet thick, show orthogonal vertical fracturing (cleats?) with thin coatings of calcite. This is a common feature in core holes 4 and 5.

Vertical long fractures are seen in both core holes 4 and 5. Usually they are best formed in thick, coarse sandstone beds. These represent a vertical mobility opportunity for gas and fluid movement. Certainly the coarse sandstone itself is highly permeable. The high angle fractures are more predominant in mudstones but they are much shorter and are often inclined 5 to 20 degrees to the core axis.

Most measured structures terminate beyond the core boundary. Of the steep angled ones that do not, in sandstone vertical fractures often terminate as wispy fractures that end in the sandstone for no obvious reason, as might be expected of a tension gash created by regional stress. In mudstones, planar fractures are very thin (0.1 mm) and often terminate in organic trash bedding or into shear surfaces.

Mudstones containing coals (that have been sampled) tend to be more shale-like presumably because of increased organic carbon trash in the bedding. These units suffer more "disking" or close-spaced bedding separation caused from drilling activity.

Shearing in mudstones is generally curved in strike and dip. Less than 10 percent are planar.

Carbonate coating is most often as scaly patches, loosened from highly polished slickensides in mudstone. Drilling activity must remove some of this. The coatings usually adhere to fracture surfaces in coarser grained rock types.

Concretion nodules occur in both core holes 4 and 5. One in core hole 4 may be barite, but most appear to be ironstone. Several have star-like core openings later filled with calcite and some contain pyrite and calcite. They are reddish brown and are finely crystalline. In some they are bedding replacements without concretion form.

At 1000 feet in core hole 4 there is a consistent occurrence of vertical fractures in the sandstone beds. Even a 0.6 foot thick sandy bed contained by mudstone beds is fractured while the mudstone is not. This suggests that the plastic mudstone units transmit stress to fracture the more brittle sandstone beds.

The first sill is at 1146 feet in core hole 4. It is less than three feet thick and appears to be mildly chloritic altered (by organic acids?). Not one millimeter of bleaching occurs in black organic mudstone at the knife-edge contact. The sill contains calcite and reacts to HCl acid. The calcite was perhaps created by organic acid waters altering plagioclase to chlorite and calcite or it was deposited from migrating formational waters or both. Sill rocks do not appear to be good candidates for KAr age dating because of the alteration.

At 1600 feet in core hole 4, near vertical fracturing is en echelon. Individual fractures tend to split into two parallel fractures about one centimeter apart for part of the whole fracture length. On the larger scale, the fractures are en echelon, one will enter the core, pass through and exit with another coming in on the opposite side of the core, parallel to the first and repeating down hole. Some of the near vertical fracturing fades into siltstones and the latter may display a crude fabric paralleling the fracture.

Typically shear striations are fluted to wave-like, occurring at rake angles of 15 to 20 degrees to the dip angle. About 20 percent of slickensides are parallel or near parallel to the dip angle. Steeper angled shears at 45 to 90 degrees to the core axis may have strike oriented striations but these represent less than 3 percent of all.

At 1800 feet in core hole 4 the mudstones and siltstones are thick-bedded and they do not contain many slickensides. Drilling has caused breakage in these very brittle beds with the breaks occurring along pieces of carbon trash which generally lie perpendicular to the core axis. Drilling bit pressure has also created "petal" fractures or curving fractures that form sickle-shaped shards where these intersect bedding plane partings.

Vertical fractures tend to split into two fractures, a long planar one and an auxiliary one paralleling the parent but usually about a quarter of its length. The fracture separation is usually one half to one centimeter. Long fractures are often curved at their beginnings with a high angle to the core axis entering the core, curving into a vertical or near vertical fracture. I suspect this is a feature created by drilling. The vertical linear part of the fracture exists from regional tectonics and normally the terminations fade within the sandstone host as expected with a normal tension fracture. However, during the drilling process, as the drill bit pressure approaches the top of the tension fracture, a "petal effect" occurs to break the curved portion. Evidence for this is the edge of the vertical tension fracture is quite grainy, as would be expected in a "pull-apart" tension fracture. However, the edge of the curved is knife sharp indicative of shear stress.

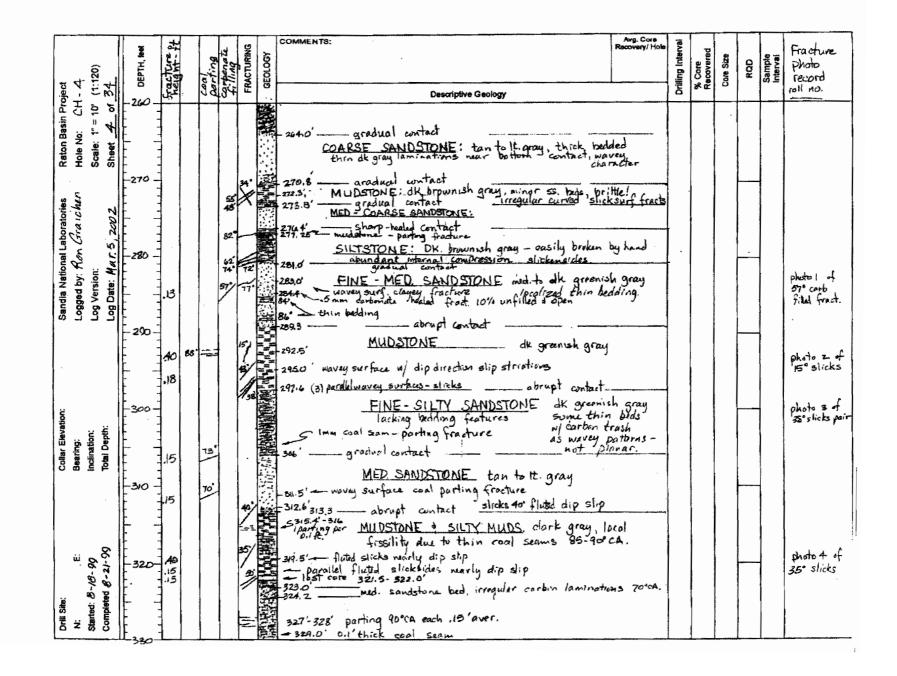
The long vertical and near vertical fractures cannot be assumed to be oriented to perfect vertical drill core. Hardly any HQ or NQ core hole is vertical. And the greater the depth means the greater can be the orientation from vertical. Typically vertical core holes are not set perfectly vertical at the collar. The drilled hole orientation usually shows the effects within a few hundred feet of the collar of a right hand corkscrew because of rod rotation. Therefore, vertically appearing fractures, seen in a core box, especially from core at 1800 feet depth, are probably slightly inclined.

The following notes are made from logging of core hole 5.

Chris Rautman said he thought these core holes we logged were drilled with air rather than drilling fluids because of the presence of swelling clays. In starting to log core hole 5, I washed and scrubbed it to remove concealing muddy coatings and I was rewarded with a quickly developed fuzziness on the surface. I presume this is due to the presence of montmorillinite clay in the mudstone. The first six boxes (to 188.5 feet) contains very friable core and I question if this is a result of near surface weathering and related to clay swelling. Below 188.5 feet the core appears more competent, however wetting it produces the same swelling clay fuzziness. Swelling clays occur throughout the entire core length.

This core contains unbroken intervals with multiple internal slickensides. This is probably indicative of compaction and dewatering of the original sediment. The open fractures and slickensides mostly have calcite coatings and unlike core hole 4, these in core hole 5 are stained with iron oxide. Bedding partings in shale-like mudstone have the orange coatings even though the core is not naturally broken along bedding planes (in this shallow part of the hole bedding is near 90 degrees to the core axis). These microfractures are not readily observable in the unbroken core but show a permeability factor that is probably greater than within the lithologies in which they are contained. This is commonly displayed at 350 feet. At 370 feet there appears to be a diminishing of orange carbonate coatings; fractures in sandstones have none. In dark organic mudstones and siltstones the orange carbonate coatings are still present but much diminished to thin films of a few microns thickness. At 500 feet are seen hairline fractures 0.3 to 0.4 feet in length and 15 degrees to the core axis with iron oxide staining but little calcite.

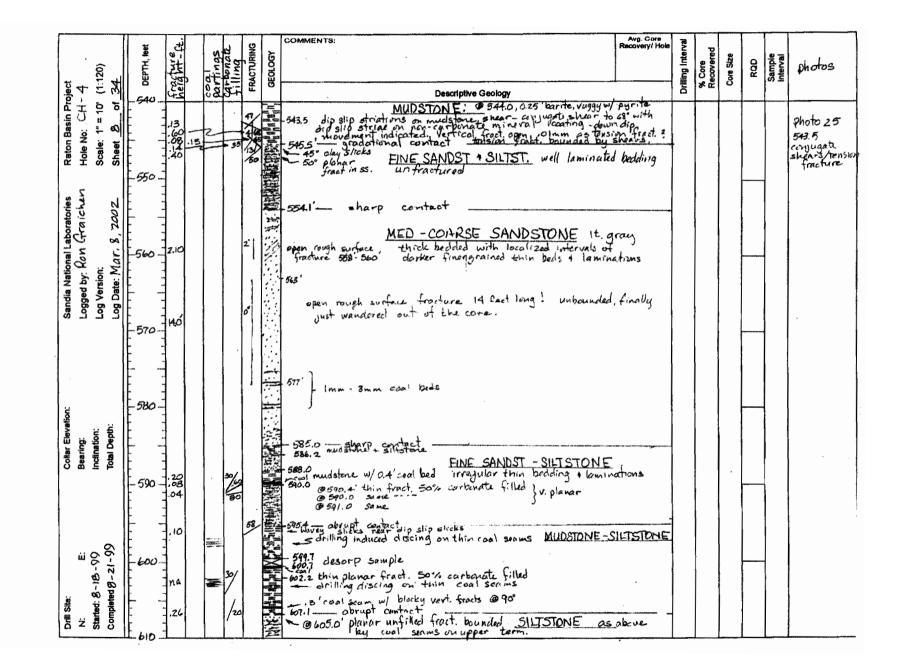
Slickensides surfaces typically contain striations at 15 to 20 degrees to dip angle. About 10 percent have striations parallel or near parallel to the dip angle. Higher angle shear surfaces of 45 to 90 degrees to the core axis tend to have 45 degree rake striations and perhaps less than 3 percent of these have strike shears.

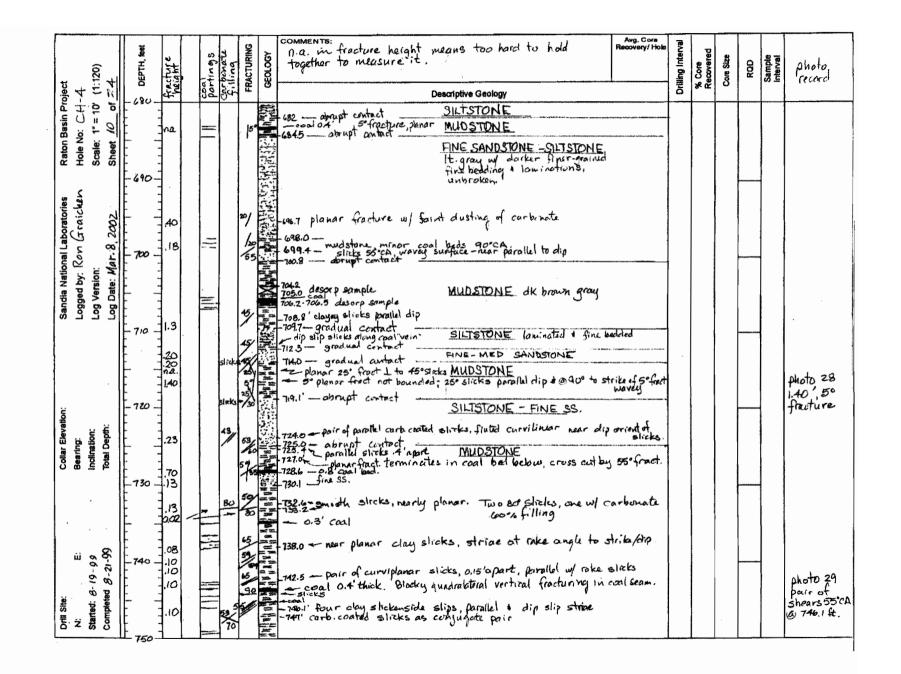

At 1,500 feet are seen long fractures paralleling the core axis for one page of core logging, followed by another page showing none then the next again with the parallel fractures. This suggests a set of close-spaced fractures separated laterally by a zone of none or few and farther removed by another close-spaced set of fractures. The vertical or near vertical fractures seen here and in core hole 4 also indicate a regional array of high angle fractures or fracture sets.

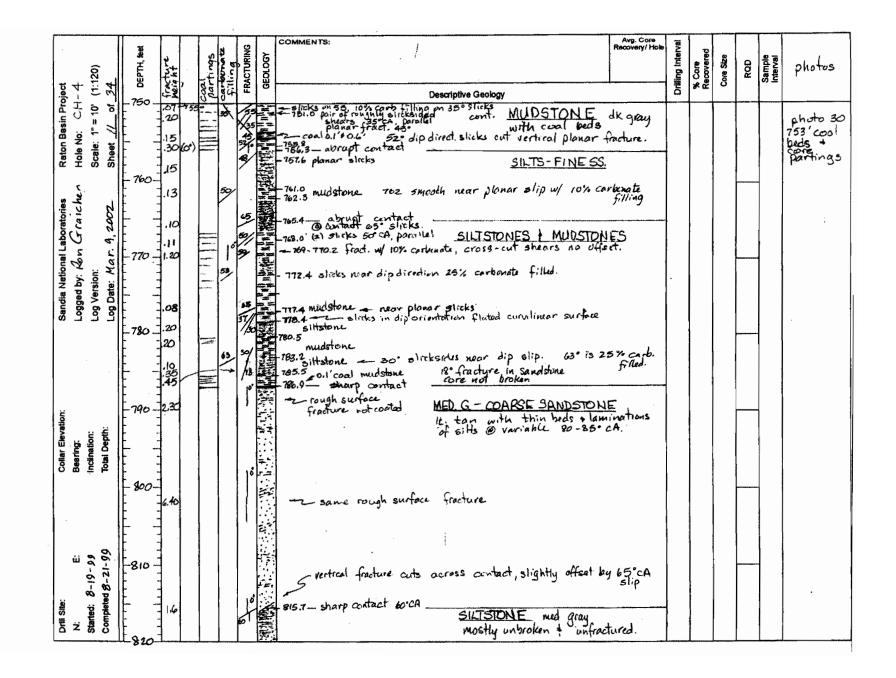
	et-	(1:120) 34	DEPTH, feet	al partings	carb. filling	FRACTURING	GEOLOGY	COMMENTS: all angles are measured to the O' core axis. Ang. Core Core Diam 2.0"	Drilling Interval	% Core Recovered	Core Size	RQD	Sample Interval	
ğ			-50.0-	(0a/	Ē	ш	Ĺ	Descriptive Geology	ā	с и.				
1 22	i i	Scale: 1" = 10' Sheet / of			1	P	141	Corring begins a 50.0' av drill parting on this black laminae, irregular grainey surface ar wavy slicksistes on hair line coal offset by carbonate healed is fracture 11°CA Clayey MED. SANDSTONE med. to dark gray, thick bedded						
Sandia National Laboratories	Logged by: Kon (Traichen	Log Version: Log Date: <i>Mar. 5, 20</i> 02	<i>60,0</i>					 72° v. Irregular, rubbly surfaces on two parallel fracts. 66.2 list core clayay zone 64° to the core loss, fragmented texture wavey contact						
Coltar Elevation:	Bearing: Indination:	Total Depth:	- 90.0					MED TO SILTY SANDSTONE med. to dark gray, thick bedded.		Manufacture				•
Site	N: E: Startad: 9 - /8 - 00	Completed 8 - 21 - 99	- 110,0				1. 我们的现在分词	56 planar but rough surface doing local bedding - no filling <u>COARSE SANDSTONE</u> tan to H.gray thick bedded 85° sharp contact, slightly wavey 85° qo bads <u>MED - SILTY SANDSTONE</u> med to dk gray Some thin bedded silty zones disrupted w/ bioturbite structures ?						

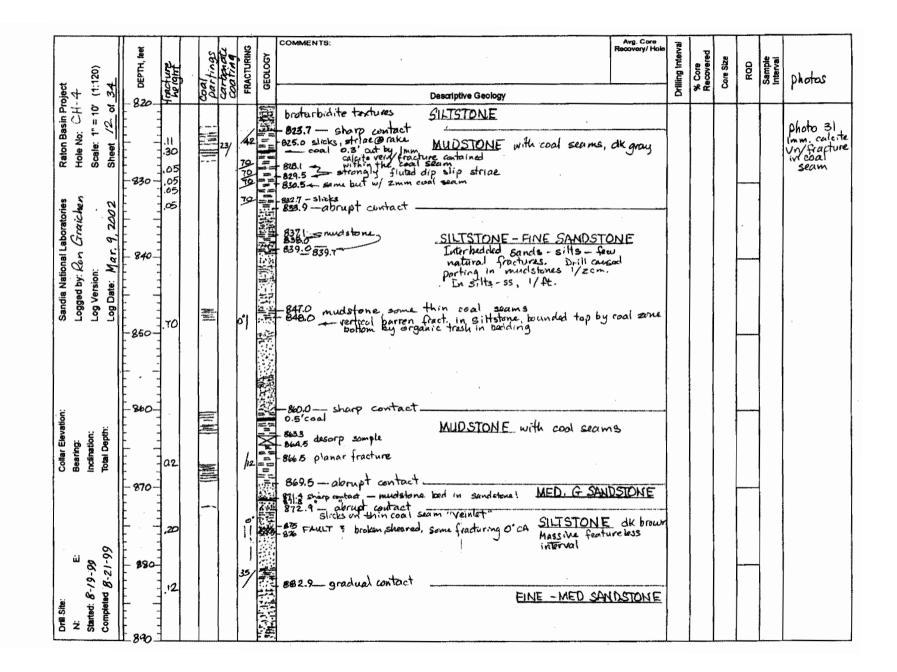
Well VPR CH-4

- 5	(1:120)		DEPTH, keet	coal partings	carb. filling	FRACTURING	GEOLOGY	COMMENTS: all angles measured to the O° core axis. Aug. Core Recovery/Hole	Drilling Interval	% Core Recovered	Core Size	RQD	Sample Interval	
	Ë		120	00	Co	a.	8	Descriptive Geology	P	Зũ	°			
Raton Basin Project	Scale: 1" = 10'	Sheet 2 of						MED TO SILTY SANDSTONE greenish gray to dork gray. 1275-129 is most clayey zone - 128.1' 36° 4. planar fract. Dissem patches of carbonate coating						
Graichen		2002			, · ·			1333' 24° V. irregular Surface Fractures, drill induced along sed-fobric. 134.0 42°1' 45° dip Slip & rake slip slickensides						
sancia National Laboratories Logged by: Кон Graichen	Log Version:	Log Date: Mar. 5	- #0					1398_78 v. wavey surface 139.7 gradational contact <u>COARSE SANDSTONE</u> It. gray, thick beddee some v. coarse sound a pebbles					r de generale het par beide staden i de generale	
Log	bol	Бо Л	-150 -				Walt 11.	sitty frequents @ 85°CA. - 151.7'						
			- 160					MED TO SILTY 35 dk gray green with 1-11/2 beds of coarser sand a claycy silts a gradational med g. dk gray ss.						
Bearing:	Inclination.	Total Depth						- wavey darker with this beds & light colored coarser sands.						
ŵ	9-18-09	8-21-99	-120		÷	2		171.0						
ż	Started: 8-/8-09	Completed	140	~			HHARA.	-189.15' 55° on lumethick coal seam, slickenside 75°CA, neurly strike slip	-					

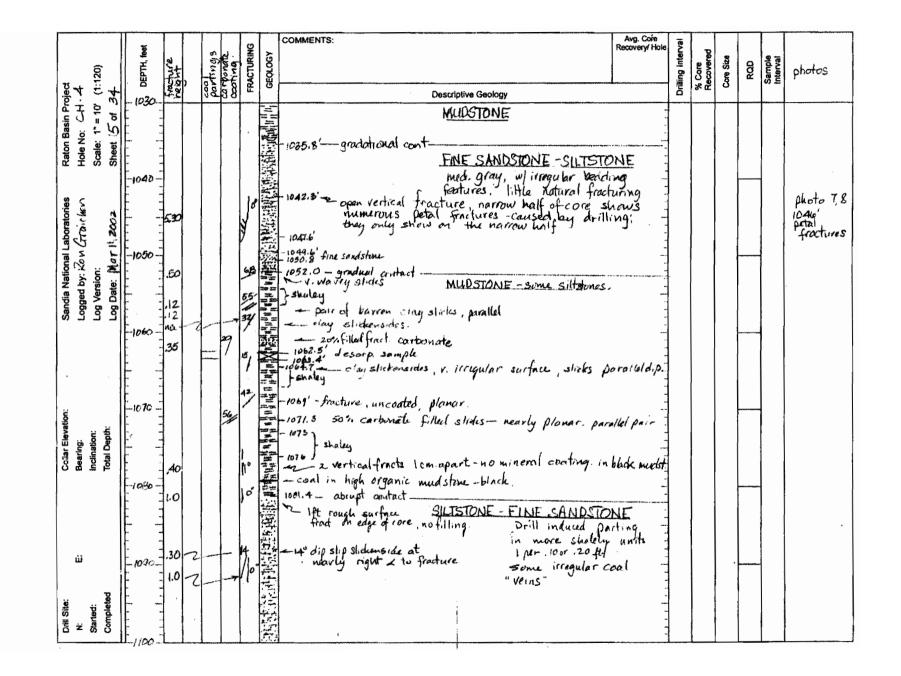

2 4		34	DEPTH, feet	coalings	carbonate	FRACTURING	GEOLOGY	COMMENTS: Very few fractures in this interval. Descriptive Geology
Raton Basin Project	Scale: 1" = 10'		- 190			i		19125, BI Wavey Suches Fracture-nufilling 1921, B2° planar, shickensided carbonate coating, not parallel to? Slicks upthrust in the dip direction. 195,0', B2° wavey surface, subtle plicks on 1/2mm coal seam (?) <u>COARSE SANDSTONE</u> It to mod. greenish gray 199,2', B3° wavey porting surface poor badding parallels, poor badding formaliels.
Sandia National Laboratories	Log Version:	Log Date: Mar. 5, 2002	- 210			•		small cut-fill channels possible bioturbidite. d other irregular sediment etructures. 205.8 gradual centret == black silty zone == dys" m.g. sandstene bed, thick bedded <u>MEDIUM TO SILTY SANDSTONE</u> : dk greenish gray Mustly thick bedded + jumbled texture.
Coltar Elevation: Bearing:	Inclination:	Total Depth:	-220-					5 subtle 6" med-coarse s. bed 242.0', 90" possible natural porting
Dritti Sitle: X: E:	rted: 8-18-	Completed B- 2/-99	-250-					249.0' laminated budding in f.g. sandstrine & some small out-fill zer.o' laminated budding in f.g. sandstrine & some small out-fill structures.


ect		34	DEPTH, feet	fracture	parting	Filling	FRACTURING	GEOLOGY	COMMENTS: Mudstone slickenside with thin carbonate suggests open permeo bility an same structures. Fresh, bright slickensides are not considered as open fractures Descriptive Geology	Drilling Interval	% Core Recovered	Core Size	RQD	Sample Interval	Fracture Photo Record roll no.
Raton Basin Project Hota Mo	- - - - - - - - - - - - - - - - - - -	5 S	- 330 -	.15		UT	43.5	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	330.4' waves slicks, mustly dipstip movement 330.4' waves slicks, mustly dipstip movement 333 <u>MUDSTONE - SILISTONE</u> 323 - 336 is high carbon zone 90°CA with numerous 1-3nm coal seams. 336 bedding fracture separations each 0.1-0.3'; each 0.1'@335-3: 336						
Sandia National Laboratories Loggad by: Row Groschen	on:	Date: Mar. 6 . 2002	-340-	0.7		<	- 0*		344.0 344.5 - 345.2' vertical irregular surface fracture contained in mudet 345.5'	ne .					Photo 7t8
Sandia Na Locoed by	Log Version:	Log Date:		.04 .80 .01		° 87° 63		a far a far far far far far far far far	302.1 MUDSTONE & SILT STONE: dk gray - mostly mudst 2 vertical v. planar fracture 60% overed w brownish schonate almm thick. Bottom 3 not broken - a hairline formable fracture 0.1mm. Terminatus topa bottom into irregular mudstone Ompaction slickensides 2029 v. thin carbonate coating slickenside dip slip from drilling each 0.1 - 0.15 f	*					photo 9,10 0° troch
Collar Elevation: Bearing:	Inclination:	Total Depth:	- 370 -	.01		87			Two of these scores list agart, both solid collecte? Two of these scores list agart, both solid collecte? 372.3	7 0%	fillin	4			photo 11 of 87 frad. = Cal seams
Drail Site: N:	nted: <i>8 - 18</i> -9	Completed & - 21-99	-390 -	.10	9 9				- wavey sed. bedding structiones = subtle bedding laminations of olarker-organics 2. 30°CA						


oject			34	DEPTH, thet	fracture height		ccal, parting	Currende -	FRACTURING	GEOLOGY	COMMENTS: How Can we see coal reinlets in Sandstors Any. Core and siltstones Descriptive Geology	Drilling Interval	% Core Recovered	Core Size	RQD	Sample Intervai	Photes
	ö	₩ # *	Sheet 6 of	- 400 -							SANDSTOPIE subtle dark laminations 85°CL throughout interval. Sandstone locally coarso g. Some warey budding features 410-411.3'						
Sandia National Laboratories	Logged by: Ran Grave hen	ë	Mar. 7, 2002.	- 410 -	.05 .04 .04	2 22	2 20 20 20	1	45-	主 と ま を	41.3 removed for description testing — presumed shavp contract 4128	5	on icks	1.50	stone stion		photos 12,1 yamm coal "yeinut" photo 14-1 vertical roal
Sandia Na	Logged by	Versio	Log Date:	430	20 433		para 5154	E - S	} ∕ \$		422.10 desorp somple 423.0 desorp somple EINE - MED SANDSTONE Planar froth will plan speckles of carbonate 430.7 abrupt contact 430.7 abrupt contact 430.7 abrupt contact 2. MUDSTONE 2. MUDSTON		mas crac wi co stic 38°C	MALE RALE RALE RALE RALE RALE RALE RALE R	top		stylolite photo 18 plang r 10 fracture photo 19 bdrite wi calific fillin
Coltar Elevation:	Bearing:	Incension: Tabel Death-	e cebar.	-440-	.50 225 30 70 180	2	Shith	~{ \$ - °	2		MED-SILTY SANDSTONE It tan with irregular sitty lamination rough surface, uncosted fracture cut by 0" carbonate filled fracture terminicated top by bedding cool 5 mm 4 bettern into thin hedded cool each out of the state fracture.					/	photo 22, 2.0 St (rpc) arbiver photo 22 frod sheur 433-433. photo 23 433-433. Con Jugat Shears
3			801	-450 -	-1.20 -1.0	2			÷		MUISTONE-SHALE - COAL 446.A-447.5, 14" shale shards shaley partings 3mm to Icm to 449.0' Interlayered coal bands the sharp contact sin carbon seem at 450-451 coal series w/(2)0° fract MED SANDST - SILTSTONE It tan in coarsest Sands, dkgreu 456.4' in Giltstone. Irregular Iam. 3 bedding 85-90°CA	. @9	0 to (0#	ach			Splears
Site:	N: 2017 8 18,00	Started: 0-10'99	0	-460-	,35				8/1/55	間。調問。個個的計	400.0 strupt contact 400.5 stickensides in mudstine, stides hearly dip stip orientation <u>SILT SIDNE-MUDSTONE</u> dk greenish gray. Silty bads 85-90' - wovey fred. I discurg separations on bedding, parting Icm - Zom 2008 MED. G SANDSTONE with silty laminations						


5	1001-17	(1:120) 34	DEPTH, Met	fracture Nuight-At	,	coat	rbandte Ning	FRACTURING	GEOLOGY	COMMENTS: Avg. Core Recovery/Hok	Drilling Interval	% Core Recovered	Core Size	RQD	Sample Interval	photos
Proje	, c	5 6	- 470 -	5		25	84		4.5	Descriptive Geology						
Raton Basin Project	; ŧ	- 1	- - - -	0				90*		472.6 maybe hatural parting Irght-old gray bedding, wavey, irregular along bedding plane. With some marine animal burrows?						
Raton Ba		Sheet .	-							-477.2 - sharp contact						
			-480 -					15.		MED G. SANDSTONE - w/ dark silty lans.	ĺ.					
Sel	5			0.08				40	\times	492.7 MULGIONE 45 BLICKS, CUTVING SUTTICE WI						
orato	Ø ICI	2001	 -	00	_		_	1		485.8-486.4 Vertical planer fracture the coalling, but and by clayer laminations in boilding						
Z C	ŝ	2	Ē		4		70		\overline{C}	4894 fine g sandstere 15						
onar V	à.	Aar.	[-490 - [130		-	Th	J	101	4821 fixed sonstations w/ 10% carb. filling set of 3 subparallel strates 482,2 curving slicks w/ 10% carbonate filling 45°CA on mudstone no filling 4002 slicks; dipslip w/ 10% carbonate filling 45°CA on mudstone no filling						
sandia National Laboratories	iyeu uy.	Log Version: Log Date: Mar.	- - -				<i>(</i> r	,	Carles a Dellar	no natural fractures die brownish gray						
	5	ဦ	-	102				60/18		= 498 498.2 slicks on claystine at rake to strike-dip.						
			- 500.	7.75	2		* 5	29°	Sunday and	-501 - rubblized - bad drilling, abundant discing possible shearing - chy slicks : 5° is nor dipangle -505.6 - vertical planar fracture						
Ë			E-510 -						1 22	512.7 is .15' coal seem wy vertical fracts & right 2's to each other.						
evanc	ë	Ë	-							-512,9 obrupt cated						
Corar Elevanon: Bearing:	Inclination:	Total Depth:							1.1	MED - FINE G. SANDSTONE It. grav with wavey laminotions of dk grav silts. little drill breakage.						
			-520 -						Siddar 1	little drill breakage.						
						-				-524 - gradational antoct - drilling caused partings on this coal seams 4/.35'						
				-15		18			141	- 527.6 slicks on lum coal seam "vein"						
ú	66-	8-21-99		1					Hall H	MUDSTONE -SILTSTONE dk gray						
	8-8-	2.21	-530.							}1-zmm coal bedding - drill discing 1/cm.						
i.		, B	Ē	15			40		X	524 A desorp sample sharp cartest						
	Started:	Completed	ļ.	-25			X	AA.		2 fluted slicks - conjugate shears in mudebre						
5 ż	5	8 8	E540.	1.18				1	12	-537.9 - obrupt curtoct MUDSTONE						

t _		(1:120) 34	DEPTH, feet	fracture height		rtings	Carbonata filling	FRACTURING	GEOLOGY	COMMENTS: Avg. Core Recovery/ Hole	Dritting Interval	% Core Recovered	Core Size	RQD	Sample Interval	photo record
Proje		= 10' 0, 0	- 610 -	2 <u>4</u>		89	كافته		新				4			
50	ö	Scale: 1" ∞ Sheet 9	- - - -	na						a clay stroks <u>SILTSTONE</u> med gray with darker fine beds a laminations of mudstome displaying wavey character,						
			- 620 -	1.13				52/		: 620.1-620.6 mudsting bad containing planar fracture, unconted terminated at 900 parting w/ plant organics.						
Laboratories	1 (100101	8,2002		- 15			33/	50/ 90	A the share with a star	624.0 abrupt contact 510.2 Z thin V. planar fracture MUDSTONE die browninsh group 628.7 W/ 1-2% V. f.g carbonate MUDSTONE die browninsh group						
Sandia National Laboratories	Logged by: Kow	Log Version: Log Date: Μαι		28 20 07	-		57	2 1 2		drilling discing in shaley mudstene w/ coal seam partings stricks drilling discing in shaley mudstene w/ coal seam partings lem-scm. string discing of core.				,		
ö.	Ľ	23	- 640-	-225	a a second a		33/4	τ'' ;		643' planar dip slip sticks, dip slip orientation 643' planar dip slip sticks filled <u>SILTSTONE</u> med to dk group 644' coal bed, vertical fronts w/ curbinate cooling						Photo 26 643' carbinate
ation:			-650-	-,80		- 1	48		a thu	148.5 carbonate, 20% filling, planar stretensister - rearty dip stip orient; two parallel structures						photo 27
Coltar Elevation:	bearing:	Total Depth:		2015			45/	je 15j	HAN SI SI ANN N HAN ANA ANN	4530 slickinsides on 1/2 mm coal segm 653.0 slickinsides on 1/2 mm coal segm 653.5 0.1 boding replacement by barite (?) 664.4 - 100 provate slicks surf slicks nearly @ dip direction. 664.6 - fireyular 0.3 piece of f.g. barite (?) -657.0 fireyular 0.3 piece of f.g. barite (?) -657.0 fireyular 0.3 piece of f.g. barite (?)						654.4' carbonate on slicks intes
			- 660 -	63		¥	<u> •</u> /	,		= planar fracture in = planar fracture in = planar fracture in = planar fracture in = rough surface fract. tookfilled thin backs & laminations of sillstonul = rough surface fract. tookfilled by carbonate-terminatos in med. sandstone = point slicks w gardwate MUDSTONE + 40° fract wil druze carbonate = point slicks w gardwate MUDSTONE + 40° fract wil druze carbonate = point slicks w gardwate MUDSTONE + 40° fract wil druze carbonate = point slicks w gardwate MUDSTONE + 40° fract wil druze carbonate = point slicks w gardwate bills & S°						
É		8-21	- 670 . -	.21 .30	70	42	1 13 5	130	"unus and	- poir slicks w Grewale <u>MUDSTONE</u> 40° freet w druze corbonte - 60% filling nor dip Strike <u>dk brownish gray</u> 50% filled - v. planar & Lolicks - pair, parettel planar fracts both 65° - 672.5' clicks - 673.5 slicks poratel dip - 679.5 - very gradational contact. - 5147 STONE						
Drill Site:		Completed	680	1.25	2			150	HI HAR	679.5 - very gradational contact						



.	(1-120)	107	DEPTH, feet	fracture	1	coattings	carting	FRACTURING	GEOLOGY	COMMENTS: Avg. Core Recovery/ Hole	Drilling Interval	% Core Recovered	Core Size	ROD	Sample Interval	photos
n Project 041-4	Ξ.	26	- 890 -	Ę		03 0	88	Ľ.	0	Descriptive Geology - 890,4 - grad contact - MUDETON E	ā	8. 05	Ľ			
č, B		0 0	È						ugn	MUDSTONE		1				
Raton Basin Project Hole No: 041-4	Scala: 1"	Sheet _/	-900-	.80				8" 19		- 395.1 sharp contact 						photo 32 897'ss. fracture deflected e sitstene b
Sandia National Laboratories		2002	-					85	计加盟 一位	902.4 slicks on contact 904.3 mudstone-siltstone, slicks surfaces every 1-zem@highanglica 904.3 BULTSTONE dk gray No natural fractures 909.0-gradual contact						soltstere b photo 33; coal veir 907
Daniala rauditat Laboratoriles	f on Version'	g Date: Mar. 4	-910 - - -					13		<u>FINE SANDSTONE</u> Irregular bedding structures generally 90° C.A. No natural fractures.		1				
	5	501 Fool	-920-	,20						- 9Bit shorp wavey cartact						
const crevauor. Bearing:	ttion:	Jepth:	-430-		2 da		8 /2 *5	3. 34	and	a27.5- gradual antact - planor fracture, 10% carbonate <u>MUDSTONE</u> officed, 60° strets on mudstance, 22° fract w/ 10% carbo druce coating. - shaley - shaley - eoal 0.1' 5° each go to the other, in sendstene.						
Bearing:	Inclination:	Total Depth	-940-	.35		-	o°	ł		9360 - christ contact med. sandstone MED. G. SANDSTONE 9319 - sharp contract med. sandstone MED. G. SANDSTONE 939, B - sharp contract med one with much tone bods.						
ù	00	- 99	- 950-	10 10		10	Critics .	0"	である。	04' coal, broken <u>SILIS-MUDSIONE</u> with coal 9435-946 <u>SILIS-MUDSIONE</u> 9446 <u>Source</u> abrupt contact 956 1R ling fract. in SS. no mineral <u>FINE</u> <u>SANDSTONE</u> <u>Survace</u> <u>Slicks</u> . poralled <u>Source</u> <u>Slicks</u> . poralled <u>Source</u> <u>Slicks</u> . poralled <u>Source</u> <u>Slicks</u> . poralled <u>Source</u> <u>Slicks</u> . <u>Source</u> <u>Slick</u> . 950-4 <u>Gradual</u> <u>contact</u> <u>Slick</u> .						photo 34
N: N:	rted: (9	2		,10 ,20 ,0.4. .35			201	58" 30		- clay elicks , v. curving - coal about 0.5'; 20'carbonate coated fracture 20% filled						carbonal Cocited Blicks 9

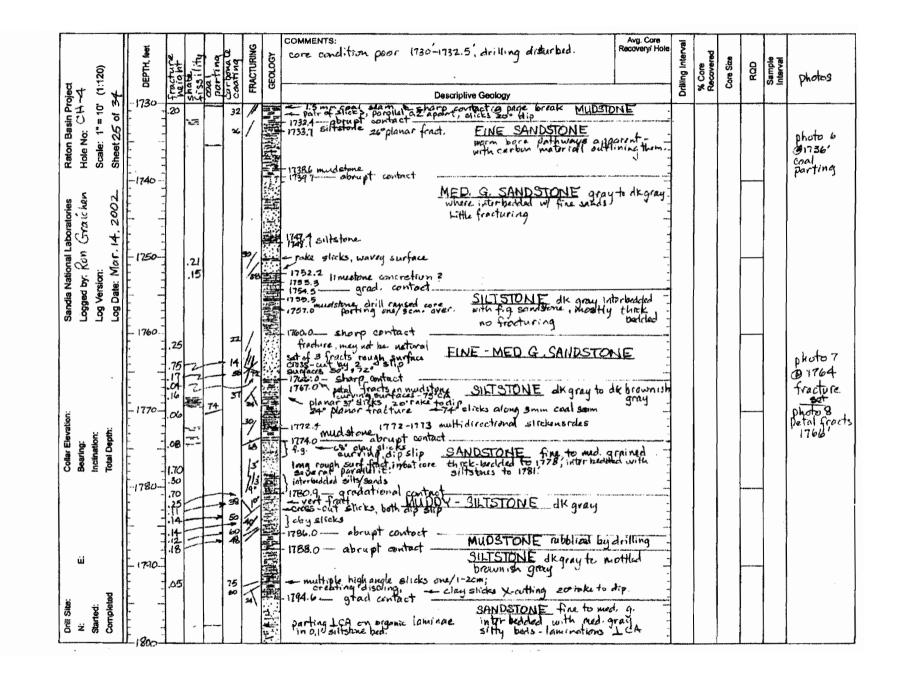
*	(1:120)	4	DEPTH, feet	Fracture		artings	orbination	FRACTURING	GEOLOGY	COMMENTS: Avg. Core Recovery/Hole	Drilling Interval	% Core Recovered	Core Size	RaD	Sampie Interval	photas
in Projec CH-4		of 34	-960 -	43		ğă,		ũ		Descriptive Geology	ă	~				- 44-0
<u>2</u> 2		Å	-	81,			40/			-this curving-trace corp. coat that. sillstone.	-					
Raton Ba Hole No:		et						00		5 rough surface fracture <u>FINE -MED. SS.</u> 5 no filling; continues into mudstone-both ends leave core						
Rat	Scale:	Sheet	F	3.0				I,	HANNAR BERNARNS	- 9669- abrupt contract	·		[·	- -		
			-970-	.30				127	16	Strong discing slicks, l'aport parallel, <u>MUDSTONE</u> brownish gray 300-97 Juin clag slicks, viaport parallel, <u>MUDSTONE</u> brownish gray 10 cal shaley bedding a core frectoring oliver it due to drillingt to 274						
Sandia National Laboratories Looged by: <i>Row Craid</i> Laboratories		2		1.15				-53	144	due to drillings to arte						
Sandia National Laboratories Looged bv: Row Received	2	200						50	1	977.4' clay slides near diporient.						
	5	Ξ	-	.20				/		- 982.2 - vigradual antact - 982.3 - sharp contact 45ch resolded fine southstone + sittstone - 982.0 - slicks on contact - sli	·					
tiona R _n ,	2 2	Mar	-980-	.12			10	62	1.1	-982.3- sharp contact 65CA. 982.0 Slicks on contract v. rregular, fluted slicks silty beds within						photo
a Na sd by	ersio	Date: M.	-	.60			1			30 carb filled, stride 30 to vertical				-		981.6 Carbono
Sand	Log Version:	1 Bol	È :	.65	1			est.	af and a	986 987'25 3 sets of sticles to \$65°CA. All have Dorallel slickensides at 45° rake wavey fluted sticks, no filling						Silling Clay 31
			-990-	057	2				111	-993.3'-5 rough suchest vertical fracture in sandy bed extending -993.3'-5 into nucestance, terminating on organic bed parting Doci coal in fracture 200995 pour of warvy can strike stripe -996.1'- obrupt contact SUITSTONIE with interbodded						eng -
								oj.		993.3'- traci coal on fracture						
				1.0				10	aulu -	- 9995 par of while che straks. Notestripe						
								0'[.	111							
tion:			-1000-	1.7				5/		- 999.3 share contact - Fine Sandstone beds irregular wave bedding common						
Eleva G	tion:	Total Depth:	-					66,	1	1004,4 - V sherp entet	{					
Collar Elevation: Bearing:	Inclination:	Otal	F'	.08 1.10		-		10		-1004.4						
С Ш	-		-1010 -					63	a Ba	shaley slicks near dip slip, privile pair						
			-	1/2				63	1 2	-10127alisuff contact						ni.d. a
				n.e.				130		1014.5 - 1021.5 Prints parolal <u>BILISTONE</u> interbedded wif. 55 toward Filled wi coal, disout scale worm holes (3) filled wi Gilled wi coal, disout scale to a tr. pyrite						photo 2 vertical
		<u>a</u>		7.0				0		Filled w/ coal, dies out as caloite & tr. pyrite 1018.8 - gradval contact - SANDSTONE f. to mat. a.						fracts (2) 1 cm.
ш	66-	8-21-99	-1020-					1	- 32							'aport
	Ø0	90	È.	.20						1024.6 _ gradual antact						
Drill site: N:	Started: 2	Completed		,20				127 35/	TALLAL BARRES	Tozza Strature, no filling 1025.2'MUDSTONE shaley 1026'1027						
δż	Ster	Š	E1030-	1:12				57	111	z slicks, nor dipstop.						

rf.		(1:120)		DEPTH, feet	Fracture		coal Dortings	riendte	FRACTURING	GEOLOGY	COMMENTS: Avg. Core Recovery! Hok	Dritting Interval	% Core Recovered	Core Size	RQD	Sample Interval	photus
Katon basin Froject	4	Ξ	34	-1100-	52		28	38			Descriptive Geology	ā					
	Hole No: CH -	5	ð	-	-					Hall Ha	-1101.5 - gradehimal andSILTS - F. SANDSTONE					1	
	ġ	ţ	2		-						MUDSTONE	1			Í		
	e e	ale	Sheet		-				·		-1105 desorp sample V. Dark gray with 1 mm coal - 106 shaley laminae in black shale 1108-1109		1				
Ž :	ĭ	Ň			-							1					
				-1110 -			==		ł	199	- orl'coal bad					1	
2			A	. .	.10				2	所取"得到"	-1112.7 lost-core several clay slicks @ rake striac						
ומות			200		,10				163	i ti	- 1146 - abrupt contact - To cay slick, rate string - 1166 - gradational contact SILTY MUDSTONE - 1166 - gradational contact - 18° slicks v. ubvey, di aslip Xcut 35°, SILT STONE						
Ĩ			Mar 11, 2002		.40	2			1	馬	18" sticked i viewey, dipslip Xout 35" SILT STONE 11/8:6-1119.5 iron stone concretion w/ stor-like open fracture filled						
			اق	-1120 -							- 1121.4: gradational contact, then white.						
	Ä	Log Version:	9 1				ł		1		Hard the to the]					
Sanua Nanonai Laboratoites	Logged by:	Ver	Log Date:		al			Į.			- 124.0 sharp contact	-					
8	ട്ട്	ğ	ള്		1	'				111	shaley shaley fract 1124-1125 MUD STONE dik gray to block. with fissle beds . 2 - 6 fe. three						
				-1130 -]								1				
				- ·	-				AS,	\mathbf{k}	-1131.6 1133:8 fine ss. desorp sample 133:9 fine st.cley slizks, parallel						
				-	14				11	1 1 1		1					
			·	•	-	ŀ		·	ol	2	-11367 gradotional contact 	1	1				
÷				-1140 -	3.0					1	- 1140.6 - gradual contact		ĺ				
Const Clevelour Bearing:			;;	-	.17				191	111	-1142.1 mar dip slip slicks MUDSTONE	-					
		Inclination: Total Doub-			2.0			1	0	18	~ vert fract 1142-1144, splays into 2 fracts une curves to 8°CA						
Bearing.	Dear		lota		_					ţ.	- 1146.0 sharp contact porphylvitic SILL nearp part mudst fractured w calcite 1148.9 sharp contact robledching of clark mudstake. fill						
				-1150-	.15				45/		1148.9 sharp contact re bledching & alark muditure. fill 	-					
				-					ľ		L/NIL = ML11 SHA113 S// 1816	1					
				·· ·	-					n litt	1153.6 - grad contact in thin sillstone	+					
				-	-08			0	5	L.	MUDSTONE	1					
ú	ii			-1160-	-1,12		/	1 12	12	Ē	vert carbonate fill france. 620 is planar well polished slideside						
			ł	-	1.60	T	ř	t	El P	H	 conjugate shours, 47° is near dip slip. Vert carbonate fill fract. 62° is planar well polished shokside jabone it is consther vert, fract, barrien of filling. clayslicks w/ 0° fract above it 						
		3	eq	-	-10			-	124	Eul si		-					
	ż	ited.	Completed	-	18				1X		1164.1 sharp contact SAND STONE - SHI STONE - find. 2°CA slightly curving, no filling - 11662 Shorp curved.						
5 3	ź	ŝ	8	L170-	1:60				10	1	= Plack mudstone - no filling						

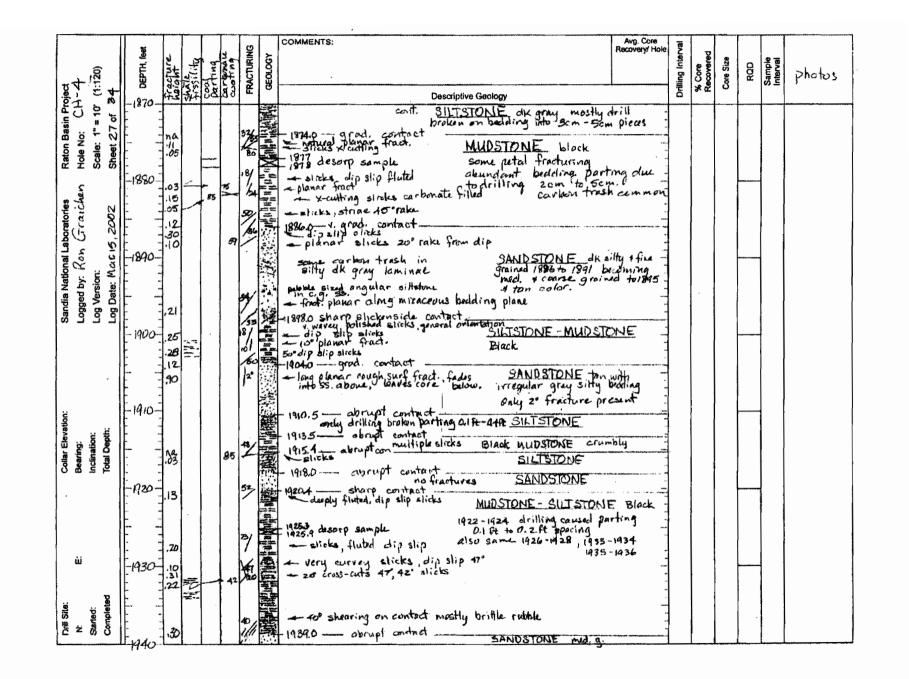
ຮ້	4	(1:120)		DEPTH, feet	fracture	Silitu	ortings	ir portate	FRACTURING	GEOLOGY	COMMENTS: Better locate shale character with a column designation as such a column cartooning of it. 2.0' dia.core
Proje	÷	10' (1	3	- 1170 -	10	13.1	યુજ્ય	-99	11. 172		
ŝ		11	<u>17 of</u>		1.08				12		- clayslicks, dip stip strine <u>MUDSTONE</u> dk gray-black 11723 desorp Sample 1173-3 desorp Sample 1174-2
01 B	Hole No:		Sheet							+++++++++++++++++++++++++++++++++++++++	ingular SILL chloritic alteration -
Ка	£	ŝ	ຮົ		2.3			23	./°	1.44	' cill has not bleached black organic mudst i
	Ś		1	- 1180 -		æ			/48		MIDSTONE dk gray shaley near bottom centract
ories	/chi		g		.10	-		12'	•0	靈	5 60'slicks 20' from dip slip SILLSIONE
Sandia National Laboratories	Kon Grolchen		1200		1.60				ŽĮ.		.6' ironstone concretion w/ central star fracture filled by carbonate
ai La	ž		r. 12	- 1190-	.22	-			/32	140	105.0 harp to perdange contact 2 vertical rough Psurf fracture bottoms at muclishine contract -
	ž	2	Ŷ		1.60				ľ		- 1183.0 - abryst contact in coal scams bed w/ multiple imm coal beds 1193.0 - abryst contact in coal scams bed w/ multiple imm coal beds 1193.8 - abryst contact in coal scams
Zel	Logged by:	Log Version:	Date:		-				40/		SILTSTONE I on fractu
Sanc	[ogg	ရီ	<u>5</u>		.12	1			1	111	Stracture parting on cool vein unfractured
				- 1200 -	.10		64		ъ5,		-1200.6 - V. gratual contact
				• •			11		10		-28° planar fract. torm gin cool part soam. MUUSTONE
		,			.20 .71			56 57X	1		1200.6 V. gradual contact = 1200.6 V. gradual contact = 5 licks, tregular, dip ship orientation MUDSTONE = 28 phonar fract. The main cool part soam. = 100 phons from contract = 100 phons from concretion, reddish brown, fine grained = 37 × rut 17 corbonate filled fracts, into concretinSILTSTONIE = 28 houring fract. = 28 houring fract.
				1210-	.30	-	-	1	X		- 28' hour line fract. - clay slicks 20° rake from dig on slicks
stion				1210-	.19				/34	產	- planar slicks 1212.4 - abrupt contract
Collar Elevation	ÿ,	inciination: Total Depth:	.	· ·	2.9	r		1º	30		- rough's surface fracture, no filling FINE-MED SANASTONE Photo 19
Collar	Bearing:	inclination: Total Dept			1.6.	2-		1	r t°	<u>.</u>	(alciev)
•				-1220-		- <u>-</u> -			F	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- Liphe pattern on yert. fracture - photo
						-				1.1	ripple ef
				•	50			26	4	1 1 1 1 1 1 1 1 1 1	- hairline fracts, one on coal unit MUDSTONE-SILTSTONE &k gray -
				- ·		-2-12-					122B.0 - ared contact
ļ	ùi			-1230-	80				5]		Contract and a contract
					.50	-2	******		5.1	\mathbf{X}	desorp sample
Site:		Started: Completed				N.					- 1234.6 Diack Shalley munstern adams
Drait Site	ż	Complet			-	-					

n 4	(1:120)	(0.2	DEPTH, feet	isture	Shkie +	of porting	Continues Coatines	FRACTURING	GEOLOGY	COMMENTS:	cori	e dia.	2.01			Avg, Core Recovery/ Hole	Drilling Interval	% Core Recovered	Core Size	RQD	Sample interval	Photos
ĒI			-1240-	155	54	<u>j</u> ŭ	92	<u> </u>					Descriptive			······································	ă	e. r.	-			
Hole No: CH-4	Scale: 1" = 10'	đ		45			1078	1.0	5.	- 1248.3			ict, no filling	<u>SILTS</u> dkgrau	IONE-MUL to black	STONE						
			-1250-	1			1		Xal	- 1249.9 de	sorp o	contact_				-						
Logged by: Pon Creationes		2002		,17 1.K			1°	42/		- plonar - - 1264.2 0.	2 poor	striac 2 colcite y dimeto	valt author ped iton star	2 Generation	DALE - Some little from	fine Sandst						
6	•	r. 12,	-1260-							- 12(0)- 8	nard c	notact	blacking o	f black sittston attered to sill rock ef SILTY M	es ou contr	d. :						
Ś		Log Date: Mar.		.40 .14			10	Ber	÷	- 1262.0-1	k calci	te vn contact.	SILL	attered to	chlorite,	-						
a p	Log Version:	ate:		**			55	2		set of 50'-45' 00	streks Jucate	sherts		SILTY M	UDSTONE			ŀ				
ade	, ×			12.3		f -	50	13		-12467 6	rad. u	outact .				enter -) inclumenter recenterio enteriore						
5 3	۲	اد ا	-	- 140				1.	幕	-1269,2 - ab several clas -127,5 - ar several clas -127,5 - ar -127,5 - ar -127,6 - g	rupt c	iontact.	L	SILTST			-					
			-1270-	1.2			10	141		127115 - 91	a filling	contact.	ts, sugn f	INE -MED	Comparison of the second s							
				1.7			ő	L'.	墨	1273.6 - 9	rad.	contact	octs ICm.ap	art SILTS	A CONTRACTOR OF							
		•	-	.25			10.		H H	2' coal			Р	NUDSTONE	degray -	black -						
			1200	.15				23/	H H H H	- planar	fract.											
Bearing:			-1280-	ŀñ.	2	-	55	X		-1281.3 91	adual a	contact	eloka									photo 29
5	inclination:	Total Depth	<u> </u>	.21	12		27	17.	運	27 15 di	a slip	thers rat	selip S	m patch pyrite	dk-med.	gray :						Conjugate Shears
Bearing:	clinat	tal D	5	9.2400		<u> </u>	-	F		- 1284.5	ert fro	nar fract	BO CA	m patch surite	na 0.80 ion	9						Shears
ă	<u>.</u>	ř						- 81	H	1287, p	anar ol	fract Bick	t. 18*	m patch pyrite								
			- 1290-	1/30				10%	H H	1290.0 mude	stone.	1290-129	wert frad	planar no.	filling							
				.23		7	34	[/								, ,						photo 31
				.30				60	*	- 1295.9	gradu	al contra	+	Number 1977 No. 17 Contract No. 197								planar slickside
				08				5/	11	1298' flute				p Mude	TONE 6	lack -						shear
ü			-1300-	30				12 18 198		- 1301.6 V	orad	und cost	c+	SIL	STONE	U i i Lutriani i france at at						
				.20	1			48		- planar	Slick	4		Mul	STONE -	black.						
ġ	ť	leted			<u>.</u>	-		Ĺ	T.	-1306.4	sharp	contae	+		an an the second se	ي. معنى 						photo 33
No Ho	Started:	Completed		1.60	÷		0"		++	- gently	arrue	ate fract	are in sill	rock SILL		34- 24						dreuste
~	S	0	1310	-				l '	+							-						fracture

, 	(1:120)		DEPTH, Keet	flacture height	Sility	rting	conting	FRACTURING	GEOLOGY	COMMENTS: Avg. Core Recovery/ Hol	Drilling Interva	% Core Recovered	Core Size	RQD	Sample Interval	photos
ojed - 4		*	-1310 -	E a	Sit	94	38	ü		Descriptive Geology	ð	* 2	<u> </u>			
Raton Basin Project Hole No: CH-4	: 1" = 10'	19 05		50				127		SILL incorp. mulisture 1311-1312 showing some crackling in contact, wil sill rock & fracts filled M calcite 12° fract in sill. -315.2° - sharp contact SILTSTONE dk gray to black						
Raton Ba Hole No:	Scale:	Sheet	-1320-	,90 ,25				8') ort		~ 0.1mm frast in sillatione Set of enechelon high angle fracts						
atories atchen		2002		.25	12	-		3		1322.0 v. gradual contact <u>SILTSTONE - MUDSTONE</u> dk gray						
on Gr		Mar. 12.	-1330-	1.0	Wh		ōγ	87 01		- 1329.0'- gradational contract MUDSTONE black @ 1382-1334.5' crackled w/ calcite filling & gracal irregular intrusions of sill i up to a few						
Sandia National Laboratories Logged by: Ron Graichen	Log Version:	Log Date: M	• •	1.2	T.		No the second se	Bj.	du du	MUDSTONE black @ 1332-13345' crackled w/ calcite filling & precal irregular intrusions of sill i up to a few cm thick MUDSTONE - SILTSTONE						sill crack of mudsto
San Log	Fog	Log	-1340-					5		and a constant in a land to the						
				23 15 103			- 15	\$3 	制制	1339.0 Grading and Silch's 20" oke planar from silch's 20" oke from dip fracturing planar from silch's 20" oke from dip fracturing						
tion:			-1350-						HEURINE	- 1351,0 v. gradational contact						
Collar Elevation: Bearing:	Inclination:	Total Depth:		2,20	•			0)	1.2.1	= broadly curving rough surf. fracts, Brgins as Two fracts - becomes one Two fracts - becomes one Two fracts - becomes one						
			- 1360-	.492 .492			8 F	51) 31)	1. (A	- Sti Two fracts - partial coal ven 1358, X-cut nearing 65 ca	•					
									. 	Twin plunar frads @ 1366 MUDSTONE -SILTSTONE dk brownish gray, nottled						
ů			-1370-	4 24 24				155.4		into I fract exiting care @ 1369.7' thick bedded.						
Dril Site: N:	Started:	Completed		.18				्न		-1374.0						


<u>5</u> 4	(1:120)	4	DEPTH, feet	Fraeture	share inter	casting	ooting	FRACTURING	GEOLOGY	COMMENTS: Avg. Corre Recovery/ Hole Bu OO Set Bu OO SE Bu OO SE
Haton Basin Project Hole No: CH-A	' = 10'	of	1380	124 1000		G 1 100	65	XX allo	Ha Ha Ra Har Ha	-1380.7 curving wavey slicks <u>MUDSTONE</u> dkgray - black 45. planar fract, 65 slicks <u>G 1384-1385</u> fract, et petal fracts <u>B 1382, planar fract.</u> (1) per 0.1 ft, curvi linear 70°CA
			-1390 -	13				150 120	THUR I	planar cough surf fract. 1392.0 sharp contact MED. G. SANDSTONE
Logged by: Ren Graichen	ion:	:: Mar. 13, 2002	-1400-	.07 .06				8)(\$		the gray color, not fractured - wispy med. gray beding - - 0.4' black shaley bed, cross-cutting slrcks, rake angle slicks -
Logged t	Log Version	Log Date:		3.00			8		新期期	broad curving fract wil 10% carb, filling one end, comes into care on top, curving to center & back out at bottom, Rough surf. Patchy silling 1408-1409.8 pyrite filling 1x3cm. -H09.8 abrudt contect planas broad contect planas broad contect - sticks 68 ch dip Jelip, pair . 10'apart <u>SILTSTONE</u> med grav.
			- 1420	110				AND-		148.9 abruit antoct 148.9 abruit antoct 45.9 abruit contact 45.4 potal fracts in mudistance at right 20 to slickensides 54°CA 25.4 potal fracts it o 2 cm apart 2 planar fract. rough surface. <u>FINE G - MED G. SAND STONE</u> 30me near 90°CA bedding with bioterblid the fractures. not fractured.
Bearing:	Inclination:	Total Depth:		,10 .11			59. _	22/140		1423.8 — grad. contact - wopey coal vein parting SILISTONE - 1427.7 — slittes, wavey dipatip SANDSTONE med. gray med. grained absolutely no natural fracturing!
ü			1440						1. 推 2.	1439.0 - sharp cadacts - SILTSTONE
	Started:	Completed	1450	05	===			2 10 2 10		planar fracts in this sittsteme bad. - Elicke 62, planar fract. Zóca planar fract. 65°CA

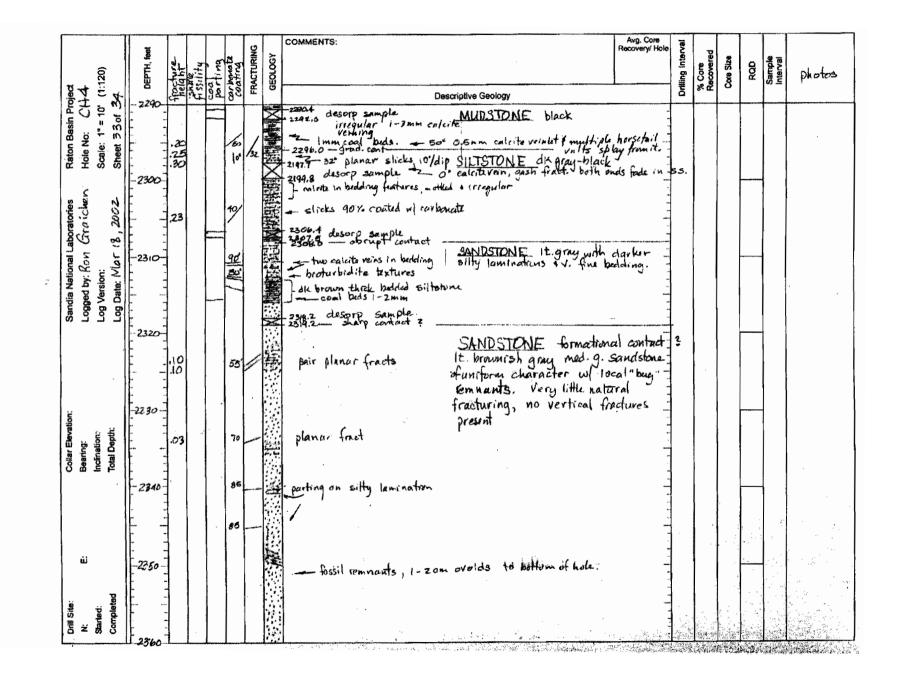
- .	(1:120)		DEPTH, feet	fracture	a lite	ting	ting.	FRACTURING	GEOLOGY	COMMENTS: Avg. Core Recovery/ Hole	Drilling Interval	% Core Recovered	Core Size	RQD	Sample Interval	photos
		*	-1450	ξţ.s	Sit	ઉદ્વ	39	E	Ű	Descriptive Geology	ā	80	Ŭ			
Raton Basin Project Hole No: CI4-4		5								- 1459.0' gradi contact						
Laboratories Graichen		13, 2002	- 1460				78	48/188	NAME AND	- 1465.1 V. WANNEY POLISHED Slicks, dip slip - 1465.0 - sharp contact MUDSTONE - 4668 desord sample						
Sandia National Laboratories Looged by: Ron Grainhen	Log Version:	Log Date: Mar		.11				70		147.6 Sharp contact 1-2nm cool vn 25°ca 1470.1 black sithy mudstone bad sharp contact 1470.1 black sithy mudstone bad sharp contact 1471.0 70° strets, curved polished shaks meet. Gtary 1475.4 planar fracture 5 1.7' rough surface fracture w/ heavy alruze of coleite Xtals -open 50%?	r i					
			- 1480	1.70 1. 3 0 .28		-	1 12	4 13 28	いたがいていた	- 1481.2 - gradational contact 1481.3 - 1481.0 planar fract, above - elay alices 35, 23 dip 31:p planar 1486.0 - grad, contact SILTSTONE dk brown						
Collar Elevation. Bearing:	Inclination:	Total Depth:	-1490-	22				+ +/ e/s	1224	1489.0 abrupt contact three bedded motiled texture 1489.0 abrupt contact dibblized SLATY MUDSTONE dk brown ish- 1491.5 abrupt contact filled SAND STONE fine to med 1493.8 planar frast. 30% pyrite filled SAND STONE fine to med 1496 sitteme 72° sticks, curved dipstip berding						
38	Inc	Tot	- 1500-	.07				50 12		1446 sittstene 72° sticks, curved dip stip beckling 1498 beckling 500° slicks, curved near dip slip 1602.8 sitty multione- -1604.1 slicks 10° fremdip slip, planar						photo 3: 1504' slizkansi
ພ່			- 1510 -				1	58	是由的学	1507-grad contact 1507-grad contact 1510-grad contact SANDSTONE finic bedded SANDSTONE finic med grained						in thick-b soudsto
Dull Site: N.	Started:	Completed		1281713	172	(45)		13/10	這響事	- dip slip slicks, mildly fluted dip slip. -1514.5 slity mudstone ked - 1515.7 slity mudstone ked - 1515.7 slity slicks offsetting 45° planar fracture						


-	(1:120)		DEPTH, fleet	fracture	sility	fing	Carbonate Coasting	FRACTURING	GEOLOGY	corredia. 2.00 inches	Drilling Interval	% Core Recovered	Core Size	ROD	Sample Interval	photos
ae + 4		X	1520-	et a	Sún	8à	8ġ	£.		Descriptive Geology	5	\$,œ	Ľ			
Hole No: 이나 4		Sheet 22 of	-1530-	,15	1 ¹			46		1923.7 - sittstone, grad. contacts -1524.6 - sittstone, grad. contacts -1527.6 - grad. contact -1527.6 - grad. contact - sthin coal 1529.5 - rough slicks - rough slicks	مبدياميزمعك					
sariura National Laboratories Logged by: Ron Gratichen		lar 13, 2002	-1540-	1079				50180	除 州、三洲 、 州	- 154.0 Sittabone sharp contacts - 154.	-					,
Logged by:	Log Version:	Log Date: M	-1550-	1.3x 200 .16				10 40		STr. pyrite in 1.3' fracture No fracturing. Some wispy hairling corbon 1546.5 The sector 1546.5 The secto						
.10011		*	-1560	.12				AN AN	国家は市の利	no fractures						
COMPLICATION Bearing:	Inclination:	Total Depth:	-1570-	.05 .18 .07			50 85	×**		no natural fractures no natural fractures	-					
ப் ஜ		leted	_15\$0_					70"		- 1577.6 - Sharp contact - wispy cool vein, not broken SANDSTONE coarse grained It. ton thick beckled lacking bedding features. Weakly reactive carbonate commont						
	Started:	Completed	-								-					

τ.	(1:120)	DEPTH, feet	acture	ssilitu	coal parting	otina	FRACTURING	GEOLOGY	COMMENTS: Avg. Core Recovery/. Hole	Dritting Interval	% Core Recovered	Core Size	ROD	Sample Interval	photos
Raton Basin Project Hole No: $CH-4$	Scale: 1" = 10' (1: Short 72 of 2'4	5 -	3	35F	88	38	ш. 		Descriptive Geology cont. <u>SANDSTONE</u> coarse grained thick bedded	ā					-
Sandia National Laboratories Loggad by: Roy, Gratchen	Log Version:		.05				10/10 57/28	-	- ibo36 - sharp contact and low SILTSTONE brownish gray pair of curving fracts suspect thick bedded, will wispy to int- drilling related. - partially broken Slickensides Little fracturing peorly developed, curving slicks terminating against a coal vein planar slicks, dip elip - 0.1' ironstone concretionary band, rust red. - 1000 curving 12° front, rough surf offed by 37° clayey slickensides						
Collar Elevation: Bearing:	Inclination: Total Depth:	-1630	100 10 10 10 10 10 10 10 10 10 10 10 10	Þ		<i>6</i> 9 32	1 - 3 - 3 - 3 - 3	的關係的思想就是認識認識的關係。	-1621.7 sharp contact 1621.7 grad. contact 1023.2 grad. contact 1023.2 grad. contact 1023.2 grad. contact 1023.2 grad. contact 1623.2 grad. contact 1624.5 into solutions below 1624.5 into solutions 1624.5 unving slicks surface 1632.2 gradual contact 1632.2 gr						photo 36 12ª frecture Drminoted On Sirchsie 1621 ft.
Dras veite: A: E:	Started: Completed	-1650	40 40 05 70%			* *	8-10 8-10 8-10 8-10 8-10 8-0 8-0 8-0 8-0 8-0 8-0 8-0 8-0 8-0 8-		parallels taint carton vernices done it parallel than above. - a second enectedon fracture, on a larger scale than above. - fracture in 0.1'ss bed, term individes diffected into sitty lominae. photo SANDSTONE fine to med. grained. SANDSTONE fine to med. grained. - 0.4' rough surface frad. parallels wispy carbon trash occurrences above it. - 1850.8 sittstone - 18° dip slip slickensicles dip slip; offsets 0' long frad. - 1855.9 sittstone - 1-2 and coal seams in 0.3' black nudstone bed. - 1857.0 sittstone - 1057.0 solo shorp contact - 18° dip slip for all coals seams in 0.3' black nudstone bed. - 18° sites 10 francip - two 0° fracts rough surf., parallel						photo 2. 1644.5' fracture in 53. bed

<u>p</u> 4-	(1:120)		DEPTH, feet	tracture	ssilitu	cool	cortoulle	FRACTURING	GEOLOGY	COMMENTS: Avg. Core Recovery/ Hole	Drilling Interval	% Core Recovered	Core Size	ROD	Sample Interval	photos
Raton Basin Project Hole No: CH-4	= 10			2.9	P	12-	29	4		Descriptive Geology Cont: <u>COARSE G. SANDSTONE</u> tan thick bedded minor bedding features. long rough surface fract enters + Leaves core. Enecheten to one aliene				4 		
Sandia National Laboratories Logged by: Row Gratchen	Log Version:	Log Date: Mar 14, 2002-	-1620-	12 40 1.56	0			52 00 12 5 1	日本語の語言が必要な	Only vertical fracturing 1675.6 - sharp contact 1677.0 silly mudistone planar slicks E.G. SANDSTONE 1680.0 - abrupt contact 1680.0 - abrupt contact 1680.0 - abrupt contact 1680.0 - abrupt contact - single fract term in SS. - Single fract term in						photo 3,4
Collar Elevation: Bearing:	Inclination:	Total Depth:	-1700 -	1.70 .15 .064 .03 .10 .16 .12 .90			73 70 45 2'	15 × 12 / 5/×8-		- Hoven core slicks, porcellel pair al'apart, slicks 20° from dip slip - 16920 - V. grad contact core axis second as alip arrest the core axis and out of core - near dip Slipsticks MUDSTONE gray + brown gray - 1699.0 - Very grad contact pair al'apart, slicks 20° from dip slip - 1699.0 - Very grad contact pair al'apart, slicks 20° from dip slip - 1699.0 - Very grad contact - In mud stene bed 8.5thick - 1706.0 - gradational contact rough surface fract actify curves <u>SANDSTONE</u> fine - med grained - 1702.9 lost core drilling error						photo 5 Wispycart trosh th siltstone
Daz Site: R: E:	Started:	Completed	- (720 -					60								

Ħ		(1:120)	DEPTH, feet	fracture	ssility	rting	cting	FRACTURING	GEOLOGY	COMMENTS: Avg. Core Recovery/ Hole	Drilling Interval	% Core Recovered	Core Size	RQD	Sample Interval	photos.
rojec			.11	23	がす	ğå	83	<u> </u>	2.34	Cont. SANDSTONE	ă	• •				
Raton Basin Project		Scale: 1" = 10' Sheet 26 of 3	-	1 - 1 - 1 - 1					出的知道	18023 - groud. contact						
			1810	- 1.24				80.00		1807.8						
ratories	CALC NO.	2002						60	X	1846 desorp sample						
Sandia National Laboratories	Logged by: KON (F. CAICHEN)	Har 15.	-820	- 1.2	þ		12	-1		long rough surf. Fract in/out of core med gray. Very irregular bedding thin fract along sitty bedding						
andia Nat	oggea by:	Log Version: Log Date: Mor (5	-	24				30/24		1823-2 - abrupt contact - dip stip SILTSTONE dk gray - 1825.0 - abrupt contact - dip stip SILTSTONE dk gray - 1827.0 - sharp contact - fract SANDSTONE thick bedded - 1827.0 - sharp contact - MUDSTONE black hi carbon						photo a
<i>i</i> ő .	5.	33	-1830	1		•	48 25	TH	"H H H H	- pair 85 natural parting _ Satot since all new appart - B31.3 _ sharp contract M.G. SANDSTONE						sat of shears
				19.93		7	78	2/	ALL HALLA	Control pair of carbonate MUDSIONE - black control fracts 60% filled 3 drill discing, partings 0.1'- 0.2' - partings on limm + 3 min coal soums						photo petal
Evanon.	è	÷÷	-BAD			1	40.		Hat Hat	drill broken petal fracts & discing, fracts each 1 cm - 3 cm apart - thin coal partings - 18429 abrupt contact - plange abrupt contact - plange Sick Burg Jz of 1945, 15° off rlip SILT STONE						fractiuri
Coliar Elevation	Inclination:	Total Depth:	1 	4 			ľ		HOR NA	\$ frots and zem-sem apart BLACK MUDSTONE, well fractured,						
•		A	-1860	- 10 - 1.0X				18	WEIGH	1850.6 sharp contact Scine curving petri fractures. planor frad SILTSTONE DEd 2 shore contact 1853-1854 drilling porting LCA 1/0.1'						
Ĺ	i		-					,	ALL UNE	-1855.6 grod contact no tracts SANDSIONE fine ground -						
		U	- 1860	-21	N N		,30 85	130	and an	1862-1803 Detail fraction ng to 1/4 cm						
Onte Site:	Clarked.	completed		-,05						SILTSTONE dk brown-gray -						


₩	1004	(1:120)	DEPTH, feet	oture	silitu	Perting	Carbonate	FRACTURING	GEOLOGY	COMMENTS: Avg. Core Recovery/ Hole Bello O Bello O
Pee-T	Š	121	- 1940-	10	あれ	32	38	u.	22	
Raton Basin Project Hole No: CH-4		scale: 1" = 10" Sheet 28 of 3		-		- •7		52		- 1943.0 + strongly curved slicks several 1-3mm It. gray - no fractures coal seams 60°CA
Rato		Sheet	- 1450 -	17			35		all all all	- Adv. 5 - abrupt contract - Bab. 5 - sinches, planar @ 45" roke <u>MUDSTONE</u> dk gray - conjugste shears, slicks both dip slip Broken
Jes		N		.32	12			1 10	Æ	1950 9- sharp contact
Sandia National Laboratories I runned hv		16,2002	 - -						ALL BURN	pital fracts. & core discing. <u>MUDSTONE</u> black bedding partings 2-3cm apoint in mudsbine, wider in siltstone
lational i w		ion: :: Marilo;:	- 1960-		1: :				il win "	
Sandia Nat noned hv	Los Vareion	Log Date:		.35	14			28/	111	- shear slicks
80 <u>-</u>	<u>}</u>	9 9	- 1970 -	na .45	THE			100		Leore brillen piccus 1969.5 grad. contact Vert. frad. mo fractures SANUSTON/E med.g.
			-	-				58	数学	- 1973.0 - V. grad. contact <u>SILISTONE</u> - dipslip. fluted straks
2			- 1980 -	.10 ,11 .32			55	28	ALC: N	28' dia slicks photo 11
Collar Elevation Bearing:	tion:	Jepth:		.20				35 3'{	14 14 14	1979.4 f 1979.4 f 1979.4 f 1979.4 f 1979.4 f 1979.4 f 1970.4
Collar EK Bearing:	Inclination:	Total Depth:		,04				75		1986.0 - V. grad contract SAND STONGE MARKE to Variannesse
			1990	,40				254		- v. rough fracture by finer grained sets, in this beds
1			- 	-						to acid + in permemble Wovey, irregular bedding features
ш			2000	.05 .01			€O	110	ر میم بر مع بر ا	- wavey polished sticks on 2-find mudstine localization, parallel pair 0.5's part three beds 3 min tu'- 5-find mudstine localization, parallel pair 0.5's part 5-min thick will be ble - 5001.0 - sharp contract find-med. g. sond stoke bed. 2002.7 - grad contract find-med. g. sond stoke bed.
Drail Site:	Started:	Completed	·· · · · · · · · · · · · · · · · · · ·	05 .12 .04				2/12		a fracture along v. thin carbon laminare 2007. Slicks on limm coal seam sharp contact
δż	В	ΰ	-	04	,					Fract on this carbon lominal SUTSIONE-FINESANDSTONE

<u>م</u> ر	1:120)		DEPTH, feet	fracture	ssility	ad arting	corrowele coating	FRACTURING	GEOLOGY	COMMENTS: . Avg. Core Recovery/ Hol	Drilling Interval	% Core Recovered	Core Size	ROD	Sample interval	photus
Raton Basin Project	1 0 1	Sheet 29 of 34	-2010-	5 1 5	TI-T	9~	88	90 174	14.00	Descriptive Geology - hairline curbon trush parting ANDSTONE coarse to very coarse sandstone, thick bedded tan color - serenate rough surf. Front., terminates = ciltature						
		2002 St	-2020	,20 .04			72	18 61	い。「「「」」	-2019.4 - sharp contact Siltstone + F.g. ss. dr. brown <u>SILTSTONE-FINE G. SANDSTONE</u> -2022.0 - grad. contact 2024.0 fract, in core, ends terminate in soundstone med to C.g. 2022.20 24						
Sandia National Laboratories	Logged by: Kov (Troucher Log Version:	lar 16.	2030	.04 .04 .06	())	12/12/	1 2 1 22	te at le X		- cross-cutting 72° slicks 2027.4 - abrief contect - 70.90° coal partings on <u>SANDSTONE</u> fon, coarse to very coarse grained raugh surface parting on carbon trosh zimm thick 50° city slicks parting on zmm coal "vein" 2035-20105.6 Aubide size mudstere sub angular clasts - 66° planar slicks on Imm mudstere laminae						
Sa	99	ol	-2040-					2 0° √14	5	= fracture portings on carbon trash bedding laminae .						photo iz
evation;	2	th:	2050	.40 .08 .05	1 Second Second	5		8]		- coal patch photo rough surface fracture 	1 1 2 2 2 3 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4					cool patel
Collar Elevation. Rearing	inclination;	Total Depth:	-2060	.06		23			<u>- 425</u>	- parting on warry Imm could secon	6 					
ů	j		-2070	90	•	20/		.		2066.4 Sittstone 2067.4 Sittstone — linear, rough surface fract; 70° coal parting on 2mm scam						
Oriil Site: N	Started:	Completed	2080-	.32			\$2			2076.8 desorp Sample sharp centret ? 2078.2 desorp Sample sharp centret ? ALIDSTONE Black						

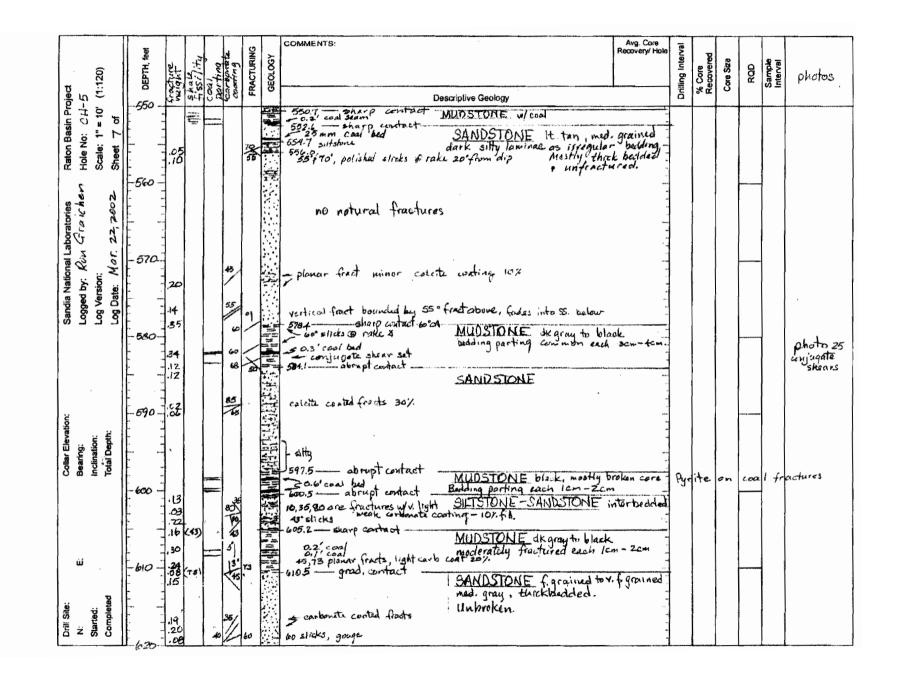
1 7 - 1		(1:120)	DEPTH, feet	racture	C citita	parting	bond	FRACTURING	GEOLOGY	COMMENTS: Avg. Core Recovery/ Hole	Drilling Interval	% Core Recovered	Core Size	ROD	Sample Interval	photos
oject 1 - 4	_			, K+	30	22	ອົິ	Ē	,	Descriptive Geology		o. m				
Haton basin Project		1"=10 30 of	-			87)H.		Uning a gan	- verti fract 25% carb filled MUDSTONE black briffle : bedding - slip is slip carbonis filled 25% parting by drilling-2 con-dcm - s6° parting on znin coal scam apart are common, 33:352A 2086 v. grodual contact						
		Scale: Sheet	-2090	07 -,65 -			- 112		1997年1998年1	60° diji slip slicks 25% carbonate filled						
Contra regultar Laburacuras	I RAICHEN	2002		.70			þ			- Dilmm Fract. 50% cerb filled not broken slightly offset with dk gray siltstene as berling laminations by Invit Sum coal bid. and irrapular wavey v. thin hedding. Not fractured, little parting.						
	Ken	n: Narie	- 2100	- - - -				10	HART S.	fract. in unbrokenss. gradational contact SANDSTONIE med. grained it. gray						
Sandia National Laboratones	Loggea by	Log Version: Lon Date: Mair No.		- - - -			6		1. 2. 2. 2.	- carbon/calcite parting 50% filled Brading laminae typically 65 to 90°CA						
			-2110				45		1.11.1	- planar fract 25% carbonate filled in sittsbue had 0.2' thick						
			- 2/20						A	- 2115.8 - abrupt contact - <u>SANDSTONE</u> coarse grained thick hedded -						
Collar Elevation. Rearing:	boering. Inclination:	Total Depth:								2122.3 abrupt contact						
			- 2130	- - - -				P .		- rough surface fract in/out of core 5-sircles 90°CA @ contact; 38° planar fract.						
			1	- 15			0	130		-2136.9 muddy siltstone de brown-gray -2136.9 muddy siltstone de brown-gray - Dilmm en échelon calcite veinlots terminates fade out into bedding						
, ú	٤		-2140	- 40 60 91	2	-	3.	30		-2139.8abrupt contact 2141.9abrupt contact abrupt contact 						
Drail Site:	N. Charlad	Sumen: Completed	-	-,04	10 1	-	/3-	75		2141.5 grad contract EINE SANDSTONE or ray with scene 						

ຮ້	t	(1:120)		DEPTH, feet	<i>tracture</i> height	ssility	al .	arbonation	FRACTURING	GEOLOGY	COMMENTS: Avg. Core Recovery/ Hol	Drilling Interval	% Core Recovered	Core Size	RQD	Sample Interval	photos.
Raton Basin Project			5	2150-	17Ē	vi.F	89	180	ц <u>к</u>	1.23.1	Descriptive Geology	10		•			
۵ \ ۵		= 10'	5	-	.15			-	1		2482.0- sharp contact	1					
Bas	ы		ñ E	-	.13			48	P		- so al roles 20 rate from dip MUDSTONE and muddy siltstone	1					
aton .	Hole No:	Scale:		-				r	11	1	- so al roles 20 roles from dip <u>MUD SIDNE</u> and muddy siltstone - so al roles zo roles alia - tong planer fracture is all roles drilling each 0.11+00.31 - long planer fracture is decined - soot black parailel front snin spacing-photo fract bottoms in coal bad. - 2161.6 grad. contact - yet, fract, bottom forces into S. SAND STONE fine-oral acd	-					photo 5
ăč :	ĭ	ŭ ŭ	1-	-	6.24	þ			þ	in human	- cost black parallel front ann spacing-photo fract, bottoms in coal bad. trace coal	1					2157.5' Vertical
				2160-				1	L	142	2161.6 grad. contract	-	1				fracture
es .	101		IF	-	1.20		1		0		- vert, fract bottom fortes into ss. SANDSTONE fine-grained	1					
Sandia National Laboratories	Logged by: Kan Craicker	2002	E		I.Id				he.		· · · · · · · · · · · · · · · · · · ·]					
ğ	5	10.7		-	.03				10		2167.0 grad contact MUDSTONE -Black of multiple loss coal	VAS					
<u>لَّا</u>	2	1 - 2		170-	1,000000	>		50	10/		2168.4 - obrust contact MUDSTONE - Black of multiple loss coal - slicks 15 roky from 20 margues. SILTSTONE 50% controlle the - so shear in coal sone, strips 58°, 10° rake klip 2172.5 grad contact vert front, planar in high carbon with.						
tion (X V	-		-	.9	(ge)		80	1	£.	2172.5 grad contact vert fract, planar in high corkin silts.	1					- 80° calcite.
Ž	6 9	Log Version: on Date: N	E	-	73	(3)	ske	KS M	10		2172.5 grad contract vert. fract, planar in high carkin with. 12755 5 planar rough ourf fract. SANDSTDINE It. gray internedded with planar vert. fract. curves in entop, exits or bottom. = 50% of Conj groups fract. =			(photo 17 fract. 7
ğ	8 <u>6</u> 8	≫ õ ĩ	2	-	.09 :85	(60) (60)			×		21780 274 Anupt Contract and There and Annual MUDSTONE It. gray internedded with - pianar vert fract. curves in entop, exit ar bottom - 50% of any stuars fract. 21780 - 35 carbonate so't on site 500 rate MUDSTONE dk gray 2179.6 - abrupt contract 2179.6 - abrupt contract CANDSTONE dk gray						fract 7
ທີ.	Ľ.	3 3	11.		190	(12)		2%	12		21780 - 33 · caronati 30 / on Sireson note MUDSTONE du gray					-	eurves net.
			-	2/80-	2.8	5		53	10	1 .27	- rough surf down, hiturating SANDSTONE fire grained lowrnated w/	-	1			earb	t filled, p
			E	1	230			-	<i>¶</i> ~		- rough surf planar hiturnating SANDSTONE first grained lowrnated w/ fract winder calcul a boltom dk gray sitebone general goech. evit and 4 long planar fract, enter/evit core, hiturrates into double fract					Cross	a filled . I
			ŀ	-	22	2		13	1	-	21854 abried contact States dipolip SILTSTONE	-				30%	A150 (2)
			ļ	-	.09	2		ľ	14"	-	ALEB 5 A THAL TRACE & rod Rint	-				ĨĽ	line fract
z			1-2	190-	,12			er/	52		21908 - and x cut flood , take MUDSTONE dk gray		1			©r.	land ch.
vatio		. <u>F</u>	IE	-		52)		52/	6	东	A MINOR TAIN IMA CONI SILISIONE - FINE SHAVES IDNE IN IT REAL	2					offract. sk
Collar Elevati Bearina:	ocening. Inclination	Total Depth	L.	-	.2) .60	(0)	-	1140		## 	- twin to' slicks, 20-rake/dip 60% antemate filled	1				plano	offract. sk filling filling
Collar Ek		otal	lt	-				75	1.		=197.0 black mundistone. planar fract O'CA; 60" 175 cany showrs X aut front	-					trand.
.	u .a	s 1	IE,	-	1.50 .60	(3)		10	T's		-2198.4 my few Imm Coals -35° sticks, 30% carb filled; 3°, planar fract	1					
			E	200-				28/	4 0\[3	the AD' Blocks 20' rike to dia. @ 90' strike to 20'	~			4		s slicks a dip angle o /. carbifi
			ŀ	1	.14		-	-	45		(3) Dilmin califie units 45°CA 35 + 10° carb. filled slicks	1					o : caro fi
			-	-	.90 .25 .40			10	• • • •								
			IF.]	. 50	С.		T I	18	1	2208 grad. contact	-					
ů.	ú		-2	2210-				35/			= 2210 grad. contact MUDSTONE are brown gray, thick bodded	-					
				-	.30			1			- 50° O. Imm calcite watt r. irregular						
aj		ted		~						÷,t	>25°, along calcite valt SANDSTONE fine grained mothed by inregular by the some so dikes in substance - a long planar, wish surf clawatering of sid @ compaction.		ŀ				
	N.	otarreo: Completed	1-	~	.35 90			25	0		> long planar, rough surf downtoring of sid. @ compaction.						
6	ź	ຮີບິ	F.	-	.40			1/	0		Tractoria a, 7	1					

छ रू	+	(1:120) {	DEPTH, feet	ture	Si lity	alad	Contro alle Contro alle	FRACTURING	GEOLOGY	COMMENTS: Avg. Core Recovery/ Hole U Recovery/ Hole Recovery/ Hole Recov
in Project	Ļį	5 4	2220.	Ho.	\$ù	<u>? Å</u>	30	u.	(Coordinate Geology
100		32 of 3	- - - -	1.10 . 32			18			13 chro 50% sticks 2223-7 orod. Condet
Katon	Hole No:	Scale: 1 Sheet 32	5	.50	23)	\$		il		SANDSTONIE It. gray, thick bedded most grained Some grit & persite bods
	5	2	- 2230	\$ \$ 50	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	40 23	N			- 2227.9 shorp contract - of is trad, others stricks w/ rorb. fill a 30%
Sandia National Laboratories	CA-CR	8,200		.20	-	13 Z		23 /44		as planar frost, 13 rold filled 50% stokes dk glas
	Ken Granten	A. 1	- 2240	50		58	24	ŏĮ	ELL.	- matrixing 45° rarb filled fract 30% filled - yert Fract. In writ ported place stillshare as 555° 0.3° ande some of productor calcutever ging - long yert fract, perbogs a sot of an achelica
C	d by: K	2 2		10			45	No.		- long vert fract, perboos a sot of an echelon brun to get the stand browt log
alone .	Logged by:	Log Date: A	2250	6.0	0	•			やいく教授	2246.1 aborept contract 2247.0 descrip sample CLINKERITE sill baked fine seds. to 12.000.1 descrip sample CLINKERITE sill baked fine seds. to 12.000.1 baked fine seds. to 13.000.1 baked fine seds. to 14.000.1 baked fine seds. to 15.000.1 ba
				9			\$	10		2257.0 desorp Bangle & filled white raterte 2259.9 desorp Bangle & Irregular sill injections 2254.0 abrest contract & Irregular sill injections tencooked mudstone virt. Fract. Plandir, unfilled 36:57.2 cinder, breen ottal filled of rate te
1100		2	- 72.60-	5000			354 €∕ 0	8) 01	1	2572 sharp contract non 2572 sharp contract non 2572 sharp contract 70% 2260.4 - sharp contract 70% 18 . Berg and Still front + or fort MUD STONE V. dk grave, drill indust Charlier Charlier Still (1) 2000 A - sharp contract 70% 2000 A
Conar Creveuo	seamo: inclination:	Total Depth	е к – с	.40	3 1 .		20	1	1.22	2266
			2270	.60	يو م ير ا					vert fract SILTISTONE to fine sandetone vert fract nearly creation building features to
ú	Ц		. 2280		.10		83.			to stilling in badding separations: hairline / fronts & vailets. to some relate with encoding smm regnant of root
j.	÷	leted		.60	(3)	*	5/25	7	5. C	- poir freets unbroken poir 65' .3mm courte venis enclosing 2mm coat ven - salite nodule - concretion ? counced botrapidal
	N: Started:	Completed	- - -				87		C.	poir 65' . 3mm courte vens inclosing 2 mm Cdar ven - courte nondule - concretion 2 grunded botryoidal - 25 irregular yemm concretion with - 2289,1- gradational contact

8	4	1:120)		DEPTH, teet	acture	Shall the	coal	Cordenale	FRACTIONIC		GEOLOGY	COMMENTS:	Avg. Core Recovery/Ha	Drilling Interval	% Core Recovered	Core Size	RQD	Sample Interval	photos
Str	Hole No: CH-4	Scale: 1" = 10' (1:120)	Sheet 34 of 34	-2340	510	n-	3		r u			Descriptive Geology cont SANDSTONE, me It brownish gray, unifo grain Size. No natural fracturing Thick hadeled showing. brotur bidite features perhaps bug remnonts	d. orained www. a. few						
Sandia National Laboratories	Logged by: RUM CTRONC hom	Log Version:	Log Date: Maril& 2002									2.372,1 Bottom of Hole		. 					.*
Collar Elevation:	Bearing:	Total Deoth:	v v v v v v v v v v v v v v v v v v v								مى مى بىرى بىرى بىرى بىرى بىرى بىرى بىرى			• • • • • • • • • • • • • • • • • • •					
Site:	نن ت	Started: Comoleted								an a	an sea in a suite sea anna an A								

Project	1-0 0. 11:1300		- 130	fracture	\$40 W	coal	Carporate	FRACTURING	GEOLOGY	COMMENTS: Coring begins at 130 feed. Core diameter Ang. Core 15 0.20 feet. Cleaned core with water Prestos a clayey fuzz on Burface suggesting high content of montmorillimite clay. Descriptive Geology	Drilling Interval	% Core Recovered	Core Size	ROD	Sample Interval	photzu
Sandia National Laboratories Raton Basin Project	Logged by: PON Crive Chern Hole No: CH- Log Varian:	ar. 19.2002 Sheet 1	-140-	1.0 .20 .45 .04 .06	3-3- 0	-7	2/10/15	5 39/121	如此其自我的情绪也们。而你可以的可能可能	no ratural froctures <u>SANDSTONE</u> med. a. gray-green 1360 - abruct contract parallel dip , 1070 y this is a while stern goingo contact contract contrained contract 2 15° frast player 50° K Carbonale filled <u>postly competent</u> 1400 - gred contact vert fract 20% corb-Foox MILDSTONE dk gray brown, porty 1410 - gred contact Vert fract 20% corb-Foox MILDSTONE dk gray brown, porty 142.6 - shear 10° with up to 1 cm goinge & broken rock pair of with up to 1 cm goinge & broken rock pair of with up to 1 cm goinge & broken rock pair of the product field <u>SILTSTONE</u> dull gray green with 0 crossional munistence bed & dirty planar fracture <u>stant</u> shiels or shours -tes in ahie to determine. - conjugate shours					She	2- local ste shors w carbrate in Ovrde atrings
Collar Elevation:	Bearing:		-180	021 4 08 07 592 8 082 08	18 385 S	1 1 1 1 1 1	52 11 32 410	35/ 37/ 50 Jac	ALLE OF ALCHARDEN AND CONCENTER OF AND	- 161.0 - grad. certact - struct dipatiplistics for 22 MUD STONE finable gray green 2 35- planer fract. Fedx crating 106 D - grod. certact - show pair SULTSTONE finable gray green 169.3 - grad centact - certific exercisions 169.5 - 177 contains slickensighed sheetrs 45-70°CA coated w/third carbinate a tr. Fed x H Orlier cach 0:2 to 0.4 tr. The must premine it are measure here. - 177.7 - grad. centaet - elicks, dip slip, planar SILTSTONE finable gray green \$ SILTSTONE finable gray green SILTSTONE finable gray green SILTSTONE finable gray green SILTSTONE finable gray green SILTSTONE finable gray green - 177.7 - grad. centaet - strucks, dip slip, planar SILTSTONE finable gray green \$ SILTSTONE finable gray g						
l Site:	Started:	Completed	-190	.08 .23 .04 .40 .08 .12			15/ TQ	15:2/2 8/		- carb. slicks 20% - wavey, irregular slicks, dip slip - shears slicks - 191.8 _ grad. Carter of - 70° carb/FeDx on alicks 20% MIDSTONE DK brownish gray } some Imm roal beds - 50° sticks on Corbon, war - 50° sticks on corbon on the corbon of the cor						


ឋ	00110	(071.1	DEPTH, feet	Sracture	ssility	arting	ating	FRACTURING	GEOLOGY	COMMENTS: Avg. Core Recovery/ H	Drilling interval	% Core	Recovered	Core Size	ROD	Sample Interval	Photoe ·
Raton Basin Project Lote No: 011-15		o [200-	÷.	ON F	32 265			Salar Maria	Descriptive Geology renatural fights. contr. SILTSTONE gray, thick bedded 202.4 grad contract SILTSTONE frights brown gray 204.9 grad. contract SILTSTONE - gray thick bedded							
		ZDD2 Sheet		080430	65	•	75	20	THE PARTY	2014. 9- grad. Contact no nat. Gradis - drill brackage parting atos por fast, 2022 - grad contact - MUDSTONE dk brown 2023 - grad contact - MUDSTONE dk brown - pay of heiding partings 0.3'aportSILT STONE gray - pay of heiding partings 0.3'aportSILT STONE gray - pay of heiding partings 0.3'aportSILT STONE gray - pay of heiding partings 0.3'aportSILT STONE gray							
Sandia National Laboratories	Kon Lia	lar. 19.	- 220	.04 .1.207		83 58 25 13	1			216.1 sittabre - (2) 35° slicks w/ carbonate Fedx coatings 10%. filling 218.0 W slicks porallel to dip. 219.5 sittatente - 73° cort coated slicks 23%. filling						1.1.2.1.2.1	photo 16 216', 35°C 3 hears
Sandia Nati	t og Vareion.	Log Date:	-230-	.12			0	57	I THE REAL	black hi carbon portings early Cut to 0.2 226.3 5: Heterne - 227.1 mudstone - 228.7 abrupt contact - 228.7 abrupt contact - 228.7 abrupt contact - 228.7 abrupt contact							
				.16			12/ 50	45/		Plancer, die slip slip klieken 238.0 21tstoine 50° Shothered zone 0.8' wide all surf. red calute casted 235-grad contact MUDSTONE die brownish gray, fissle	-						
Collar Elevation: Bearing:	ion:	epth:	240	1			5 9	-		24.8- Sharp contact 85°CA on high carbon laminac no notural fracts. interbeddor w/ dkgroup siltstans				_			
Collar El Bearing:	Inclination:	Total Lepth:	-250-	,4 0			20/			250.8 - 0.3 thick moderne will coal in S. Bidden surface shows small creau 250.8 - 0.3 thick moderne will coal scame bed.		28	on C	ad <u>s</u>	ища	œ	-20' frac V. planar 10% cal fill
úi	i	a dh' - ife- mayer fragër viki additi e e shëtërtëtërë të së	260-	,70 .13 .38	10)	70	2 3 10 3	-0- 55		233.0 - V. grad. contact - planar frod w/ carb/FeOx 20% SILTSTONE mad. gray - planar slicks curb/FeOx 40%. '70' fract w/ Orb, FeOx V. It. coating 10% - 45; dipslicks, 20% carb FeOX fills 0; slicks V. waval, 20 roke from Approved 3" coal bod in 0.5' thick mudstree beal 20 waves slicks, nardipy w - 5300 pair slicks, striac 20 rakeflip, red carb - FOX coat 40%	2 0°	C.B.	·b/re	.0, 4	2.4		photo 2 X-cutsha
Driil Site: N:	Started:	Completed							1 1 1 1 1 1	263.0 grad. contact <u>SANDSTONE</u> med. to coarse grain It gray w/ irregular darker, silty lamina	- Liens		A CALL AND A				

#	(1:120)		DEPTH, feet	fracture height	sility	trug	carberote anotrine	FRACTURING	GEOLOGY	COMMENTS: Avg. Com Recovery/H	ole	Drilling Interval	% Core Recovered	Core Size	RQD	Sample Interval	
Sin Project CH-55			-270 -	44	Set.	83	88	Ē		Descriptive Geology	_	ă	<u>а</u> п	-			
Raton Basin Project Hole No: CH-ら		Sheet 3 of	- 280	602				15/		cont. <u>SANDSTONE</u> rough surf fracture. #278,1 coal sharp centract 279.0 coal sharp centract							
oratories aí chum		2002		.02 (B		92 90	101			279.0 Coal 10° planor fract w/ red <u>SANDSTONE</u> fine grained, It. gra conting configure 20%. grades into mod. gravy siltstone deli 523,80° rob cont 20%, silves. - 286.0 - V. grad. contact							
Sandia National Laboratories Loooed by: Roy Gradic train	Log Version:	Log Date: Mar, 20.	-290 -	14 224	60)	52	ŕ	10	而同的吃肉的時	Slicks 20' coke dip rod carb Feix not fractured med. gray, gonerally solutions 20' to the fractured ret front red cost 20% for dip, recl coated carb. Feix 40%.		1					Photo 21 292' corbenate Fi rooted shr 15'-20- rak
Sandi Locoe	Log V	Log D	300	- 24			80			slicks w/ curb Fuox and 30% BB, 20" rake/dip, curb Felix cont 10%, 20, 20" rake/dip, 20% cont shattered rock bitween shu 2995	ars,	,					to dig X . photo 2: 293' natur frat. to di induced bre
Collar Elevation; Bearing:	tion:	epth:		.14			12 12 4 8 8 8			-306.4 - abrust sontact slicks y irriguiar near dipslip MUDSTONE dir gray 4/60a (beds sont coal - 45°, V. Ilirguiar shear up carbonate Fock 20%. 311.0 - thorp contact - Fract propod, v. It, coating SANDSTONIE fine-grained It. gray - slicks, carb Fock 10%.							
Collar Ek Bearing:	Inclination:	Total Depth	320 -				-			- 316.4 grad contact NO froctures - 321.1 grad, contact - 321.1 grad, contact - sad, conta					-		
iii Li	ÿ	Completed	- 330-						A. The								
	Started:	S S	- - 	5 1					HI.		•					<i>.</i>	

			1		13°	T	Τ	0		COMMENTS: Avg. (Recover	Core V Hole	Į₽					
ħ	(1-120)	1071	DEPTH, fee	fracture	ala fissi	puitre	contenda	FRACTURING	GEOLOGY		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Drilling Interva	% Core Recovered	Core Size	RQD	Sample interval	photo
jo k	•		-340	53	A	33	-88	Ē	Ľ	Descriptive Geology		5	2.5				
Raton Basin Project Hole No: <i>ヘ山</i> - ろ		1 0					6		1	> certimeter trenstone budding cart, SANDSTONE							
Raton [Hole N	Scale.	Sheet .		.55		18	ß	to	X	- multiple shear trature and with MUD STONE (3944.6 to cool is server with MUD STONE (3944.6 to cool is server with broken w/ every fract. + part server with broken w/ every fract. + part	ing						photo34 345' multiple fracts-shuars
s		Ч	- 360 -	24	11 86	517	FK.	38 80		- 347.8 deports Sample. 348.8 349.2							Tratis-Suurs
oratorie	5	20,200		.20 .02 .03	387 (80) (759) (60)			1 5	同語								
Sandia National Laboratories Loggad by: Row Graickan		Var.	360	.05 .02		80	73			-Sap bedding partings, orange carb/FeOx contings 10-20%. Sall consed by drilling. -362,2gradual contact	-						
dia Natio	Log Version:	Date: /		.08 .14				55	ALL R.	-362.2 - gradual contact MUDSTONE with coal seems -0.6' coal 2cm ked partings 363-364 brown-black, V. Shaley -365.7 above contract							
San		<u>ר</u> פ ז	370 -	50-20-6	2 (10)	65	8	8-1- P	いたま	SANDSTONE with interbeds + a calcite ktal druzen laminations of dk gray sillsone - rough surface Front both ribs 28° colette 00% filled front Front series 160,67,72,90 are 25° rough surf. front. + interbeds - all planet, non mineral 26° rough surf. front. + interbeds - in beddies	ther -						
				.30 .30 .02	(25)	PR	Å			85: parting on sharp contact 2cm mudstone bed in med. q. tan same	. "						
ation:			-380	19.04		8 29 57	X	1/2	ile Ball	3775 or parting 5 mm coal bed MINDON SILTSTONE - dk gray-bla 35 sticks of parting 5 mm coal bed MINDON SILTSTONE - dk gray-bla as coal soam 29,30 fracts, planar Well fractured sheared all u 382.0 grad contact With prange coat carb- 8° planar fract betw coal thin and mineral filling (3) 20%.	ck. Heor						photo 35 brittle muddy siltstone fracts/shears
Collar Elevation Bearing:	clination:	Total Depth:		100000	(11) (75) (32)	75	32/	140		as' coal seam 29,30° fracts, planar Well fractured sheared, all u 282,0 grad contract v. thin grange coat carb- 8° planar fract below coal thin mineral filling (?) 20%. 22: planar fract; 32,72° fracts by y light carb Fear coatings - 20%. 387 G. sandstone do rough Surf. fract. 387 SILTSTONE lamingted & thin bedded the gray silb & the gray yet, sanda							within corbonate - iron oxide coatings
Qğ	Ē	ž	-390-	1.	(40)				NH IN		les -						
			h *	83 .11			25/		X	- 344,3 desorb semple	ю% - -						
்ய்			-400 -	,60	k.			/2	11	rough surface fract. SANOSTONE fine - und orgined interlocated with darker eithy bars flami Lringular budaing.	inae-						
		ted		1.30			5	10	4	V. irregular, rough surface fract 4000 abruct contact 600, planar fract thin carb F-Ox ceat 20%							
Orill Site: N:	Started:	Completed	· · ·	- - 30			/14:	10		- minor shaloy bedding <u>SILTSTONE</u> gray parting w/ minor curb. Fele coatins - vert. first skins sale of core. 14;	• • •						

Ħ	(1:120)		DEPTH, feet	ight	silitu	parting	cooring cooring	FRACTURING	GEOLOGY	COMMENTS: Avg. Core Recovery/ Hol	Dritting Interval	% Core Recovered	Core Size	RQD	Sample Intervat	photo
n jec			410 -	52	24	35	89	E		Descriptive Geology	à	~ L				ware and a series of the serie
Raton Basin Project	΄ Ο	5		- ,30 - 1,10 -		50 65	/12 12		Hala a a a a a a a a a a a a a a a a a a	4185 grad, ontact 41-419 15 oach 0.1 to 0.2 9						photo 36 416-419 Fracturina
onal Laboratories Ron Groatchen		,2002	-420	08 DZ ,16 .14	1 1 1 1 5 7	85 35 72	1/1/18	40. 85 35	的现在分词	SILTSTONE 35° slides, very carving surface, orange mineral conting 35%. fill 40'85 slides 30' min. @ 421.5' - 424.0' Core is well fractured w/ will broken-photo 72° slide, 35% carb.fill 40% orange coating of carbonate-FeOx 421.5' - 424.0' Core is well fractured w/ 72° slides, 35% carb.fill 40% orange coating of carbonate-FeOx						A badding- parting photu 1 421.5-424 well broken
Sendia National Laboratories Looged hv: Ron (Franches	irsion:	ate: Mar. 21	4 30 -	90			Jo al			72° slick, 35% carb. fill 427.6 grad content of 30% fill MIDSTONE dk gray or fict. 300 fillsfrom dip 30% fill MIDSTONE dk gray 430.2 grad contact not tractured SILTSTONE fills Sandsteine 433.3 ground up core & drill mid 433.3 ground up core & drill mid 436.4 gray SILTSTONE fills Sandsteine 433.3 ground up core & drill mid but chips of mutshere & coal define unit-						LOTE
Sendia Nati	Log Version:	Log Date:	-440 -	403 00550	(† 2) (78) (28)	85	28j /40	1.		ANDSTONE Up 10 f.g. Sandstone ANDSTONE Ufg 10 f.g. Sandstone ANDSTONE ANDSTONE Ufg 10 f.g. Sandstone ANDSTONE ANDSTONE Ufg 10 f.g. Sandstone ANDSTONE	-			1		
ration:		i.	-450-	.20	14		50	10/00/	a state a state a state of the	417.4 grad contact					is	photo 2 443-447 well broken cere
Collar Elevation Bearing:	Inclination	Total Depth.	-460 -	.03.30			12 12 12	5 X 20		4540 grad. contract 95° contracting; 55,75° are SILTSTONE well froctured through 15° Jicks, 20° off dip fracture sets 22° curred straks carb Feox 30%. 15° zo; irregular fracts Feox but no corbunite		ft.	-			
			- -	15 30 26	111		15	10	Helm "Helm	- Conjugate shear set MUDSTONE dik gray locally fissle - conjugate shear set Most fractures have FEOR integr	- 					
ù			470	12			<u>69</u> .	75		- coal 2 cm bo slickensides dip slip coated carb. Frox 257. 449.6 desorpt comple -471.1 75 - tract. Frox coating tr. carb. 4720- ligros. contact 0 plange fract for coat. SILTSTONE dk gray						photo 3 468' fissle mudst coal + Vert
Driti Site: N:	Started:	Completed	480-	.50 40				10 ⁻		+15.7 - grad contactSANDSTOINE f.g & V.f.g. interbedded vert fract						Gractur

15		(1:120)		DEPTH, feet	fracture height	cele sility	arting	carbwate	FRACTURING	GEOLOGY	COMMENTS: Avg. Core Recovery/ Hol	Drilling Interval	% Core Recovered	Core Size	RaD	Sample Interval	photos
je v				180	54	RUT		36			Descriptive Geology	ā					
	8	-	11-		70	(50) (5) (5) (2)		\$	14 15 5% 15 11 99		 rough surf fract no natural fractures Gracts 70° disposed, one barren, one wilcateite 20'. Ash.7-v. gradational contect 2 con coal seam Well broken a sheared 	<u>1 </u>	n				photo 4 4875 fractures 90°
boratories	UTTRI Chen	2000			.21 .27 .10	· -	7 20	75	58	Lat X Wall	- shear wil carbonate torca; enjugate poir Also, non carb cated pair 45/55-slicks 4921- 3000. contact	P					aisposed 15-128- photo 3 493.5
Sandia National Laboratories	Logged by: Kun Urraichen	10 01		\$ 20	000	_	78 85	A SKIE		HARVAR	= 64 curved slicks = 64 curved slicks = 5033 — sharp contact = 5033 — sharp contact = 5033 — sharp contact = 5033 — sharp contact = 5035 — sharp	(e)					Fracture
Sandia	rogge	Log Version:	.*		.050 .12 1.80		58	80			black carbonaceous ou wy caals 1-2mm to Icm. bud parting are 1-2em. 507.0 Bishean offers bo tract SULTETONE 509.2 abrupt contact SanDSTONE It, gray and grained coldine find sort of with lawinations of siltstone to boltom fund correct define balding.	1 4 1					
ion.					.80 ,04 ,(9			0	72	11.10	~ BAME, slices side of core, 1-2mm wide ~ 0.6 muclature bed 72° polished slick & vert. fract.	1 ساماليا الم					
Collar Elevation: Bearing:	bearing: incination	Total Depth:	5. 5. 4. 7. 7. 7. 7.		.08		50	2X2 2 N	ſ	WALLANS IN	- 522.0 abrupt contact 70°CA monthement. Balding parting each 2-3cm. 523.6 62°AD polished slicks - roke movement. Balding parting each 2-3cm. ro fract. ; so slicks dipslip. <u>SILISTONE</u> black high carbon w/coal mudstone to 523.6. Gray thick beilted so polish slicks moderately broken. s6° palish slicks rake striae are or ongen. color to gra generally 30-40% filling						
	·			30	.22 .39 .03 .20		7	20/	36/ 35/	3150-149.16	86° polish slicks rake stride generally 30-40% filling 20° fracture, gently curred 780 sot of fracts, carbonate fill 20%. 35° plonor fract.						
ú	шi	ğ		540 - -	.03			72			0.3' mudstone bed 540.9- Sharp centrect 0.3-mudstone bod 72' sticks 20% conf.fill						
Drill Site: M:	Cranted	Completed	11		.03		75 30	7				10 10 10 10 10 10					

π	(1:120)		DEPTH, feet	fracture height	sility	erting	Corponets Deating	FRACTURING	GEOLOGY	COMMENTS: Avg. Core Recovery/ Hole	Dritting Interval	% Core Recovered	Core Size	RQD	Sample Interval	Photo
Raton Basin Project Hole No: $CH - D$	1" = 10'	8 of	-620-	.20			1000	u.	Cita and	Descriptive Geology 5/Hy grad. contact SANDETONE 623.9 60°, planar corp cont 10%, FNISILTSTONE gray 623.9 60°, planar corp cont 10%, FNISILTSTONE gray	ā					
		2. Sheet	- 630 -	002179542	(3 5)	55 38 32 30 55	J/J	26	通知時期	405 iransfanz concertion: 50, 41 of truits with 10% of the penant ab;52" planar fract conto. fill 20% 50, 30°, dip Jip Slicks, 20% filled 6813 grad contoct						
Sandia National Laboratories Logged by:		22,2002		18		50	45			no fractures SHALLS ICANE It gray, thick beared - 5 planar fracts within :25' care longth - odd, in the middle of 55 fracts 60° disposed, both 40% carb filled little fracturing.		a a a a a a a a a a a a a a a a a a a				photo 34 637,46 °C Stachires
Sandia National Laboratories Logged by: ନ୍ଦୁର ଓ ଓ ସିନ୍ଦୁ (ଜ୍ୟୁଣ	Log Version:	Log Date: M.o.r.	- 640 -	13	38	\$ j	8 84 8	8	Hallan and a start	640.0 grad. contact 18 stake & act. 19 splanor fract. 10 splanor fr	-	- 85 st shuo	40,7 of cla s, m	0 +0 9 4-9 4-10 5/10	sced G	photo Z 642! shearing detail in mudstone
Lo Sai	, <u>3</u> 01	Loc	650-	- 41 - ,23 - ,4 1		Ν	18 20	55		6600 55° sheer on coal gruge 6600 grad. antact 18° pur coated fracts, planar 40× Fin 20° V. planar fracts, pair 0.1' agart 20° V. planar fracts, pair 0.1' agart						
iou:		•	-660-	.23			10			-659.0 graditional contact SANDSTONE it tan med to course						
Collar Elevation Bearing:	Inclination.	Total Depth:		97 140 140					1. 1. 1	vio fractures grained mostly thick-backled with some thin silty laminations			-			
			-670-													
ú			-680 -													
Dall Site: N:	Started:	Completed							1.1.1.	687-688, one fost bad 10 65° CA of unelstone rip-up subangular						

, ect		(1:120)		DEPTH, feet	Stacture	shole Fissility	cool ng	arteoratu ceching	FRACTURING	GEOLOGY	COMMENTS: Descriptive Geology	Avg. Core Recovery! Hole	Drilling Interval	% Core Recovered	Core Size	RaD	Sample Interval	photes
	5-H-7 :0	1" = 10'	Sheet 9 of	-690	40	Gruer	5	5 55	15 51	小学出来	Minor contentional Cont. SANDSTONE It ton coars 643.0 - Sheep contract 30 near vert fracture come by cool 3mooth well growed slicks dipslip <u>SILTSTONE - V. F. SANDSTON</u> - planar fract. 678.4 - V. grad. contact the patterns	E and armit					-	
aboratories	XON Craicher		29, 2002	- 700 -	25		7		10 35/ 15 85	· 14 · 14 · 14 · 14 · 14 · 14 · 14 · 14	Vert fract to coal bed O.Z. coal bed, Icm budgarts dki dull greenish - gray will irre balaw coal of in m coal buts gray siltshue in the beds. Brother 20° coal charts go disposed. gray siltshue in the beds. Brother 35° fracticulary z-3mm coal seam 15° planar fract. fracture	<u>ONE</u> gular dk hid.ile textu						photo 3 Vert. fraitue coal f budding jorti
Sandia National Laboratories		Versid	Log Date: Mar.	-710 -	22 88 39			B ₅	81/1	an a	710.1 - Very grad, contact - Badding parting Icm-Scm MILDSTONE dk brownsh B alicks & rahe X, reacts wil writer swells wil frizz so poorly defined slicks Bedding parting generally eac 56 slicks near dis angle; 30 planar fracture. This Imm to Zmm coal seams in short in terral of bland	4 Dil + 0.2	g -	· m.	ntm	ori	lini	te Dhoto 4
	-		1	-720 -	20 200	(e3)		80 60 75 75 75 75 75 75 75 75 75 75 75	No stall	HHH HH HH	Slickensides -supporto 4: 60' slicks nearly dip angle 45' slicks 15' neke from dip 35' slicks (3) planar fractures. Dottom in bedding 60° slick 726.8 - 127.8 - 127.8	-						multiple shickedside shears in 0.4 'of corr 717.5'
Collar Elevation: Bearing:	-P	Incination: Total Denth:	- maleo	- 730 -	044	(14) (32)	I	76 50	32/		50" slicks well polished, hear dip slip - 732.4 grad contact	ir haddad						
Collar El	ilent	Inclif		- 7 4 0 -	9.25			40 48 70	11	正祖 : 本 開	- 736.8 Sittstone sharp contacts - 738.7 Sittstone sharp contacts - 738.7 Go curved slicks (O dip angle - 70° slicks (O rake from dip angle - 70° slicks 15° rake from dip angle - 70° slicks 15° rake from dip angle	ад з рон е.						
ú	i			-760 -	8.2		*=		5' 50/		planar fract 1510 abrust contact 500 slickensides, poin, slicks 15; MUDSTONE dK gray							
Drill Site: N·	totototo	Started: Completed		-760	388 R D			90 38 8	12/3	田時和後	2561 abrupt gontect 2° long planar fracture SILTSTONE dk gray 38° v. planar fracture : 3° planar fract bottom 0.5' carbonate J 8° planar fract. 80° calciti filled	filled 80%.						photo 5 calcite fille

71	(1:120)		DEPTH, feet	secture beight	su liky	rt via	rknate ating	FRACTURING	GEOLOGY	COMMENTS: Avg. Core Recovery Hole	Drilling Interval	% Core Recoverad	Core Size	RoD	Sample Interval	photos
夢り			-760 -	33	SAN	ğ Z	33	μ.		Descriptive Geology	ā					
Raton Basin Project Hole No: <i>C</i> #- ら	Scale: 1" = 10'	Sheet /O of	- 770 -	10001	(25)		68 88 PH	11/10/		cond. SILTSTONE thick bedded medium gray 35° smooth alteks 15° rate from dip. 42° slicks dipslip: Bo'slicks convex dipangle 55° & Bo' dipslip slipslips 40° 25° plonar fractures, 25 has v. light carbonate control 40° 26° plonar fractures, 25 has v. light carbonate control 40° 26° plonar fractures, 25 has v. light carbonate control 40° 26° plonar fractures, 25 has v. light carbonate control 40° slicks 15° rake from dip & <u>JANDSTONE</u> med. grained, lt. tan thick bedded						
Graichen		23, 2002		.11 .60 .07			60 70 15	IT A	Fight Bull Bull	171.4 Sharp contact 60° planar fract. pair <u>MUDSTONE</u> dkgray to black 14° planar fract. 10° slicks, striae 10° from dip -177.0 - voygrad. contact - shear zone perhops a2 true thickness - multiple shear orientations						photo 6
Sandia National Laboratories Logged by: Ron Crraichen	Log Version:	Log Date: Kar	-780 -	15			45	12/		- 77.0 Ing flutel slick shear slicks 50° rake from dip Sittshone 277-779ft. Thick bucklad - 45° rake slicks; 63° frecture 50 planar fract; 45 gentle arcuate (across strike) fracture						25° Shear Zone 77 photo 7 782 Highangk
<u>س</u> , N	_	_	-790	.14		2	75 70075			planar fract clot of cont with calcite filling cleats - parting on amm coal seam; several other partings on irregular planar fracture - slickensides on 0.2' mulishue bed						photo Bi curved shi anound rea mass 792
Collar Elevation: Bearing:	Inclination:	otal Depth:	- 900 -	.60 40 -08	(12) (GT)		5 777	10 12/1/25		vert fracture along side of core diffracture - parting along 2mm thick white coldite vein 73. planar elickensides, 1/20 planar fracture 23. planar elickensides, 1/20 planar fracture 23. planar elickensides, 1/20 planar fracture 20. cold here along 20. cold here along the form disc				-		
מנ	.⊑ ł	M	- 810 -	.50 ,43	(12) (12)		40 40	8 12 1 S	入 題 人	25°, pair of parallel very rough irregular shears 20° rake from dip. 40° planar fracture; 54,58° shisles of strike aisposed 90° since goinge 811.0 FAULT OB 810° 0.15° true thickness gouge between no do sheks, strike & of of 12° planar findure; 60° slicks bounding 10° met. dk group, thick bedded 814.0 @ coal contact 0.2° of fraste sheke as pile of flakes. 815.8 desorb Sample 45° planar fracture.						photo 1 810' faul
Site:	ed:	Completed	820	5.2L ,90				8		817.0 Vertical fracture, partially <u>SANDSTDNE</u> ; interbedded sillstone & med. Vertical fracture, partially <u>grained Sandstone</u> filled w/ white anicite iscally splayed. 875. rough surface fracture, top term. in sillstone body, bothom out of core						photo 12 Vertical fracture
Drif Site	Started:	E CO	. 930	.40	6		s°	51		1829.9 sharp contact with coal bed. 8° fracture to top of coal						820'

te d	1001.11	(021:1)	DEPTH, faet	racture	Shale its	parting	contro	FRACTURING	GEOLOGY	COMMENTS: Avg. Core Recovery/ Ho Descriptive Geology	Drilling Interval	% Core Recovered	Core Size	RQD	Sample interval	Photos
		1/ of	- 830 -	.08 .12 -15			3 58 58 55 54	1/1/15		 contact © 0.4' coal-shale bed. Mudstone contact ~ 90°CA. B31.2 For slicks, mudstene much selection of the state of the streng of th						photo 12 833.5 Stickensideo Shears,
aboratories	Craccer	25, 2002	- 640 -	.11	(10)	25	5 50 1 12 3	113/5 11 1		842.0 grad- contact 45 sticks, pland- up stip 25 sticks, pland- up stip 25 sticks, pland- up stip 26 sticks, pland- up sticks with sitts grad particular of a sticks 26 into fracture: 26 into fracture: 3 fract, forks into five Icm apare. 3 fract, forks into five Icm apare.		te and	-	teac Colo	tion	string cortains in light interbeds,
Sandia National Laboratories	Loggen by, Kein CTRAICHEN For Varian:	Log Date: Mar	850 -	.07 .40 .23	***	0	\$ \$ 42	X = 1/2 = 50		- orass-cutting planar fractiones, rusty contings 15', 20' 857,7 - grad, contact		an early and a second				photo 13 planar fronts 855.5 N/ rusty catting
			- 860 -	10	(15) (35) (35) (30) (70) (70)		3 1 2 2 1 2 C			15 st ciss space energing tracts SILTSTONE 10 st ciss space energing tracts SILTSTONE 10 st coal standard bright 10 st coal stand combact 10 st coal stand bright 10 st coal - broken 10 st coal						
Collar Elevation: Bearing:	Inclination;	Total Depth:	- 810 -	,25 ,0 9 ,03			70 165	40/	ALEMENT REPORTS	20 trait. grad. contract in multiple God seems Imm-2mm, -parting easily 70 Sticks, curved surface (parts) SILTSTONE: dk gray minor slick not fractured-sheared	- 0.2	. +c,				photo 14 \$68 cool Stan w/ carbonete @ contracts photo 15
			- 680 -	0944002 23 4	(10)	And		11 5/21	有因利用性理论	879.0 mudstone bed 60°, 70° slicknowcles 880.0 hoth strongly curved along length of slicks, 25° dip change mudstone - planar fracture - 2mm coal > planar fractures						\$7] slick surface
Drill Site: N: E:	thed:	Completed		.24 .70 .4	10)	調査問題	60 30		The second s	area grad contact several 1-2mm coals pair 60° slicks -0.7' coal bad - 30° Shear in coal seam 897.3' - grad. contact SILTSTONE gray internediad with med. grained Sand store 4 limey sandstore	<u> </u>	And the second				

**	(1-120)	(1771 -	DEPTH, feet	fracture	sility	rting	Carbonati	FRACTURING	GEOLOGY	COMMENTS: Avg. Core Recuvery/ Hole	Driting Interval	% Core Recovered	Core Size	RQD	Sample Interval	Photos
, n Ngiế			-900 -	53	λir.	ĝa	23	μ	773	Court, SILTSTONE: interbatted silts and	à	с. ц.				
Raton Basin Project	Scale: 4" = 10"	Sheet (2 of	410	.02		<u></u>	75 55		和加加加加	hofractures sends; sends with strong cartimete - 15° slicks acid reaction - 9060 grad, contact Mudstone-black nearly coal, shaley - 5° slicks, 28° from dip 4; 40° slicks 1, wavey, 15° off dip 4.	4 4 4 4	and the second				
aboratories	nuclear	25, 2002		28 34			30° 30	197	SHORE SHORE	no fractures and it gray sandstone + limey sandstone						
Sandia National Laboratories	Logged by Kon I on Version	Log Date: Mev.	-920 -	.10 .20 (.90			60 6 4	3)	WEINING	60, streks smooth dip slip, to is fracture 6. long planar fracture in a out of case over 1.80 ft. 2011, white calcule contrag perhaps 50% filled 3						
ao _	3 -	, 1 ,	-930 -	1.10	je s			A 113		9°, D.Imm white calcite vern; o' along side care, calcite vn D.Imm -924.0 block mudstone w coal marcoal D.3 thick cut by several 75° shear slicks. 33.8 grad contact <u>MUD.STONE: block w multiple imm coal bi</u> -934.2 grad contact <u>Incl. Store</u> coal -934.2 grad contact -936.6 Sittstone Sandstone.	rts,					
coust creverors. Bearing:	Inclination:	Total Depth:	-940	.12	1		58 55 65	X	· · · · ·	- 739.1- - mudstone - 941.3- conjugate shears, slicks SILTSTONE: gray, thick bedded - sircks Sip slip - withole shear cuclares						
ά Ω	ų	F	-950	105 9 28534	111 333		93276 19	141		parting from drilling ouch lem - 3cm 10° lokanar fracture - 949 fault 36° 50° shear pair & broken between them 23° slicks, 10° offdip 75° slicks planar, striae to rake from dip - 954.3 - mudstone - 955.0 - mudstone - 55° smooth, slightly curved surface, dip slip						
نن و		Completed	- 960 -	.23			55 35/	/	地工主任	- 959.0						
	Started:	Comp	- -								-					

ช. <u>.</u>	(1:120)		DEPTH, feet	acture	sultu	arting	cartenda	FRACTURING	GEOLOGY	COMMENTS: Avg. Core Recovery! Hole	Drilling Interval	% Core Recovered	Core Size	ROD	Sample Interval	photos
Raton Basin Project Hole No: CH-5	= 10'	Sheet 13 of	-970	4 122 - 314 2015	1000000	35		¥.		Descriptive Geology 35° planar fracture 25% carb. Fill: 45° planar fracture : 85° planar slicks <u>SANDSTONE</u> : cart. Interbedded sills 6° planar fracture : 85° this same 30° calcareous sands. 10° calcareous sands. 10° calcareous fracture - sheared. 35° stepped fracture						photo 16
Sandia National Laboratories Logged by: Rov Groatchen	Log Version:	Log Date: Mar 216, 2002	- 980		(0) (H)		0 41 70 55	· 1		 Imm. coal seam in survisione Source removed. Torough survi, fracture cross-out by 12° parting on 2mm coal vein Torough survi, fracture cross-out by 12° parting on 2mm coal vein Torough survi, fracture cross-out by 12° parting on 2mm coal vein Torough survi, fracture cross-out by 12° parting on 2mm coal vein Torough survi, fracture cross-out by 12° parting on 2mm coal vein Torough survi, fracture cross-out by 12° parting on 2mm coal vein Torough survi, fracture coal vein Torough survi, fracture cross-out by 12° parting on 2mm coal vein Torough survi, fracture cross-out by 12° parting on 2mm coal vein Torough survi, fracture coal vein Torough survi, rate a striae Sill cos pair, rate a striae Sill cos pair, rate a striae Sill comples removed - desorboon tests. Oppending a cids ? 	, , , , , , , , , ,					photo 16 9 B2' coalvein photo 17 reverse si of 932' calcite Vn photo 1. 984-993 sill intru
			-1000-	.07 .11 1.20	1.5)	£	// *j	57 m	and an	- 999.16 END COAL Bade, one reminent of removed sample; other ICM thick. - ICM discing of core 1002-1003 on this coals ~ Immestplanar sites 23,26; planar fracts w/ flakey carbinale contings (which flakes off) 45° planar fract ~ it corb. coald fract. 40% fill dkgray - 0° sinuous fracture; a imme coal wisps in muchshue bedra - 1000,0 - grad contact No fractures - shows SILTETONE: dh gray, thick beddad	1	Ι.	xc.			
Coliar Elevation Bearing:	Inclination:	total Deptn:	1020	.07	(80) (83)		2 S S &	811/1	能说:他:他 说的	- 1012.0						
ய்		D	-1030	.24 .21 .41 .20			25 78	/ 1 26//	CHARLES SHALL	1026.6 grad. contract curving Elick, striae curving too <u>FINE SANDSTONE</u> : gray, thick-bedded 1030.6 grad. contract 25°, stepped fracture <u>SILT.STONE</u> : gray, thick-hedded 1033.4 Arad. contract						jshoto 19
Dritt Site:	Started;	Completed	1040	.30	(E) (35) (0)		es 5	1350	X"""""	1034.0 desorb sample — 36° streks 20° off dip 1035.9 60° slicks, 20° off dip <u>MUDSTONE</u> : dk gray-brown, frideli 5° slicks parallel are & arrive into 35° slicks @ 45° rake. 0° wavey, nough irregular slicks alive state of core	2					slicks se 5 = 35 1036 ft.

Ject Ø	(1:120)	DEPTH, feet	hacture	hate issilitu	Dorthog	carboatt ceating	FRACTURING	GEOLOGY	COMMENTS: Avg. Core Recovery/ Hols 200 20 20 20 20 20 20 20 20 20 20 20 20	photo
Raton Basin Project Hole No: CH-ら	Scale: 1" = 10' shart 14 of	-	35				25/ °)		1041.7 grad. contact <u>Mudstone</u> - cont. Friable & highly broken-shuared 	
Growchen	2002	-1050	2.4			- - -	6 88		no fractures	
Je Z	Log Version: Log Date: Morry 260.	-1060	1.02	-			1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1056.3' abrupt contact 1056.3' abrupt contact 1057.9' 5' sticks' <u>MUD.STONF:</u> black carbunaceous 1058.9' sample removed 1058.9 sharp contact <u>Parting on Icm. Coal</u> 55' fracture. <u>SILT STONF</u> : dk gray, thick-bedded 20' fract 0.28king, and 14' adjacent fract 0.50' long. no fractures	
Sand Logg	/ 00 /	-1070	- 21 - (0 - (1 - ,25	(10)		72 Fr	65	言が強当	32° polished dip slip slipks <u>SANDSTONE</u> : 70° slicks @ 40° rake 10° planar fractive 0°; 65° planar fract. 50°, filed Irregular Obal Vern @ 1069'	photo 20 1069' irregular coal vein
levation.	an: pth:	-1080	- ,60 - ,00 - ,00 - ,90	2		40	22/ 12/1		- 1079.0 - grow. Contract	photo 21 fractures photo 2:
Collar Elevation Bearing:	Inclination: Total Deptn:	-1090	02	. fr	aet	\$ 5			1088 Lach other. Weaving auxiller: fractures create "spears" of rock - single half (Lengthwise) pc of core, photo	ficeture system larallel co 1080-1089 photo 23 loss-1090 long factu
ú	•			.20		0	35/	い。 知得道	- 1097.1 sharp contact <u>SILTSTONE</u> : dk gray, thick bedded 1000.7 sondishows; calcite Vain-side of unfractured 1000.7 sondishows; calcite Vain-side of unfractured 1000.7 sondishows; calcite Vain-side of unfractured 2007. 1 sharp contact 1000.7 sondishows; calcite Vain-side of unfractured 2007. 1 sharp contact 2007. 1 sharp	ind hereig
Drill Site: N:	Started: Completed		35	(15) (40)	- - 	22. 40		国際語	15° pair finctures, planar; 60° planor frocture	

**	(1:120)		DEPTH, feet	fracture	sility	rttng	artichata Pating	FRACTURING	GEOLOGY	COMMENTS: Avg. Core Recovery/ Hok	Driting Interval	% Core Recovered	Core Size	RQD	Sample interval	photos
S Ge			1110-	43	sit	38	,car Cen	E		Descriptive Geology	ā					
Raton Basin Project Hole No: CH-5	÷.	Sheet 15 of	80	.02	×		85	7	William an	55,85 olicks cont <u>SILTSTONE</u> : dk gray thick-bedded 1113.B grad. contact -0.8'zone, buddy broken sheared <u>MUDSTONE</u> : black wi coal locally 0.8'zone buddy broken sheared <u>MUDSTONE</u> : black wi coal locally 0.8'zone buddy broken sheared <u>MUDSTONE</u> : black wi coal locally 0.8'zone buddy broken sheared <u>MUDSTONE</u> : black wi coal locally 0.8'zone buddy broken sheared <u>MUDSTONE</u> : black wi coal locally 0.8'zone buddy broken sheared <u>MUDSTONE</u> : black wi coal locally 0.8'zone buddy broken sheared <u>MUDSTONE</u> : black wi coal locally <i>Numercuss</i> Imm - 3mm coals						
Pan Graichen		7, 2002.	/20	,20 .14 .10	-		75 72	110	H ^B H ^B H	122 0 4' of Sissile shall 122.2 abrupt contact 2 planar fract. 0', 15 <u>JANDSTONE</u> : interbedded fine sands and darker silts, irregular bedding textures.	- - -					
Sandia National Laboratories Logged by: Ran Graicker	23	Log Date: Mar 27	-1130	-03 -11 -/2			13 53 55 FS	1/1/		1124.8 areal contract <u>MUDSTONE</u> : black, coal bearing planer fract <u>1134.5-1135.5 mostly</u> real, too broken to clatermine thickness 1135.6 gradie gradie contact <u>SILTSTONE</u> : dk brown with brotwhidite						
Sar	βοη	δοΊ	- 1140 -	:17			45 50			 Streks on coal 56, 45° SILL STONE: at preter with visionality 45° ofreks, v. inregular, floted features, thick bedded, poverly fractured 						
svation:	2		- 1150 -	31 .60			20 70	1		147.7 grad contact 20t Autor Strokensides 10° off dip, along carbon remnant. 70°, planar sticks, dip slip <u>SANDSTONE</u> ; and grained, later biddled at silts tode.						Photo shear 1148'
Collar Elevation: Bearing:	Inclination: Total Deoth		1160 -	4			4	-	all while while	11653 grad contact MUDDY SILTSTONE: JK gray, Sonk D. 1 Did parting MUDSTONE: gray thick backed Some buy tracks MUDSTONE: dk brown, D.1ft. bad parts 1161.0 grad. contact 45° slicks dip slip, pair MUDDY SILTSTONE: JK gray, thick backed						
ü			- 1170 -	.10			яð		的地址创	parting is most common fracture of 3-4/1E pair of wavey slicks, dip slip + 15° rake & from dip.						
Drill Site: N:	Started: Completed			16 102 102			75 75	2	HITTHINK	Havey slicks, 30° off dip 75° slicks, bumpy 1cm. coal 75° slicks, bumpy 6 custed @ 1180.0A						

јест (1:120)	1	DEPTH, feet	Scocture height	Selting.	coal	r powate offine	FRACTURING	GEOLOGY	COMMENTS: Avg Core Recovery/ Hole	Drilling Interval	% Core Recovered	Core Size	RQD	Sample Interval	photos
10 10 10 10 10 10 10 10 10 10 10 10 10 1		1180	53	द्रैप,	39	33	Ē	Ĺ	Descriptive Geology	۵	e a				
Haton basin Project Hole No: $CH S$ Scale: 1" = 10' (1: Sheet 16 of		1190-	.01 .03 .05 .29			80 74 75	~	ululut alisan dan Ma	1810 abrupt contract @ 1780.07E: black 1980 desorp Sample <u>MUDSTONE</u> : black 2cn coal 1984 grad. contract <u>80</u> ,74' strekensides, bumpy irregular patterns 1984 grad. contract <u>BANDSTONE</u> : med. grained, gray green 1985 grad. contract <u>MUDSTONE</u> : dKgray to black tregular sticks <u>Two</u> (2mm, 3mm) cools						
raichen 1, 2002	1 1 1 1 2		.11			52	35/		11927 grad contract slicks 30° off dip 4 FINE SANDSTONE - SILTSTONE: dk gray groon						
senora nauonar Laporarones Logged by: <i>Ron</i> (รีกล่าะห้ <i>ย</i> n Log Version: Log Date: Naf. 27 , 2002.	· · · · · · · · · · · · · · · · · · ·	1200	32 .02			35 85	1/10	[14] · · · · · · · · · · · · · · · · · · ·	1968 grad cartact 35: v. bumpy Viregular stricks. <u>MUDSTONE</u> : black corbonaceous 1993 grad contact 500 planar fracture on side of conc 500 planar fracture on side of conc 50° parting on 2mm coal <u>94NDSTONE</u> : fine to med. grained coarser sands it. gray, interbedided with darker sittstnes. Some thick-bedded with bioturbidite features.			• •			
س اس اس <i>۲</i>	1	1210	2 6-6-6			38454 85	Ŋ	收益 。 1	strokes conjugate shours, poor slick dufinition - at rake 23. 121-3 grad contact 12° planar fracture 35° sat of (3) fractures- planar 12° planar fracture 35° part on carbon film in bedding lecolly sandstone 12(0) and stone 12(0) are grad, contact 12(0) stroks for rake stroks. MIDSTONE: black w/ coal seams 2000 coal seams						
Conar Devauor. Bearing: Inclination: Total Depth:	ت و ب ا د ب ب	1220	,Øl					SECTREX MULT	not fractured						
	<u> </u>	1230-	.20	•		35			1232.3 nudstone 35° dip slip fluted slickensides 1233.3 mudstone 35° dip slip fluted slickensides SANDSTONE: mod. to coarse grained It. tan with minor f.g. ss. 1 sillstone Contract						
urm sue: N: Started: Completed		240	,30 ,15 ,08	-		23 62	1/10		1243.1 23,1 riequiar fracture on 243.1 243.1 243.1 243.1 243.1 243.1 243.1 25 ft. Ironstone concretionary deposit w/ control stor fraduring 243.2 200 rake						
5 2 8 8		1250					ŀ	题	1248.0 grad. contactSILTSTONE	t					

п	(1:120)	h	DEPTH, feet	chure	sility	Coel	cartendra	FRACTURING	GEOLOGY	COMMENTS: Avg. Core Recovery/ Hol	Drilling Interval	% Core Recovered	Core Size	RQD	Sample Interval	photos
ខ្លុំ	Ξ		-1250-	ÊÌ	かけ	ga	38	<u>د</u>		Descriptive Geology		- u				
ΞŦ	÷	5	. 1200	.12	E		50'	∇	Ŧ	- 1251.6 abrupt contract SILTSTONE 50"million surface shear u/gong thick-bedded SANDSTONE: fire grained, group brown	_	1				
Haton Basin Project Hole No: CH-5		· N				ļ			L.	-1254.2 grad cartact SAND STONE: fire grained, gray brown SILTSTONE: dk. gray, chick beckled						
	Scale	Sheet	. :								-					
r 1	: 0	ິ	-	1			60		4	1257.0 grad cintad	-					
			-1260-	.02 .09			85	Ĺ		multiple orientation slicks. 35° warey dip slip slicks. 1264.0 grad contact Abundant Orien Erosh, random orientation SANDSTONE: Med. OC. randot is it orau	-				1 (
es s	2	N	Ë	1.04			63		5	12640 Orad entant Abundant Orken trash, random prientation		1				
	Ì	à								no fractures 1249.0 grod, contact thin beds disrupted by worm borings.	-					
	2	~	F :							no traciures interbedded with ak gray sins as laminatures	-					
		ar 27	-1270-						黨	SILTSTONE: interbedded francis f	-	I				
									X	noticitives sills becoming more sandy toward	-					
a va	ersic	Date: M	E	.10		-	æ	\sim	-	1273.5 - grad contact - 1273.5. Dircks on Imm coal SANDSTONE: four med. grained	1					
Linned by Don Carlo by	Log Version:	050		-			-			no fractures interpublical with dk gray sittstemes.	-			~		
			1280					۱.,			-					
				1.10				6		1281.7 - abriet contract SIITSTONE: dk arow thirk hedded	1					
				1				'	E	of frad. skins side of core SILTSTONE: dk gray, thick bedded bedding parting each 0.2-0.4 average, caused by drilling fracture, drilling caused	-					
			-						E	caused by drilling fracture drilling caused	-					
			: :				52.		E	slicks, wavey, dip slip	-					
5			-1290 -	15			74	r	-	12011 gred contact	~				1	
INRAS	Ë	÷		1		·				1291.4 gred contact 1293.4 parting wach icm - 3 cm. 1191.8 - 1192.5 ' 1293.4 missing core <u>MUDSTONE-SILTSTONE</u> : interbedded						
	atio	Total Depth:		1.11			55			wavey polished slicks	-	1				
Coner Elevation. Bearing:	Inclination:	Total	· · ·	.17			45			striks 15 rate from dip, slick surfaces curves down dip 20 to 60"!	-					
			-1300 -						Ē	1301.A_ si Habove grad contract	-					
			È	:02			85			BO2.0 grad. contract B5. Slicks on brading plane <u>SANDSTONE</u> : med. g., It. tan; enechelin fractures, 3° fractures are sub parallel, the 0° fractures caloite sitterne izo6 -1307 filled. is at near right 3 to 3° fracture strike.						
		. 1	-	1,30	•		5	1	[*	enechein tractures, 3° fractures are sub parallel, the O'foot., 20% calata film, is at near right & b 3° fracture strike.	~					
			£ .	130				1	E.		1					
új			·	4.70	-	-	3		62.	13086	-					
			-1310-	100						13:03.25 Sample removed 13:03.25 So shiks on bedding 13:2:0 grad. Contact 13:2:0 grad. Contact 13:2:0 grad. Contact	-				1	
		_	F .	.02			80			1312.0 grad. contact SILTSTONE; gray, brown thick bedied	-					
5	÷	letec		2.4	Ρ.			2			-					
No Z	Started:	Completed	-					-1		long rough surface fracture, <u>SANDSTONE</u> : coarse grained to begins @ siltstone hed	-					
) Z	ő	0	- /20-	-				1	1.1	schingt - rohum exits whe						

							-		· · · · ·				1	r		TT	
<u>ک</u>		(1:120)		DEPTH, feet	recture	sporte fitu	porting	carturate conting	FRACTURING	GEOLOGY	COMMENTS: Avg. Core Recovery/ Hol	Drilling Interval	% Core Recovered	Core Size	RQD	Sample Interval	photos ·
ġ	5			-1320-	. <u>.</u> 2	3	8-	130			Descriptive Geology	ļ					
Raton Basin Project	Hole No: CH - J	Scale: 1* = 10'	Sheet /8 of	-1330							<u>SANDSTONE</u> : cont. coarse grained it tan, thick-budded featureless. <u>UNFRACTURED</u> !						
Sandia National Laboratories	Logged by: Ron Graichen	rsion:	Log Date: War 28, 2002	-1340					a - provide the first first second			adates and the fact of the second					
Sandia	rogge	Log Version:	Log Da					52			.1363.25 sharp contact wavey depositional 1365.3 sharp contact MUDSTONE dikgray to broweish gray						
Coltar Elevation:	Bearing:	Inclination:	Total Depth:	1360-	13 .02 .02 .03 .02 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03) (22)	22	54 75 ~/	1-01-1		Deth are dip Slip Glick shears parting on sitty lam. Yery long rough surface fracture X-citty 22° fracture grad. Contract 1866.0 grad. Contract SIRTY-SHNDSTONE: fire-med. q.						photo 25 Single Fracture 1369-1362
	ü				1 48 A 3			70 60 40	No.		Sands inter bedded w/dk gray sitts. Deels. 60° dip slip ; 70, 13 30° rake from dip. (ccnjugate pair ?) 36° sticks 20° off dip 43° slicks 10° rake from dip. 1376.E sillstone. 1378.0						- - - -
Dritt Site:	ż	Started:	Completed		.08			48	10		1381.0 sharp contact SAND STONE: coorse grained, it. gray thick hadded with thin wispy silts (1389.0 sharp contact						

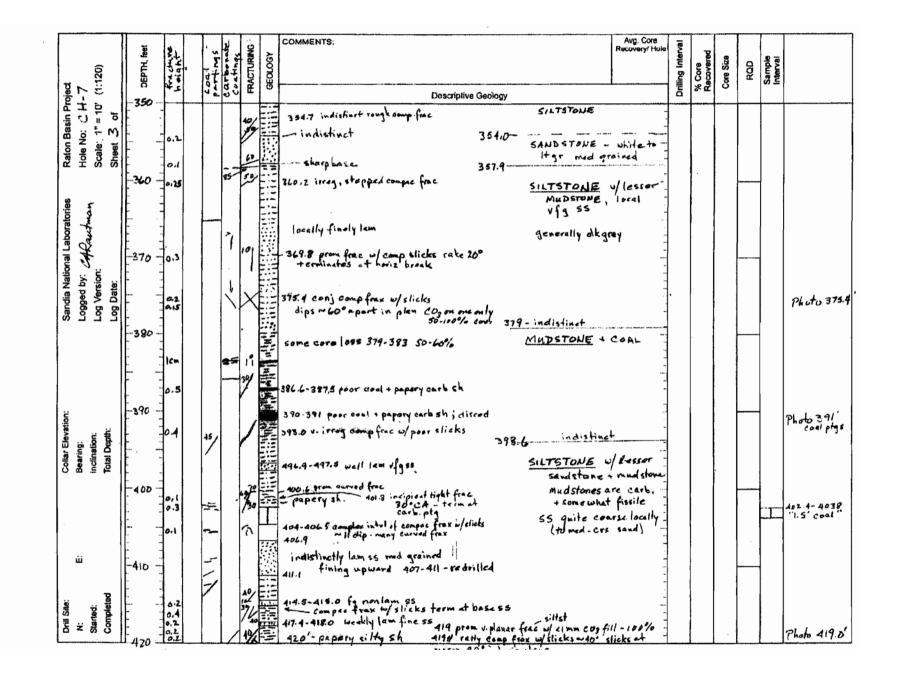
ect	11-1201	(121)	DEPTH, feet	acture	Local Har	coal berting	contradic	FRACTURING	GEOLOGY	COMMENTS: Avg. Core Recovery/ Hole Descriptive Geology Descriptive Geology
Raton Basin Project	HOIE NO: C.H-D Scale: 1" = 10' /	9 of	-1390	.04	6×		0 I 70	10		Descriptive Geology Servery! /-2mm coals and <u>SILTSTIPNE-MUIDSTONE</u> : d/k gray to 0.15 coal of contact, dk brownish gray & black - 1393 - obrapt contact, dk brownish gray & black - T5° polished wavey, curving slick surface; 70° bumpy dipslip shear. - T5° polished wavey, curving slick surface; 70° bumpy dipslip shear. - T5° polished wavey, curving slick surface; 70° bumpy dipslip shear. - T5° polished wavey, curving slick surface; 70° bumpy dipslip shear. - T5° polished wavey, curving slick surface; 70° bumpy dipslip shear. - T5° polished wavey, curving slick surface; 70° bumpy dipslip shear. - Brownish gray fr.g. Sand stone. <u>SANDSTONE</u> : fine-gra
Sandia National Laboratories	LOGGEUDY. KON LETAICHRN Loo Version:	Log Date: Mar. 28,2002		5.4	n			ö	的目的主要的目的主义	- 1401.0 long rough surface fracture, double split 1404-1405. Icm apart No other natural fracturing 1409.4 dk brown siltstone
Vandia	Log Version:	Log Date	- 420-	.15 .15		*		50/3	行時間错误会的	so coal Three lim. coals, one 0.25 ft broken coal. 65° slicks on coal; 1417-1418 subangular sittshine poblels -1418.5 coal bass SANDSTONE: fine gr. to med. gr. rough sufface near It. gray interliedded w/ dk gray sittstone beds dip slip striae. I laminations. Some biotuvoidite testures. planar fract, top begins in sitty bed, bottom exits core. -1420.5
Const Erevanon. Bearing:	Inclination:	Total Depth:	-1430-							SANDSTONE: med. to coarse gr. It. gray thick bedded Sendstone wishy silty bedding indicators show bedding folding - soft satiment no fractures deformation perhaps.
		Completed	-1450-	1. 0.0 1. 0.0 1. 0.0	(01		55 47	Ŧ		1154.4 200 rate from dip shorp cartact slicks 200 rate from dip SILTSTONE: start of interval is slicks 200 role from dip Gray, thick bedded: 0 planar fracture broad wavey Gradually becoming Saudstance of theory th

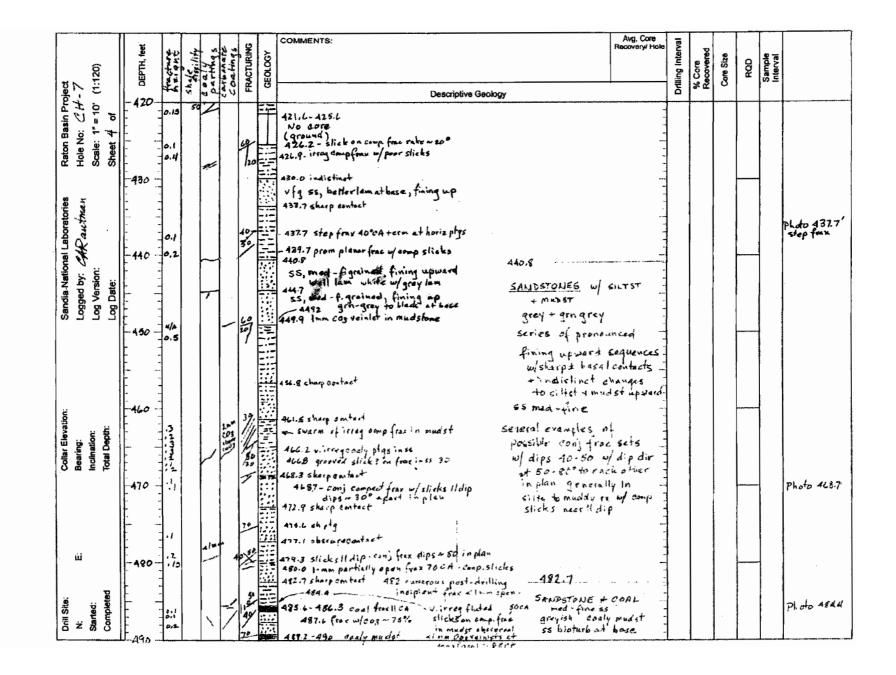
ម្តីរ០	WC1-17	1.1201	DEPTH, feet	fracture	ssilitu	arting	arborba	FRACTURING	GEOLOGY	COMMENTS: Avg. Core Recovery/ Hole	Drilling Interval	% Core Recovered	Core Size	RQD	Sample Interval	photas.
Raton Basin Project	Ģ	2 - 2 D of	-1460 -	4		<u>ga</u>		ĵ		Descriptive Geology A contact 1459-1461, carbon trash & pindim. Orientations. 2 166 two unbroken fractures, parallel CA 0.42' and 12'CA + 0.40'.						
Sandia National Laboratories	AUN LANCHEN	Nar 28, 2002-		.14	5		50'	00	生酸、雅兰生生;	Long rough Buiface fracture, top begins as a "J" fracture @ 1476.4' and finally exits care in sittstone bed 1477.4' Fracture longth has a very gentle sinnows orientation Slicks. 10° rake from dip, planar surface planar fracture in sittstone bed.						
Sandia Natio	Logged by, F	Log Date: M	-1490-	.47 .85 .63 .50			2 8 12	Ĭ		Fininger random orientation carbon trash Several fractures nearly parallel CA intersecting of Acuta angles 2° unbroken fracture Bp 4 bottom start + and in sittationa laminae. 8°, V. rangh surface, parallel strike to 2° structure. 12°, planar, net rough + at about 10° strike variation from other fracts.						photo 26 unprokan fracture photo 27 H89 ft two fracture
Collar Elevation: Bearing:	ion:	epth:	-1500	32 45	(16) (8)		16.8 32.72.5	100		195.4 abrupt contact SILTSTONE: dk gray thick-bedded 2.0° very wavey, generally parallel core axis, 2-3mm wide, one side is hono- 2.° serieus sittstone, the that is a jumbled swirked instruce sitstone 1501.3 grad contact						photo 28 inegular ci "Vein" 1416-1497
Collar Ek Bearing:	Inclination:	Total Depth	-1510-				6			st of slicks, all parallel to, 62; 60; obout 10:75; rake from dip 2 -1507.5 grad contact SILT STONE: gray, thick bedred -1510.5 grad contact Cancer Direct Concerns of the sandst. -1510.5 grad contact Cancer Direct Concerns of the sandst. -1512.4.3 mudstone w/ 1-2mm coals So; planar slicks 920; roke fom dip -1517.2 sharp contact Cancer trash. -1517.2 sharp contact Cancer trash.						photo 29 1902' sat ut slic
ú	i .	1	- 1520-				50			F.g. sandstene. It. med. gray & darker sittst.						-
Drill Site: N:	Started:	Completed		15			50 85 45	ő		slicks 15°rake from dip; 0° planar fradure 35° dip slip hackly slicks 45° slicks 10°rake from dip						

ĸ	(1-120)	(n 7 1.	DEPTH, feet	fracture	K Silib	- Aline Hine	conting	FRACTURING	GEOLOGY	COMMENTS: Avg. Core Recovery/ Hole	Drilling Interval	% Core Recovered	Core Size	RQD	Sample Interval	Photos
n olec	, ⁵		-1530	fra	24	88	38	#		Descriptive Geology	δ	~ ~	<u> </u>			
Sin Proje	10, =	j jo	-	.44			0	·		planey reflect fronture cont 3ANDSTONE-SULTSTONE interbudded.						
Katon Basin Project Hole No: 04-6		- 7		1				1	11 12	Long planar fract, locatly double parallel fracts 0.5 cm a part. Top pegins						
μ Π		Sheet	-	7.0	þ		0			- 1586.9 grad contact - SILTSTONE: dk gray, thick-builded						
د م	5		-1640-	1.50	(o)			ø		planar fracts. near, parallel - MUDSTONE: dk gray-brown 1542.6 - abrupt contract _ but diverging & exit core						
sandia National Laboratories Longed hv: Rein Grainfiew		2002	- 	,90			o			SANDSTONE-SITTSTONE: interbedded dk brawn siltetine w/ serecal f.g. Sands: - O' fract. begins \$ ands thin 1-2mm celes. - O' fract. doubles only in 354 in filty bedding. - O' fract. doubles only in 354 in filty bedding. - 1549,4 - 1549,4 - 1549.4 - 1549.4	а. м. м.					photo 3
ational Li v: Don (Apr. 2	- 1550 -	1,20			0.	A	1. I.	thick-bidded, calcareous cament	# • •					fracture doubles in sandstan bed,
occed by	I on Version	Log Date:		2.0	0		0.	(0; aver. incl on sinupus fract. To colly doubled. Fract. enters & leaves core domain Two enechelon & curving fractures similar to above, separated by ~ 2 cm. Ninor pyrite on me						1548-1544 Photo 31 1554 R
			-1560-	1.2	0 (5 [.])		61	3.1		15594 abrupt contact SANDSTONE-SILTSTONE: interbedded And the colore in SANDSTONE-SILTSTONE: interbedded Mostly fine grained sandstone						Sinyous fract in 3!
								55		- planar elizks, dip slip, In sittstone bad.	-					
ź			-1570-	150	Þ		क	81	THE REAL	15684 grad. contract planar fract enters rore in SS, <u>SILTSTONE</u> : gray, thick bedded. kaues in sittstone, sittstone of budding parting due to drilling ea. 0.1ft 1573.0' mudstone 1573.0' mudstone 1573.1' 0.3ft thick coal bud 1575.3 grad. contact <u>35</u> slicks' curved in strike, dipslip, stride 60° polished slicks, 15° roke from dip. 27° where and dipslip. 27° where dipslip. 27° where dipslip. 27° where dipslip. 27° where dipslip.						
oural crevation. Bearing:	ation:	Total Depth:		20			35 60	K		1573.0' mudstone only in longth of fracture. 1574.1' 0.3 At thick coal bid 50° striks rough Surface, string odip 4. 1575.3 grad. contract 35° slicks curved in strike dipslip stride.						
Bearing:	Inclination:	Total	- -	.30			27	//		27 Wavey surface, dip slip. SANDSTONE: fine grained, gray,	-					
			1580- -	.0			4 0 55	$\left \right>$	調整	5795 - Gradational contect thick bedded 15795 - Gradational contect thick bedded 15795 - Multi Store ; 55° planar slicks 25° roke from dip 1580.6 - Multi store ; 55° planar slicks 25° roke from dip 1580.6 - Multi store ; 55° planar slicks 25° roke from dip 1580.6 - Multi store ; 55° planar slicks 25° roke from dip						
			- 	-						no fractures SANDSTONE SILTSTONE: interheddee fig. sonfs and sitts as fine bedding and						
យ់		,	-1590 -	.08			60		調告	slicks near dip slip gently laminations. Occasional v thin cod.	-					
ite.	÷	leted	-	1					HIM		•					
	Started:	Completed		08			60	·	Lagar.	- 1596.7 grad. contract <u>MUDSTONE</u> : dk brownish gray Bedding parting common ea. 0.10ft I	-					

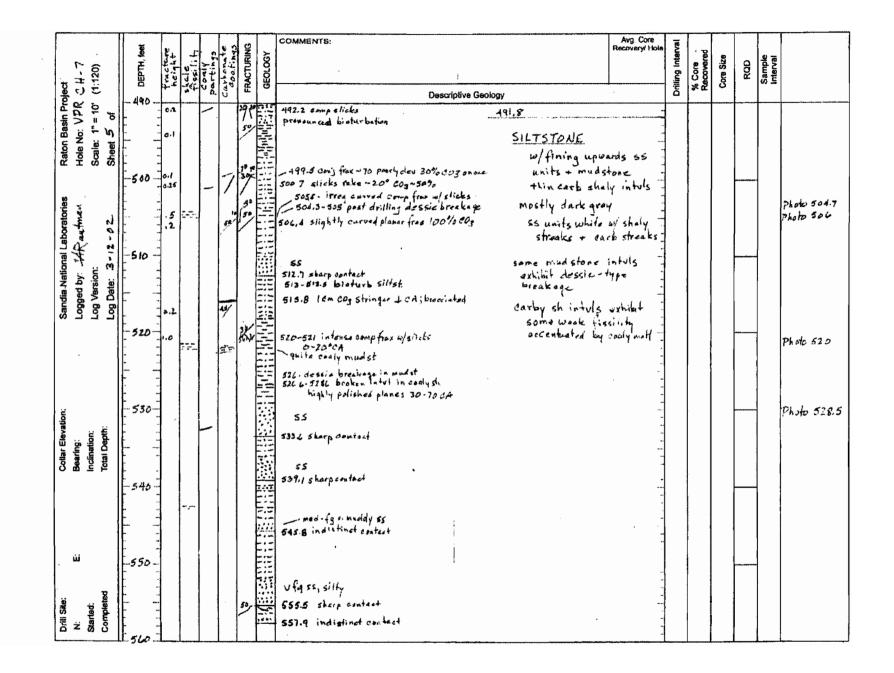
*		(1:120)		DEPTH, feet	ante	sete With	ting	tomata otna	FRACTURING	GEOLOGY	COMMENTS: Swelling clays common throughout hole Ang. Core Core diameter 0.20 ft Recovery Hol	Drilling Interval	% Core Recovered	Core Size	Rab	Sample interval	Photas
ι ξ	Ģ	с ,		-1600.		34	8ā	Ser	u.,		Descriptive Geology	ŏ	~ <u> </u>				
Raton Basin Project	Hole No: CH-5	: 1" = 10'	22. of .		.10	*		\$ \$ \$	X		dipatipalicks, 40; 46 cont. <u>MUDSTONE</u> : black, coal bearing 1602.6 desorp sample 1603.3 desorp sample 1604.5 - 0.35 coal grad, contract						
			Sheet	1610	4.40				0	に行き	Long planar, otraught <u>uthin beds & lominations</u> sithsbur & r.f. saulska fracture. Top byins in sitistene bid, doubles for 0:7 & 22175 core of bottom.						photo 32 long flactur 1606-1609
atories	Graichen		2002		.80	-		**.	م (1643 abrupt contact curred flacture infort care domain SANDSTONE: med. grain, it. gray 16134; mm coal 1010.2 abrupt contact 1010.2 abrupt contact						in pho
			Apr. 2.	-1620-	2.15	5			10		<u>SILTSTONE</u> : dk. gray, thick builde						
Sandia National Laboratories	Logged by: Ren	Log Version:	Log Date: A		.29		28	67 55			1021.3 mudshuc-black - a few petal fractures. Drill discing ea 1-2cm. 1622.0 sultatone; 28° elicks 10° rake from dip; 30% calcite filling 1623.4 fig. sandstone, thick bedded 58° 67° slicks, both near dip elip 1626.0 f.g. sandstone, thick bedded 58° 67° slicks, both near dip elip 50° curred slicks (in strike) strike @ dip 3.°; 60° slicks near dip slip			1			
<i>i</i>	E	د	Ľ	-/630-	.08 .11 .02		80	5.9	35/		35° rungh slicks; 50° is unbroken 2.5 mm wide calcite vn 100% f 1631.0 blacktone 35°, rough plicks 1632.5 mudstone 35°, rough plicks					•	
					- - -					語の語	unbroken	-					
Collar Elevation:	÷	ion:	epth:		.01 2.30	D		3	75 T		1639.0 f.g. sandstone abrust contact 1640.0 badding parting ea. o. 1 te MUDSTONE: black, coal bearing 1/2-100 1642.2 - abrupt - 75° dip slip clickensides <u>SILTSTONE</u> :	. N					
Cottar	Bearing:	Inclination:	Total Depth	(650-	59994				31		1646.0 aborypt contract SANDSTONE: f.g. interbedded w/siltstand 1647.2 or, curred (strike) slicks oo, slicks@30° rake from dip 1649.6 aborypt dip slip oo, slicks@30° rake from dip	7					
					.31 1.00 .20	×		23/ 35	, •	Citil Maria	SILTY MUDSTONE 3° ling sinuous fract.; 23° slicks, 20% calcite 1652.5 30mc fictal fracts. 3° planar fract ands in <u>SILTSTONE</u> gray to dk. gray 1655.8 thick-bedded	_)+ /(4 - - -	ď.				
i	ů			1660	.29 .90	-		20	10		SILTY MUD STONE 35' \$ 20° slicks w/ strine 30° mate to dip. 1608.5 0.4ft coal drill rubble - or begins & coal bed, planor fract.						
Site.			bleted		.10	1		64	<u>3</u> •}		1661.3 - abrupt contact <u>SANDSTONE</u> ; fine-grained, thick bedded 1664.0 0.5'sitty mudstone 64" planar dip slip slicks. 1666.0 - 9120d, contact	-					
Drill Site	ź	Started:	Completed	1670	.60			64	1	HIII	1466.0 grad. contact 64° prenar dip slip, 3° fract SILTSTONE: 3° 13 a "1" fracture, terminates on slip.	tr.	04	JR	e be	lors ,	

iject	10	(1:120)		DEPTH. feet	radure	shale Fiscility	porting	confidente conting	FRACTURING	GEOLOGY	COMMENTS: Avg. Core Recovery/ Hok Descriptive Geology	Drilling Interval	% Core Recovered	Core Size	RQD	Sample interval	photos
sin P	Hole No: CH-5	Scale: 1" = 10'	Sheet 23 of	1670	.82 140 1,60 1,60	ŕ		10] 61	0' 3' 12		1671.7 average contract cont. EILTSTONE 100 contract contract EILTSTONE 100 contract contract EILTSTONE: fine gr. to 1674.5, thur 100 contracts to the state into SAND.STONE: fine gr. to 1674.5, thur 100 frect. top & bottom face into sitestime fracts, a slight colored. 100 frect. top & bottom face into sitestime fracts, a slight strike rotation before 6 state of 3 un broken calls tilde fracts, a slight strike rotation before 1679.4 mudstone dk gray oil parting. 12°, planar fract, upper term in 35.	uren	then				photo 4 unbrokan ing ring cold the ven isoli 5 photo 5 nultiple (bicg filled frocts)
aboratories	Ginichen		3,2002			5.7			10/		1683.9 1683.9 1683.9 1685.7 desorb sample 1685.7 desorb sample 10° dij) slip planar slicks.					-	strike rotation
Sandia National Laboratories	Logged by: Kon Graichen	Log Version:	Log Date: Apri/	-1690-	.02 .05 .02 .15	(60)		58 50 50	Ι	和原用	1690.0 silty muldstone 50° slicks near dip slip 1692.0 75,85° slickensides alickes accuste strize set of (3) parallel shears, other strize 10°-20 rake from dip.						•
Ss	2	۲	Lo Lo	-(700	.05	73		5.5	X		1699.4'; a.2' bed of V. fissile shale (FAULT ?) 1700.0 — gradational contact no fractures, <u>SANDSTONE</u> ; fine-grained, dk gray, 1703.2 — gradational castact interbedded with situations. 1705.5 — grad contact Seams ~ (mit & 2mm Chick, 1705.5 — grad contact						photo II 1704.5 multiple slickensicles in nudstene
Collar Elevation:	Bearing:	Inclination:	Total Depth:	-(7/0 -	19 500	(3) (60) (45)		4 A C 4	VIX. I		1705.5 — 9rad contract						bad.
S (ă,			- 1720	,12	25		5.6			and exits core soft satiment textures. 1719.4abrupt antect 0.3'highly shattered <u>SILTSTONE</u> : dk gray 50 slicks, dipslip. - conjugate shears, both slicks@ about 45'vake, 2 soft of these within - conjugate shears, both slicks@ about 45'vake, 2 soft of these within		t of	an			
	άĴ			- (730-	.23	(10) (15) (10)		8 22,585 852	A11	Lingula 101	32° Bircks 30° rate from dip 4. 1727.5 grad. contact but are 90° opposed! 1727.5 grad. contact MUDSTONE: slightly sitty, dk grey, coal strike dip strike dip strike dip 35° gently curved surface, strike 10° rate from dip	-4	rahu 28- rakon umen	3/12 1730 2012	s/rck		photo 1727' Typical Eurred Surface slicks
Drill Site:	ż	Started:	Completed	1740	浮	99999 999999 9		52 55	K	WE WE	100° Warey such slicks near dip angle; 65 broad warey, strice zs robatrandip 52° burnpy alicks, 20° rake dip <u>SANDSTONE</u> fine-med. grained - Conjugate shear <u>SANDSTONE</u> fine-med. grained - Strike from dip Strike along edge of core in entop, out 45°, 30° rake from dip 0°- skibe along edge of core in entop, out 60 than.		Part,	ACAS. Hac	tures		

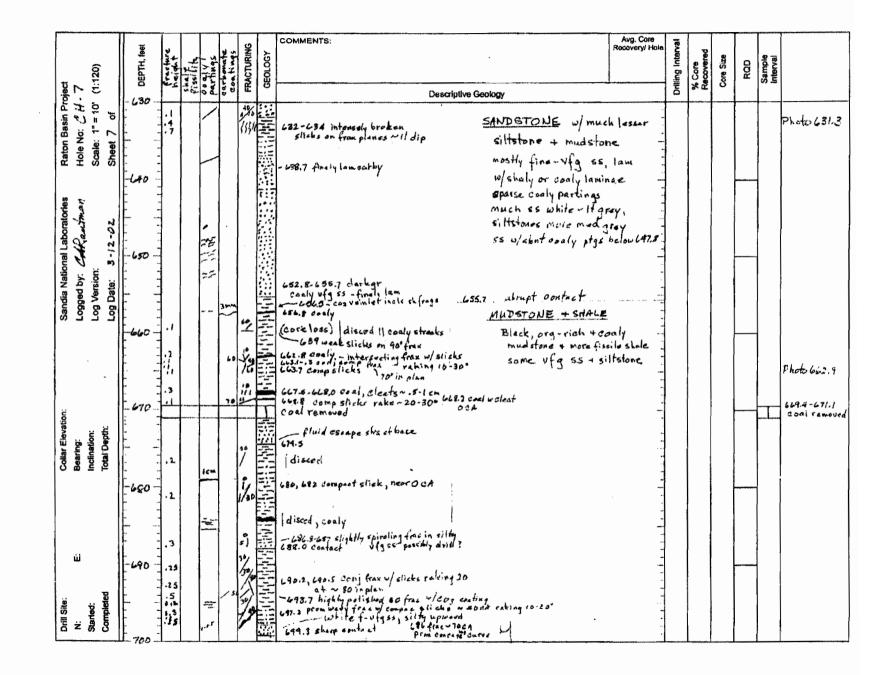

ប្ត	(1:120)		DEPTH, faet	fracture	wate it tu	eal	conting	FRACTURING	GEOLOGY	COMMENTS: Avg. Core Recovery/ Hok	Drilling Interval	% Core Recovered	Core Size	RQD	Sample Interval	photos
Raton Basin Project Hote No: Art - E	, E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	I	- 1740	30 35 39	બધ્ય	.54	10 15 15 15 15	// /	出出生在形论	Descriptive Geology Cont. <u>3AND STONE</u> : It. tan med. grained rough surface fracture <u>becoming coarse grained</u> 1746-1749.5 itop starts & silty lamine, bottom exits core 80,75 porting on bumpy surface carbon tresh lominee - excreme parting						
Laboratories		3,2002		B.B	<u>ب</u> و س		42 Đ	1	的。他们的自己	1752.3 shorp contract slicks near dip slip bumpy surface. <u>SILTSTONE</u> : gray, thick-bedded becomes very fine sandstene 1756 to 1760 ft, a brown gray color slightly wavey surface slicks, strike 20° rate from dip.						
Sandia National Laboratories Looced by: Row Crysteries	Log Version:	Log Date: April	-(770-	.20	11111111 of	•	14 K K K	1/2 A	的的可用在同一	core appears to have been wetted during ciriling - swelling clays have altered core to crumbly, findly preces. - alicks 25° are dip slip, 30° streds variable. - planar fract, top end puble - so may belonger. - curving surface (cir) near dip slip - rubble, numerous buy ongle elick's, 10° to 20° CA 72° gently curved slicks - rough eurface fracture. - rough eurface fracture. - sANDSTONE; mud. to coarse grained	20"	roky	ldıp.			
ation:			1780	75 .03			5° 95 70	1		reub siltstene clasts; 0.14, 0.20 ft. 10 fracture top bagins on corbon trash hadding lania + bottoms on siltstone bed or fragment. 2 Somthick bed or fragment (?) wij slicks at both top 4 bottom sharp contacts.						photo 19 sillatone closts in sandston photo 20
Coltar Elevation: Bearing:	Inclination:	Total Depth	-1790-	00 C 20	(8) (45)	100 13	\$ \$	B	、機器・主体	5° fracture comes into core on typ through siltstue fragment & exito core on bottom. Fracture twinness parallel (19 y2cm - 1 cm apart for 1784.8 sharp contact fract below fragment/bat. wavey surface 0.15 mm coal bat in 83 porting 1787.2 abrupt contact. enters core @ contact - exits below for planar froct. enters core @ contact - exits below for slicks zo rate from dip, cross-cart by fracture. for pair of parallel slicks, near dip slip. 1782.8 To parting on corbon trush beckling lamina.</td <td></td> <td></td> <td></td> <td></td> <td></td> <td>lòng fiactur</td>						lòng fiactur
úĴ									PE TO ST	1993.7 - high carbon sondstone -black SANDSTONE: med. to coarse grained Mostly It. ton, thick-backed with local No fractures No fractures				×		
Drill Site: N:	Started:	Completed	1810							a few sillatone publics - 1809.7 sharp contect	- - -					

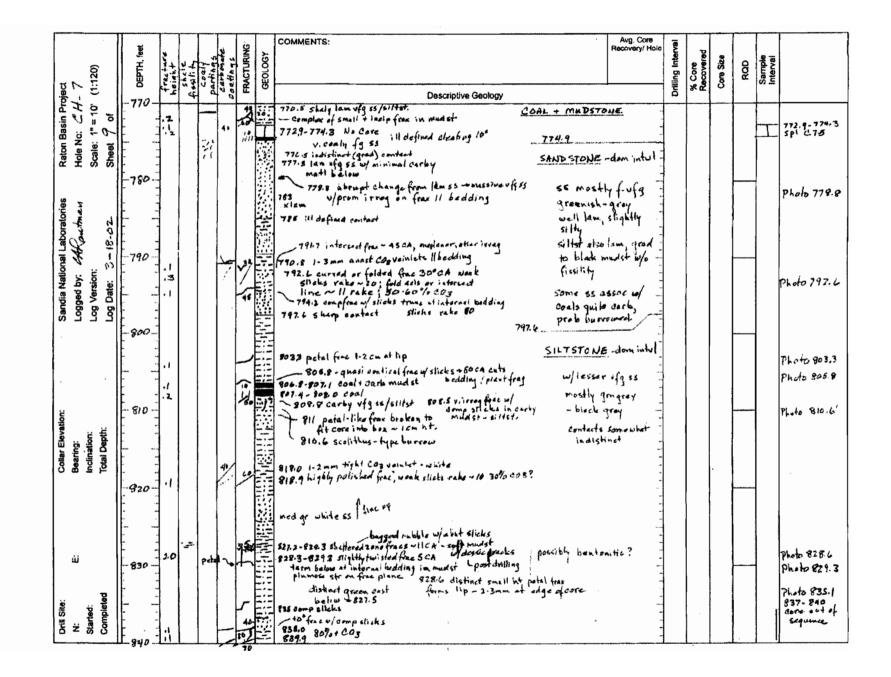

ject 5			DEPTH, feet	Fracture	shale fissility	ceal parting	carbinate. Cooting	FRACTURING	GEOLOGY	COMMENTS: Descriptive Geology f.g. SANDSTONE	Drilling Interval	% Core Recovered	Core Size	RQD	Sample Interval	photos.
Raton Basin Project Hole No: CH - 5	1 1	2		.90			° 3]	anna ann ann ann ann ann ann ann ann an	1811.0 abript contact plonar fract MUDSTONE: black badly broken 184.4 sharp contact driller pushed the bit too hard. 1815.5 f.g. 1 mail g. sandstone <u>SILTSTONE:</u> gray, thick bedded } broken 15; slicks 15° rokydip 60; slicks 15° rake /dip.						
		2002		.08 .20 .18			3 Q .5	1	In the second	- broken 15, slicks 15 roke/dip 60, slicks 15 roke/dip 1819.5 black multione. (2) 1/2 cm. coal scarss at rop of roudistone 1823.0 1823.0 1823.0 1823.0 Sticks, dip slip MUDSTONE: dk gray to black. 55 slicks, dip slip MUDSTONE: dk gray to black. - swelling clays-drilling coused?, crumbly, drilling discing						
Sandia National Laboratories I noned by: Contribution	Log Version:	Date: April 4,	1830-	,2B ,29 ,29			12 32 8	1	Hull Street	12° planar firet 1829.3	unter transferration of the second					
Sand	6607	1 Gol	1840-	30 .02		82	8	1		- carbon tresh bedding laming-porting	2 					
Collar Elevation: Bearing:	inclination:	Total Depth:	-1860-	.06 .09 1.0 .07 .60 12	(63)	8 8	100 - 80	<		- 1844 - a few random I cm rounded/subrouncled siltstepe peoples 70° shear un siltstone bed. in coarse-grained sandstone 60° parting on 3 cm thick high carbon bed 10° rough surface fracture with 20%, carbonete filling 1849.2-1849.7 silty bed 1851.7 MULSTNE 43°, polished planar slicks on carbon silty bed 1851.7 MULSTNE 43°, polished planar slicks on carbon silty bed 1851.7 MULSTNE 43°, polished planar slicks on carbon silty bed 1852.1 10° planar fracture mortanacous shale 10% carbonete filled 50° wavey surface. slicks, dig slip * bottom controct of mudstone mulstone peuble beds.	ed,	-				Dhoto 34 1851.5-18 planar fracture in Garbonacio
് മ്	Ĕ	4	-1860													nuci <i>s</i> tne be
ы Ш		eted	-1870 -	.09 .09 .09		55 53	57	~		5085 A nearly coal 55,53°, sticks 10° mka from dip, 100% coaled ut conjugate shaar pair. Calcite 1868.9 Sharp contact 57° planar slicks, 20° rake/dip dk gray to black, mostly thick, petal fracts in mucisteres, backed. 1874.T' desorp cample, a bus inches of mudistone abuve i below sample introducen com fasthery colorte vein 65° ch						
Dr <u>a</u> Site	Started:	Completed		-		P	A5	/		- 1978.0 grad contact Hairline cale to in bedding partings. - 1978.0 grad contact Hairline cale to in bedding partings. - coal lons up to ICM. MUDSTONE; dk gray	-					

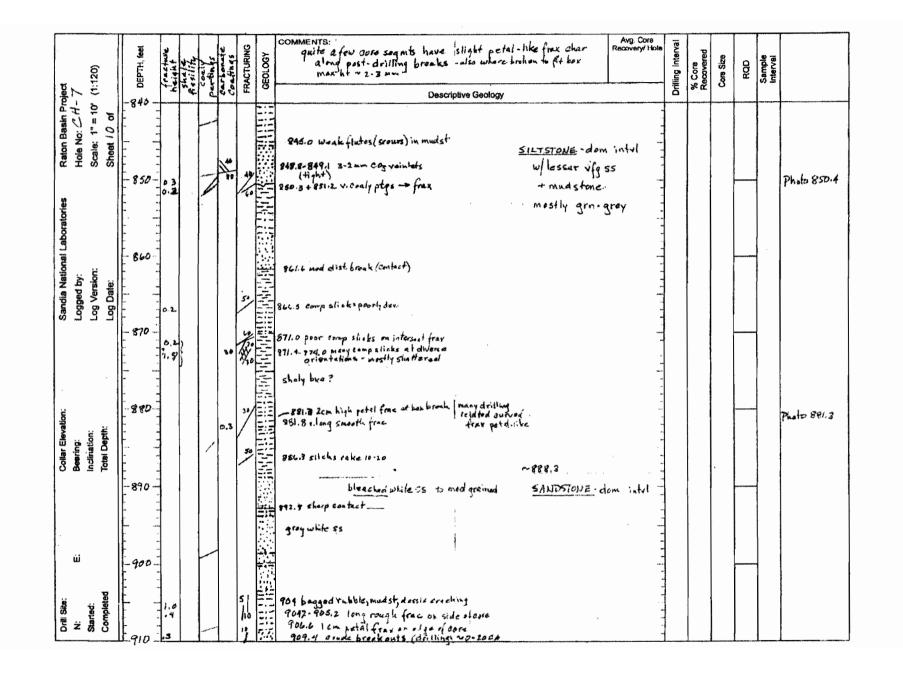
		(1:120)		DEPTH, feet	ture	shall fissility	thog	corport	FRACTURING	GEOLOGY	COMMENTS: Avg. Core Recovery Hole	Dritting Interval	% Core Recovered	Core Size	RQD	Sample Interval	photos
n ed	•••			- 1880-	field	14	88	38	E	ľ	Descriptive Geology	δ	80	0			
Raton Basin Project	Hole No: CH-	Scale: 1" = 10"	Sheet 24 of		,43		0				- 18815 desorb sample swelling elay-oppenes to highly fissile 1878-1880 - 1883.6 drill induced shatter, bed parting icm spocing. Water soaked - 1884.1 grad contract Site of a gray, drill induced - 1884.1 SILTSTONE: d'& gray, drill induced - 51LTSTONE: d'& gray, drill induced - beding parting 2-80m						
œ:	Ĩ	σ.	Ø	1890-	.05 .06		56	15	70	通道	0'13 0.3 mm calcite vn, un Broken 70° curving striac, near dip 4. - 18904 - grad, contact - MUDSTONE: JK gray - black.					-	
oratories	raichen		2002		. [.14 	(4 5)		0		調査	1893.0 could grad contact to slick an cest, slicks 30 take from dip. — planar fract in MUDDY SILTSTONE: gray. Drill caused - broken core bedding porting 3cm - 5cm, common some petal fracturing						
Sandia National Laboratories	Ś	1	April 4.	- 	.10 .14			10		III .	+ 55, 0.5mm calciter. 100% filled SANDSTONE: very fine grained -						
India Nati	gged by:	Log Version:	Log Date: /								* 40° O.I. mm caleta at top contact gradually grading to coarse va-unbroken grained sandstone w/ peoply beds Dk. gray sitty beds are invegularly bedded,						•
S -	2	2	٩	1910						11.							
				· ·	.40 .07	(6 2) (80)		8	[fracture starts in silty bad above, exits core below 80° coal parting on Imm partial coal sam. - gritly & public at base of unit, bedding 55° CA.						
;uo				- 1920-	6	(80)	90	r			black carbonaceous <u>MUDDY SILTSTONE</u> : black to dk gray 62° Stoke parallel dip, 20% calcile filled, planar 87° 2.5 mm calcile va. 100% filled, 90° coal seam parting Icm about		-				
Collar Elevation: Rearing		Inclination:	i Ceptu		-,21						15', 0.9 cm was pathory calcite voin/ 100%, healed fault with laminated sand stone offsetting thick-backed silts tone.						62 plande slicks 100% for carbonete
0			Ĕ 	- 1930-	-	2.2		BO 62 23/			- sittetime moderately calcareous SANDSTONE: f.g. to 1926-med.g. 1928- 1928.0 - starp cartact 87 CA INSTANTING with sittetime. - scanson innotine currentin w/ pycality SILTY MUDSTONE - 1930.5 - grad. contact - digray to black -						calcite VM in carbon
					.02			8	5	1.4	Imm callete Alled badding parting <u>SANDSTONE</u> : fireto med.						hedding
ù	ui			-1940							grained						
Drit Site: N	-	Started:	Completed		.60 .09				6 63		- 0' vert. planar fracture - 19452 - ebrupt contact - 19452						
ξż	Ż	8	8	1950	.02	1		8	Ĺ		1948.3 grad. contact 80, war all sign in righ carbon shake						

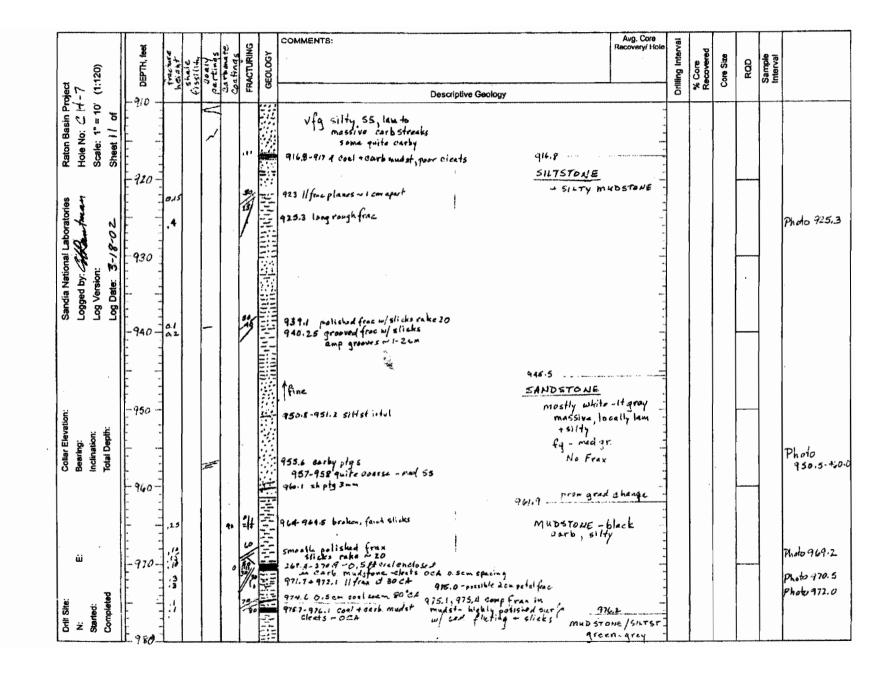

20	1	DEPTH, feet	Fracture	rtings	carbonate	FRACTURING	GEOLOGY	COMMENTS:	Avg. Core Recovery/H	Drilling Interval	% Core Recovered	Core Size	RQD	Sample Interval
Raton Basin Project Hole No: \mathcal{CH} - 7 Scale: 1" = 10" (1:120)	t / of	-210 -	Fra-	92	202	FRA	GE	Descriptive Geology			88 8	3		0 =
	Sheet	-220-				and a second				<u> </u>				
Sandia National Laboratories Logged by: <i>CA Rauthure</i> H Lon Version:	Log Date:	-130 -												
Sar Log	Log	- 240-			A LOUIS A COMPANY AND A LOUIS A									
Collar Elevation: Bearing: Inclination:	Total Depth:	-250					and a second	•						
Ü		- 260 -	20 40 10 10 10 10 10 10 10 10 10 1					270.0 start of core						
Drill Site: N: Started:	Completed	190		1940 A.		85		272.5 Ion Shiam 275.0 Frax along x bods 277.2 sillysh 177.5 Shickips more shaly 277.2 sillysh 277.2 sillysh 277.2 sillysh 277.2 sillysh 277.2 sillysh 277.2 sillysh 277.2 sillysh 277.2 sillysh 277.2 sillysh	strey	<u> </u>	. 12			

Ţ,	(1:120)		DEPTH, feet	frecture height	Coal Partings	car benate	FRACTURING	GEOLOGY	COMMENTS: Avg. Core Recovery/ Hole	Dritling Interval	% Core Recovered	Core Size	RaD	Sample Interval	Roll Z
Raton Basin Project Hote No: CH-7		ō	180 -	- J.Z - J.Z			10 111 111		Descriptive Geology coals achibit orthogonal jtg; ma down. 183.6 - 284.0 Coal, frax ~10° elam sp. inal frax incipient, stress relief? discod airing soely ptgs 3846 compart. xlow ufg ss xlow ufg ss Descriptive Geology SS-SLTST dkgrsy; local Coarser White mod 55 layers 183.6 White mod 55 layers 183.6 White mod 55 layers 183.6 White mod 55 layers 183.6 Stress relief? MUDSTONE w/ coal, siltst dkgr, Carbona 2000, 288-289 fg es xiam				•		Photo 283.0 traxin ooa
Sandia National Laboratories	have monthe		- 190	······································	-	Po	12011		292 Lonp. Slicks on high angle bedly broken frax multiple orient Sticks will dip i tern against other fax 195 - poot drilling curved fax 0-30°CA Several 1-miler frac 299.2 broken; con's sh. 60° weak compact slicks 299.2 broken; con's sh. 60° weak compact slicks Carbon across						Photo 295. Inoip trax
Sandia Nationa Logged by:		Log Date:	- 310 -	0.3	21	1	2 1 1 2 2 1 1 2 2 1 4 A		302 in defined, rough faux w/saggestion of compact clicks ildip 304 2 there on task as/dist 306 smooth slightly curved fine in disting terminagainst frax 306 5 rong compact clicks ~ 60 311 - conj slicks on comp frax 302 in defined, rough terminagainst frax 311 - conj slicks on comp frax						Photo 30 alcos fill
Collar Elevation: Bearing:	Inclination:	Total Depth:			-		J.,	ī	317.0 sharp back s5 w onaly stronks 319.3-320.0 complex of compact slicks 322 - 0.3 borrowed vigse 326 - some discing 329.5 fluid escape strs					_1_	519.2-319.2 No care 67-1
نن ن		ted	330 - - - - - - - -	- - - - - - - - - - - - - - - - - - -	-re-	4 /	70 49/10		334.5 comp. Élicks rohe 30° 336.6 prover long varclength fluted 1 Slick SOCA, flutes roke 30° 378 compter comp (1) comp slicks 370.4-90° 371.5-344-intense comp. slicks grooves roke = 30° dip 344.0 shale back 349.7					T	334.9 = 336. NB CORE C - 7 - 2
Dritt Site: N:	Śtarted:	Completed	- 	- 0.1			50	11111	344.7 SILTSTONE + MUDSTONE						



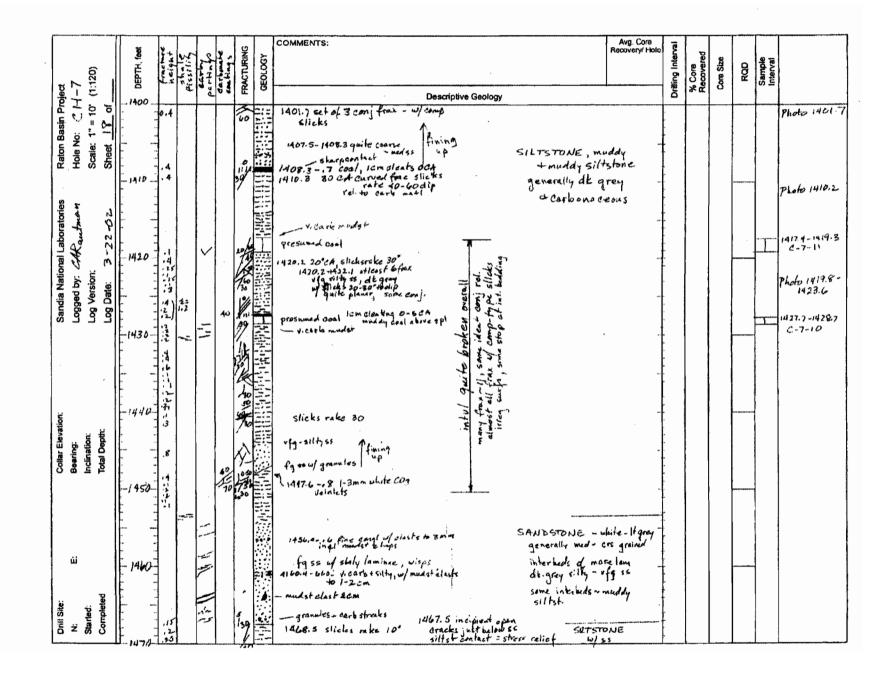





- ed		(1:120)	DEPTH, feet	+ 166	height.	Shele	cerby.	artoonate: 100 finac	FRACTURING	GEOLOGY	COMMENTS: Avg. Core Recovery H	ole	Drilling Interval	% Core Recovered	Core Size	RQD	Sample Interval	
Raton Basin Project	t a J	Scale: 1" = 10' (Sheet L of		- 0	.9 .2 .2	.		00	15.	NOR PAR	Descriptive Geology 560 - 561 15°04 frax ~ 1 cm apart partial CO3 filite irragt factioned slicks rake 20° 3624 plenarfunc 564.8 indistinct]					Photo 500 S
\$		<i>й й</i>	-57				/		40		569 indistinct annual <u>SILTSTONE</u> w/ mudstone 570.5 slicked comp free form a local silty dk-gr vfg 35 against horiz brack-drill induced fining upward sequences							Photo 570,
Sandia National Laboratories	in an and the states in a second	: ; ; ;	11	للمغيانية	626	 A state of the sta		4:	1.11	in numper	575.5 confact 580-582 broken - v. virag compactors identifiable planes 2-20 ch slicks II dip madeformiliet bar-like tect							
Sandia I onned	nafifori	Log Version: Log Date:	- 590				11		10		-586.2 ss broken along coaly plant frag (postdrill) Vfg silty dkgr 55 mostly land. 590% conlast Vfg lan se 594.1-slicks on frac 9000	<u> </u>					-	
:uon			-600	• • • •	1		1:1		19	Ē	,-wall lam figss w/ early star 599.5 contact							
Collar trievation Bearing:	Inclination:	Total Depth:	-010	1	9 2 1	**			P		604.9 sontact 605.7 contact 605.7 contact 607.5 - 607.8 conty sh 610 curved free align 30014 freg, sticks rake 90 to dip 611.9 - 612.8 v. shaly gool 611.9 - 612.8 v. shaly gool 612 conty shale 613 conty shale 614 conty shale 614 conty shale 614 conty shale 614 conty shale 614 conty shale 615 conty shale 616 conty shale 617 conty shale 618 conty shale 618 conty shale 619 conty shale 610 conty shale 619 conty shale 619 conty shale 619 conty shale 619 conty shale 619 conty shale 610 cont				•			Photo 612.C
نن	i		-620		3333	, i , i			20/10/20	11.11	614:5 slickson frax 20-30, conj60 inplan Composition slicks locally -617:9 2 slicked frax ~ 60 apart in plan throughout slicks rake 30-40 numerous spice + ground int 620.0-621:4 shaly Coal ; disced ~ 8534	i i i						Photo 6183 and above
Dritt Site: N:	Started:	Completed	•		3	5.e~					622.9 slicks on Jong Frac 624.6 624.							

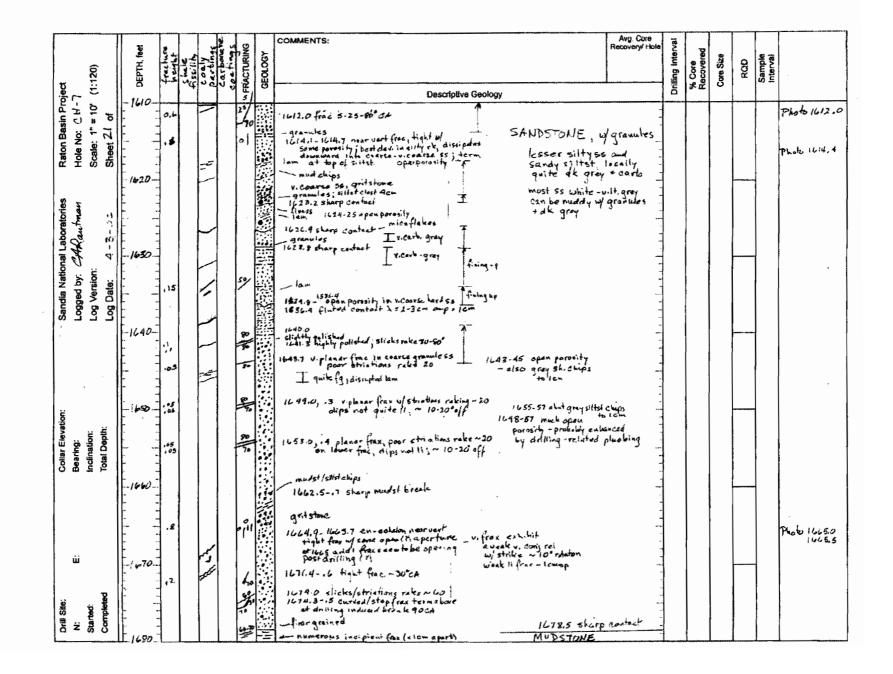
75	7	(1:120)		DEPTH, teet	Freedore a ight	shald shirty	a outy purfings	carbonute certinge	FRACTURING	GEOLOGY	COMMENTS: Avg. Core Recovery/ Hol	Drilling Interval	% Core Recovered	Core Size	ROD	Sample interval	
sin Proje	セン	1" = 10'	Sheet & of	100	2	ŭ.	а. : 	50	u.		Descriptive Geology 699,8-701.9 - ? Chennel Wargin w/ 55/51/84 701.9 Omfact						Photo 701.5 (no frax) Photo 702-711
Sandia National Laboratories	Logged by: . 27 Rauchnan	Log Version:	Log Date: 3 -18-02	-720-	0,3 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2			ده • او مرابع	のないない人間に		Core loss 714 intereact from w20-30 in plan work Comp shaks 716.2 30° free tarm at briddlug D1g Q2 CA-strong slicks rake Holp Multiple flow 717.7-78.2 broken Bone GOCA at diff oniont, 721.3 comp slicks rake 20 721.7 45° Frat - 80% free at 721.3 723.5-725.7 Shattered Jone 0-10 CA 210m sport 725.8-726.4 soal clockm20Ca sits on si SS. f-ufg well lam et base massive usward becoming v. Boaly-Shaty + bioturbated 731.1 sharp contact above ~ 725.2'	م مراجع میں					Photo 721-3 Photo 721-3 Photo 724.0 Photo 725.5
Cottar Elevation:	Bearing:	Inclination:	iotal Deptn:	746	0.1						738.7 contact 734.9 poor elicks value 80-900 1349 contact 735.4 ? potel frac in silty mudst						Photo 735.4
Drilt Site:	11 2	Started:	Completed	-760 -				/	ľ		754.2 irreg frac 30° n/ 70° 30g covar 754.6						760,5 Photo 762.3 Photo

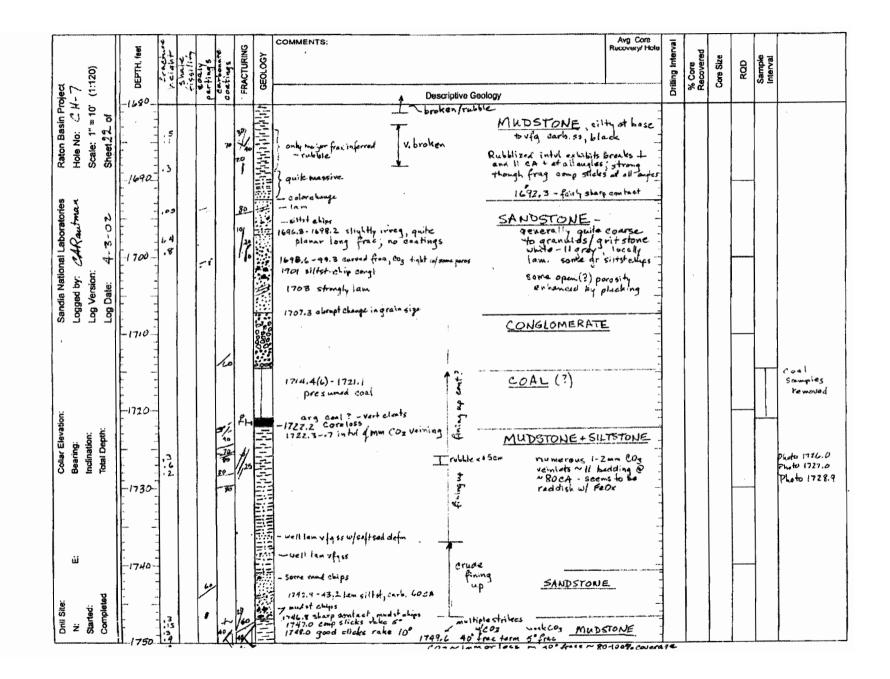
ject - - 7 - 1-1201	(021.1)	DEPTH, feet	fracture braight	shale fissility	coaly. Partings	Carponane contings	FRACTURING	GEOLOGY	COMMENTS: Note: H2O destroys highly polished surfaces in munder Recovery Hull Descriptive Geology	Drilling Interval	% Core Recovered	Core Size	RQD	Sample Intervat	
Raton Basin Project Hole No: $\mathcal{L} \mathcal{H} - 7$ Scale: 1" = 10' (1'	a e						****		MUDSTONE + SILTETONE 27n-grey, also vfg silty 55 -						488-94D ,
Sandia National Laboratories Logged by: CHR auchneul Lon Version	Log Date: 3-19-02		້ ມູ່ມີ				¥18 ¥30		r 990.0 core out of place - coni d 5 frax y highly politiked slick surfaces 992.7+992.9 conj frax irreg u/poor comp slicks 994.5 inotistinet, grad. contact 1006:5-1001.0 silly, Iam Frax only along coaly- micacebus ptg 5 - drill induced pref. planes 50.85 CA2 badding 1006:5-1001.0 silly along coaly- micacebus ptg 5 - drill induced pref. planes 50.85 CA2 badding 1006:5-1001.0 silly along coaly- micacebus ptg 5 - drill induced pref. planes 50.85 CA2 badding 1006:5-1001.0 silly along coaly- micacebus ptg 5 - drill induced pref. planes 50.85 CA2 badding 1006:5-1001.0 silly along coaly- more ynassive infuls are blacked white						core out of sequence -jumbled 995-997 :076 loss/ out of sequence
Collar Elevation: Bearing: Inclination:	Total Depth:	- 1029-	· · · ·				20		Vierog break 60 CA & 1017 to medi grained, fining upward ill defined fairly coerse - med grained as fairly coerse - med grained as fairly coerse - med grained as fairly coerse - med grained as the local carby stringers of wisps up to 60° CA core breaks pref along these ptga + direction. even it messive sc 1026.6 Not free, v. planar 70 CA about other grains - ration? fractures to fit core is how are closer to in CA						Photo 1017.0 Photo 1026.6 Photo 1027-4-
Drill Site: N: R: Started:	Completed	- 1040			1. 1 1. 1 1. 1		10		1034.7 coring induced free & 60CA (typ) 1037.3 planar free, natural 70 CA 1048.3 trees cloth coasy math. 1047.5-1051.3-much more lem. w/ Shaly-coasy tripps - 80-90 CA						Photo 1037.2

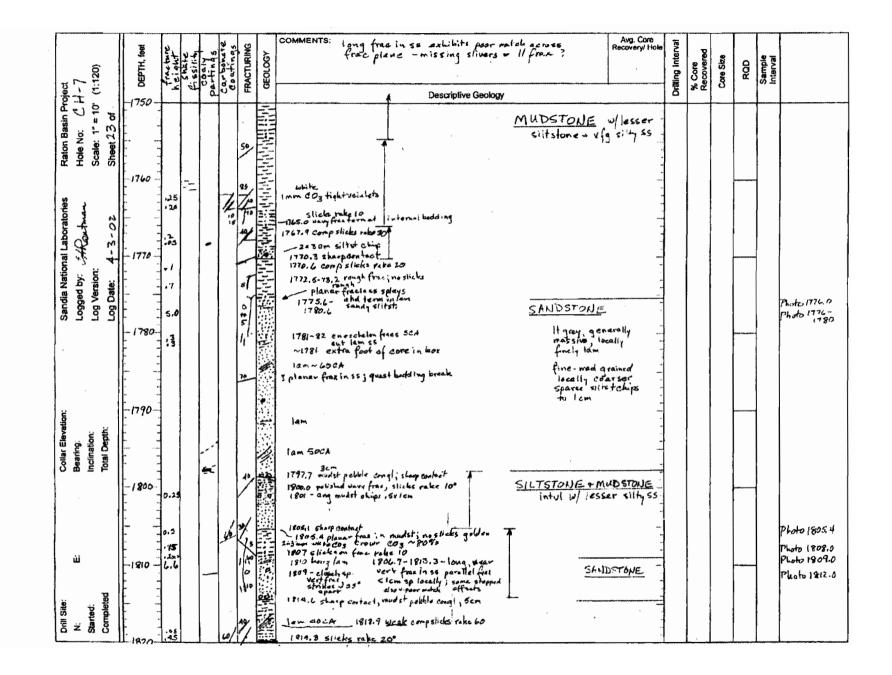

5		(1:120)		DEPTH, feet	freeture height	Sharter SSIEFE	partings	daroonere	FRACTURING	GEOLOGY	COMMENTS: Note: compactin Glicks appear to predate Avg. Core drilling induced breaker gz see 1090, 4	Drilling Interval	% Core Recovered	Core Size	RQD	Sample Interval	ļ
je.				-1050-		5	A	20		Ľ	Descriptive Geology	à	e. a.				
Raton Basin Project	Hole No: CH-7	Scale: 1" = 10'	Sheet 13 of		11111	ar fan er sin de seine sein					tquite staly + lan <u>SANDSTONE</u>						
oratories				1060-						1.0	1060.2-2-3 cm lam silty mudst. 1062.3-7062.8 photoform wisps and clongate sh chips to 0.23 v 2.0 cm						
Sandia National Laboratories	d by:	ision:	ale:			-	-		50		ckarge 1070, 4-1070, 6 coaly mudst whemp: straics boach MUDSTONE w/lesser						
Sandia	Logged by:	Log Version:	Log Date:	- 10 80 -	0.15 5.1 0.2			Lo	29/ 22		1078.5 v. planar free, no discornible slicks Siltstone + silty vfg ss 1079 highly polished frac 90 caw/ comp slicks v. dark grey-grable 1080.1 v. irreg core-induced frac w/ comp slicks Coaly in part						Ph. oks 1078.
Collar Elevation:	Bearing:	Inclination: Truel Denth	· · · · · · · · · · · · · · · · · · ·	-1090-	0,15 0,5 1,5 125		- 4	30	50		abnt comp slicks 1087.8-interrating fras, viernag Comp slicks ~ 0° to dip 1087.6-1089.3 troken, vierna frar w/slicks 1087.6-1089.3 troken, vierna frar w/slicks 1098.3 sticks taker 0-50 CA, facthers out in (raking 0° -1096.5 lan ufg ss/slist, disapted Center of core 29						Pholo 1087 Pholo 1091
Ö í	ă.	5 6	2		- ,15		1.		10		10884 - 3 cm coaly sh Carloy 55 - choc brown 100.8 shap contact Carloy 55 - choc brown 1100.6 pitmar frac 1100.8 curved frac w/somp slicks atops at Internal Bodding						Pholo 1100.
i.	Ľ۵			- 1110 -	0,1		۲		100 100		1109.0 smooth planar frac SOCA; vibroken belowto 1109.3, conving somac frav w/elicks 1110.4 2-3 cm muldy eael at diverce orientations [110.4 V. carby rfg ss generally II dip SILTSTONE W						Photo 1109 x 2
Drill Site:	ż	Startad: Completed	neisteinn	- 							fining this induced SILTSTONE w fining this induced store this induced gray to gran-gray welliam drilling induced less coefy below all 3						

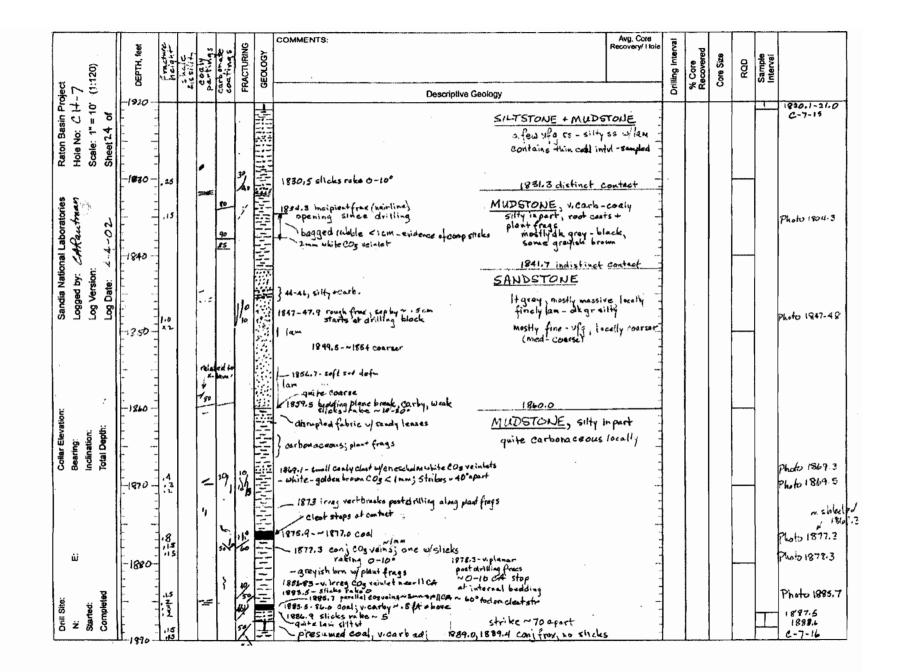
т о 1	~	(1:120)		DEPTH, feet	Fracture	shale	artines	CORPORED CO	FRACTURING	GEOLOGY	COMMENTS: Avg. Core Recovery/ Hole	Dritting Interval	% Core Recovered	Core Size	RQD	Sample Interval	
Raton Basin Project	C.F-		_	- 1120		-		ļ	1	14	Descriptive Geology	ā					
Sasin		а 1	4					z		1							
Haton	Hole No:	Scale: 1"	Sheet 14	-1130_	12		-		50		1124.4-1124.5- anast 2-3mm COg veinlets ~ L CA - tight 11252 - convex of dompsitisk getad - 10-20 1126.2 highly polished, slicks & didips 1127.3-, 8 skelc bxe 3 test.						
				- 1190-	1						finingmuch finer 1182 gred contact						
Sandia National Laboratores				р 							1132-1133 portly distupted lam 1132-1133 portly distup				r.		
	ن ذ	:uo									inn méaceous, coily plas med grained messive 50-6082A. Ho wenkly law 55						
	Logged by:	Log Version:	Log Date:	· ·			*				faint coolyptqs ~ 40 CA						
-	-	-		-1150-			==		le suspect		hecomes coarser (to med ss, ? ars) v. Clayey and is broken up by swelling / hydration. Core in box breaks to / spiral fracturing + as if case hard ened, outer 3-5 mm - all apparently as soc w/ arrenn 72- stops ebruptly at run 73-1162.0'						Photo HARS-NST.
10				-1160-				Ì	4 4 4 4		cleaned rock is well commented med 55						Photo
	Bearing:	Inclination:	lotal Deptr.					r			1168.1 stepfine ofslicks term int bedding 1164.5-1165.0 pron. trans contact 1167.0-1168.0 proken- about SILTSTONE W/ Vfg ss						PL-10 1161-2
<i>.</i>	άŤ.	5 6	¥	- 1170-					K.K.		00mp slicks on small frage 4-miner mudstone 30-50 CA slicks will dip 1168-71 weak shele ha fexture in mudst Viderk groy-grn, locally carbona coous, coaly plant frage						
۱	ù			- 1180-							yenerally unfractured slicks on small plane w/in core- term on internal obscure bedding in app. massive slipt nuxst						
	ż	Started:	Completed	-					aor		1185.4s clean ufgss-lan 1180.9 feirlicherp dantact stichts da internal pianes 1188.8 irreg frae ~BOGA stickswildip						

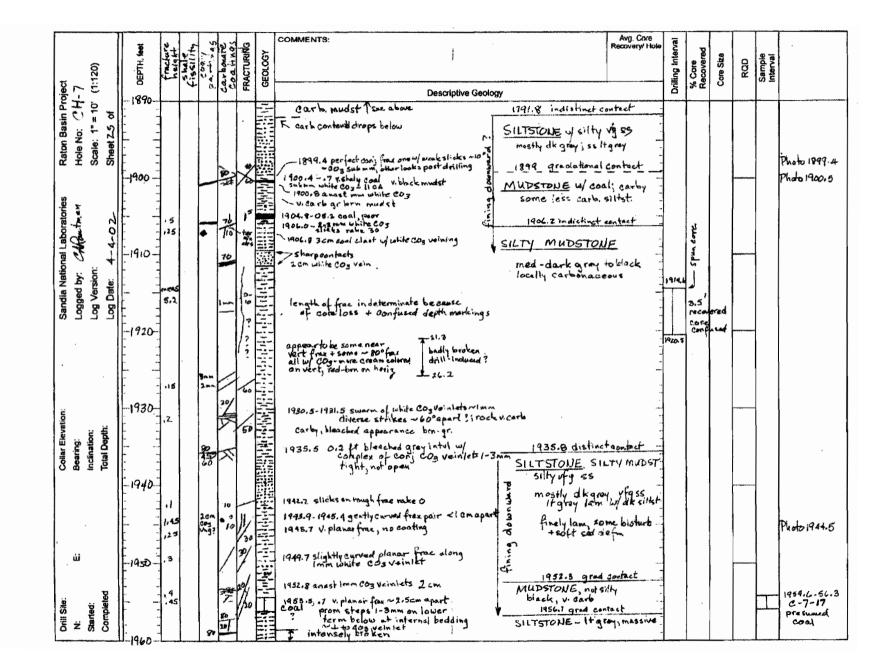
SILTSTDUE SILTSTDUE SILTSTDUE SILTSTDUE SILTSTDUE SUBJECT SILTSTDUE SI	уесс -7 (1:120)		DEPTH, feet	Practure P	S trail	ioaly as	rectings	FRACTURING	GEOLOGY	COMMENTS:	Avg. Core Recovery! Hole	Drilling interval	% Core Recovered	Core Size	RQD	Sample Interval	
1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 <th></th> <th></th> <th></th> <th></th> <th>Ŧ</th> <th>å</th> <th>નુરું</th> <th>Æ</th> <th>Ū</th> <th>Descriptive Geology</th> <th></th> <th></th> <th>* X</th> <th>ð</th> <th></th> <th></th> <th></th>					Ŧ	å	નુરું	Æ	Ū	Descriptive Geology			* X	ð			
$\frac{1}{1220}$ 1	Hole No: C H Scale: 1" = 10	Sheet 15 of								vfg silty se quitelam w/mud wisps, weak coaly ptgs	Quite muddy locally gred into mudstone some vfg silty sandstone						
$\frac{1}{1220} = \frac{1}{1220} = \frac{1}{120} = $	ged by: LAR autman Version:	Date:			rk 5			·明	BAR	1212.0-1212.8 badly broken - mudst many comp. silicks. typ on from ~ 11CA slicks may rake 0.20	weak carb ptgs + plant frags mudstones this intul are propobly silfy and while doctor arey than						
$\frac{1230}{1281} = \frac{1230}{1250} = \frac{1240}{1250} = \frac{1240}{1250} = \frac{1240}{1251} = \frac{1251}{1251} = \frac{1251}{1251$	601 Log	Log	-1220-	and a state of the state of th					HENNERSHAR	•	siltstones, do not fracture like less silty mudstones acove siltst + ufq silty ss interlam						
iii -/250- // 1251 Weak coop elicks in slithy intul rate of 1251 3-12563 - much cleaner fg 55, white - V. it gray B	Bearing: Indination: Treat Dentin	Total Depth:		0.1		H.			HUDER HERE	Vfg sandy intul 1235.6 3 cm spall off side of core at OCA	and unfractured			4 5			
2 2 3 0 1257.2 somewhat irray planar frac wath and sith + maddy photometer in the same wath growing [[dip Gitty mudstores making of -		Completed				1		30,		1251 Weak comp elicks in silty intul rate 0° 1251.3 - 12563 - much cleaner fg 55, White - V. It gray	SANDSTONE - dom intel- V[g-fg ss, most Silty + gron-grey, locally clean + whiter more typicall silty + inter lam wf silty + mudy						Photo 1257.7


5.		(1:120)	DEPTH, feet	Fracture	shale	contro partings	erbonate octings	FRACTURING	GEOLOGY	COMMENTS:	Avg. Core Recovery/ Hole	Dritting Interval	% Core Recovered	Core Size	RQD	Sample Interval	
Raton Basin Project		of 10	1260		+		30	u.		Descriptive Goolog M dk grey carb mudet w/polished missing intul = fracks ~ 85cA missing intul = f r.carb. vfg ss	-	ă	- L			х.	1260.7-1261.8 C-7-6
Raton E		Scale: 1" Scale: 1"	1270 -							vfg silty as and muchay ailtst interiou - vispy							
Sandia National Laboratories		20-12-2					60	130		1279.3-1274.5 drilling enhanced for Och, 1275.1- grossed comp slicks rake 0° silty interla silty mudst.	1279.57 sharp Scoured contact		And the second se				Photo 1274 3
Sandia Natio	rodden py:	Log Version: Log Date:	- 1290	· · · · · · · · · · · · · · · · · · ·	2	14		20 /20 70 70	생태하는 말	1286.8, 1287.1 comportiple slicks rake ~ 0 to dip - 1290.5 comp slicks lloip; just below 1290.7 2 to vig a layer, frac start dv. cater intel and do cater intel	SILTSPONE + SILTY MUDSPONE alkgrey siltst + silty mudstone, becoming carb toward coaly intul.		-	-			Photo 1290.5 mislebeird
Collar Elevation: Bearing:	Inclination:	total Liepth:	- 1300 -	10			7 JY 4	015 P 2 S	1111 444444444	1294.4-1295.3 coal Clearts @ 03A ciem apart 1247.0 v.carby mudst loces carb content Mudst, v. dk. grey, probably silly mostly unfrax except drilling LCA 1309.8 polished surface, no slicks 1301.6 irreg comp frax + slicks 1305.8-1886.3 zone of anast Cog veintets: 1-3mm 1305.3 comp clicks rake ~0° 1306.75 v. planar frac							12941.5 Photo 12920
Ŭă ü		<u> </u>	-1310 -	- 0,3 - 0,7 - 0,7 - 0,7	-	1	ß	240		1308.6 slightly urregine week theks lidep Vig 55, silty , dk gry Vig 56, white Moisturbated 1318.55, , 85, 1319.8, 1200.8, 1321.7	~1368.)						
Drill Site:	Started:	Completed	-/320-	15			15 50 40 10	- MAR		V. planar frax of +licks 5.10 bdip (not parell 0001j Sanse of olip Slicks rate 1828.8 13236 doal 1828.8 13236 doal 1929.5 vert frax of the dip 1329.5 vert frax of CA sac next page	ect						Photo 1318-1-132]; Photo 1318-9 1321-3


	/-	(1:120)		DEPTH, feet	fracture	fissility	carby artines	carbonate contings	FRACTURING	GEOLOGY	COMMENTS: Avg. Core Recovery! Hole UD COMMENTS: Core Recovery! Hole UD CO ELSO COMMENTS: DocuMent COMMENTS: DocuMent CO ELSO CO CO ELSO CO CO ELSO CO CO ELSO CO CO ELSO CO CO ELSO CO CO ELSO CO CO ELSO CO CO ELSO CO CO ELSO CO CO ELSO CO CO ELSO CO CO CO ELSO CO CO ELSO CO CO CO CO CO CO CO CO CO CO CO CO CO
- oje				-1336-			P	99	ļ.		Last have decively
Sir .	Hole No: C	Scale: 1" = 10'	Sheet 17 of		2.7				1		TIS29.5-1332.5 Enechelon marveri O-10CA <u>SANDSTONE</u> The in s5 some open open me to Imm. Some CO3 fill - feather of a hard boy C+ below trans on heet Thumarverises and the steps on plane M1333, C M135ing Co2 occurrent data Coal Coal
		Sca	She	- - 	- 5			4		また	1387.6 - 9. 1 211 frac on opp side of core & planar 1387.6 - 9. 1 211 frac on opp side of core & planar 1341.6, 9 - guild smooth, planar fraz at informal v. Carlo, dk. grew
Sandia National Laboratories	CAL autrus		-22-02	- - - -	-,25				مر . ار		1345.5-1346 ext. carb mudst Coaly mudstone
a National I		Log Version:	50	-1350 -	111				50		1252. 1, polishul, planar slichs rake 50
Sand	rogg	rog ∕	Log Date:	- - - - - - 1360- -	, 3	24 1 	5		1.9		1366.27 poor cont /carbsh. 1357.2-irran fine in cont- canby and it- 5-30CA 1359.7 V. polished slightly fluted frac slicke rake of
				· · · ·	- - - - - - - - 25				5		1364.2 knife-edge contact NO:11 to silty murst 1364.2 knife-edge contact ss/mudst 1365.0 - 1365.8 v. Brenner stepped fore; no slicks 1366.8 ext. carby mudst / coals 1366.9 cont fact w/ comp slicks roke 0
Collar Elevation:		Inclination:	Total Depth:	-/370-	.2				4ª		1371.6 sharpeontact 1372.6 compaticks on planar fine grad contact \$5. Vfa gray silts more lam
Colla	issaring:		Total	-/380-					r		f rapid deer ingrain size S3-med-crs a rained, quile white massive
				· · ·	11111	~			GD	Hay	1384.2 sharp contact Sample presumed coal A SILTSTONE, locally wuddy -
. -	Ű	eq:	Completed	-1390	1		and the second se	10 (fe	10	With State	- 1392.8 quite coorse fining 1393.3 sharp contrict up some quite carbo + 1393.4-1395 intulof complex comp-type frok - some planes v. plane- some v. irrog, j. w/slicks; one 309. coz
Dril Site	ż	Start	ш Со Ш	Lingos.	.5			,			fining up




ŭ,	(1-120)	(nzt.:	DEPTH, feet	treature	Shele	douty s	Contractor	E FRACTURING	GEOLOGY	COMMENTS:	Avg. Core Recovery/ Hol	Drilling Interval	% Core Recovered	Core Size	RQD	Sample Interval	
ם קסיק ה ל	ן ייי וייי		-1470-				7	14	1	Descriptive Geology						`	
Katon Basin Project	н	- 0-	• • •	.25 .3 .7 3.3			/	1 Sint		1471.35-1472.02-3mm partially -find prent frac mostly kaled by COg-several me open 1473.9 slicks on horiz annual frac 1475.8-1472 - broken zone 1475.3 v. incry frac and anny slicks test in visually sil 1477.3 v. incry frac and anny slicks	siltstonled the w/ss						
			-1480		J			1. Al		1477.3_ 1480, 0. v. broken 20x8 intercart frax 0-30 CA, most by slicks ~ 0-10 CA where XD		- - -					
Sandia National Laboratories	Y until mark	-22-02		13		11		20/10/00/		1488.3 sharpcontact 1484.8 hoiz brack hight point had 1487.0 Pubbl Pac-tock this rahe 30" up							
		6	-1490-					T		1490.0 Sharp emtact 1490.0 - 1493 rubble - 2.6' silty = macany - cliss in toportal	-	-					
Candia Nati	Loggeu by: I on Varaion:	Log Versio Log Date:	· ·	(3)				70		51197 Handling - clissing for to Chips & Smm 1495.2 Nivers handling induced for upslick 1497.1, 03 Sticks Udip	-						
<i>"</i> -	1		-1500-	1.2		-				1999.1 sharp contact	SANDSTONE	-					
						len				ss, quite coarse	alt layers of white -		1				Photo 1505.4
								40		1505.35 V-mica asous ptg SOCA 1305.7- V. plenar break JOCA = natural ? 1506.1- fluttad break SOSA - 1509 roarsa scabouc firatulau	ligier coarse as and - de-grey exmuddy r silty upg ss	-					Photo 1505.7 Photo 1505.7
Stion:			1510			\neg		-	11	1510.7 sharp criticat	fining upward says " Wy sharp bases	~					
Collar Cievalion: Bearing:	Inclination:	Total Depth:		125				4) (9)		fining up sticks rake o 	some granule ance dk grey silty as many						
			1520-			11				1518.5-1519.3 granuic Rove	extrabit dispersed alter arounder to 2 mm - debris-flow deposits						
			· · ·			~ ~ ~				i 546.6 clarp contact, Crs 55 over finer silty tips		-					
ú	i		- 1530-	, 15				ŕ		1528.5. liveg forc, curved slicks rake 10-60' cilty ss, uto vich rb, dk gray		- - - -					
2010	;pe	Completed	· · ·					{°		E-silty, lam ufgiss 1536-1536 Birry rough free at 1536 b ands	· · · ·						Photo 1536.1
Nu vite	Started:	E O O	· ·	0.8		10		\$20	•	- Iom muld dist while, If gray CPS SS		-					


			Т	*	Γ	Γ		b.,	6	Τ	COMMENTS:		Avg. Core	ā					
		ŝ		DEPTH, fee	Ľ.	JUE 3) i i	in a.	FRACTURING	GEOLOGY	. 4		Recovery/ Hole	Drilling Interval	% Core Recovered	Size	ROD	Sample Interval	
d I	1	(1:120)		DEP.	Ľ	in sur	Part	Carbon	RACI	GEOL				guille	ပိုပို	Core Size	ŭ	San	
roje	1.		-	1540	L	1	1		1.19		1541.8 slicks rate o inapicateleser fac (on phase Descriptive Geology		SANDSTONE	ā					
Raton Basin Project		1" = 10 7.0 m		-	3.5.5				50	-,-	- small granulas - slicks rate 10°	541	SILTSTOLE, muddy 1543.7						Photo 1471,0
Raton Ba Hole No:		Scale: 1" = Sheet 20		-			F		5		1349.5 conj frax - 60° apart in plan		SANDSTONE						
αΞ	Ē	<i>й</i> 7	ĨĖ	1550_	1.4				30/		1447.7-1448.1: Norvert frac Onda at contact of growale 56 Slicks on 700 frac ~ 11 dip		SILTSTONE -						Photo 1548.8
SS MG	F				.15					1111	1552.7 sticks on 50° free rake 40'		muddy dkgrey w/granutes						Photo 1849.5
ratori	Cryx autren	- 22	11-		125		70		130		0.5 CTS 55		1565.1						
Labo	¥	3-27		1560-			2				- lam ufges nud-ers 55		SANDSTONE						
ŏ		ë	It.				F'				sityzone								Photo 1548.4- 1567.1
dia Né Mad ha	roddeo py.	Log Version: Log Date:	IE.	-			÷.				Crs white ss wi sparse nucl ships 1565. 8 Sharp confact black carb siltst		1565.8						13041
San	5 G	δ Γ		-							4 I F L T L - CL- C CAN MACT	1567.6	SILTSTONE CARD						
			F	1570-							1571.6.72.4 Intel of mudst chips to 2cm		SANDSTONE						
			Ŀ	-			19	1			sha-p contact 1573.1 + granules (feldepai?)		white - Itgrey, med.crs						
				-	125		14m		190		1577.1-2 dkgrvfg55		silistone-vierss of - disponses granules -						
ï				1560	۲.۱				10		- 1577.5 interior frax, sliction 40 froc vaketo		, , ,						
levati			ŀ	-			PP			111	79.5 horig slicks rake ~ 30'inplan								
Coltar Elevation: Bearing:	Inclination.	Total Depth:	ŀ				30				1586-87 digr muddy withst to ers sof fining								
				1590-							1589.2 sharp antast; dkgrey huddy siltst 1891.0 sharp contact. Yfjse Wgrannles								r
				-			-			1	159218-93.1 Wispy shaly/criby lam								
				-							1695.47 lan; somedistreption								
ü	i		·	1600-	•					No.	1698.3 sharp contract quitecoerse se fining up 1602.5 sharp contract								
ë		ted		-	.,		P		50,		12059 1605 8 - Violence (on w)		ss/sittst.						
Dria Site N:	Contrad.	ouarrea: Completed	ŀ	-	105				80_		Weak Slicks - Strictions raking 50-60" fini 1000. 9 artial comp slicks in malst rake 10"	-944	quite coarsess .						
	- 0		1-	1610-	1	1					- lan								

20)	DEPTH, feet	racture cient	ssility	out i	carbonate coatings	FRACTURING GEOLOGY	COMMENTS: COMMENTS: Percentitive Geology	Core Size	- dog	Sample Interval	
roject +-7 (1:120) 27	-1960-	9-se	vit	Pa	609	¥ 8	Descriptive Geqlogy	ŝ B	3	ŵ E	
Raton Basin Project Hole No: $CH-7$ Scale: 1" = 10' (1: Sheet 2.6' of 2.7		1			3/12		MUDSTONE, black-brown - Carb, massive 1969.5				
cARauture 4-4-02	-1970-			-			- 1973.5 fire mud chips - 1973.5 fire mud chips 1975.7 z.4cm Cogvug/vein, 0.5 cm scalenohedual Cogxis SANDSTONE 1975.7 z.4cm Cogvug/vein, 0.5 cm scalenohedual Cogxis SANDSTONE 1977.5-78.2 discret bed of iam diltst-silty mudst Sharp contact desa				Photo 1980
Sandia National Laboratories Logged by: CARQuctment Log Version: Log Date: 4-4-02	- 1980			90	1 10		1977.5-78.2 discret bed of iam sillst midst Sharp contrast at base. 1978.2 mul pebble congi of At thick mud pebbles of randles dispersed throughout 7- vfg ss poorceal, 2 1-mm Cog veints, 1-2-3mm MUD STONE, silty and COAL-				(986.7-
neS` goll goll	-1990-	"s "l 1.4	N, E	nterio	90 ats al		presumed and mudist slightly fissile (dessie?) -				1987,8 C-7-18 1989.85- 1992.15 C-7-19 Photo 1994.0
	-2000-	.5		ų	đ		lost core				Photo 1294.75 1999-2002 10st core
Coffar Elevation: Bearing: Inclination: Total Depth:		1.5	ad	1		10	black granular material, sand sized, ptz-feldspar grains obscure prom double set of from 0-5 CA about 0.3 cm apart SANDSTONE -Trinidad?			and the second	
	-:-2-71-0-	·2 1.7			(ペ)		h 55 2010.7-2012.4 fight to partially open white to 11/med gen gr. intert frag, w/ white Fe themand Cog Mostly messive, Vaiving, almost anapt in our place ideally lam w/ wid-dkgr Sitty matt				×2 Photo 2011.5 Photo 2012 0
ώ ΄ .	-7.20-	.9					2012.4 shapped, rough possible frac sugg af zonj rel to brack to fit core in box			_	Photo 2018 f rote impact
Drill Site: N: Started: Completed						ないではない。					mark to break core

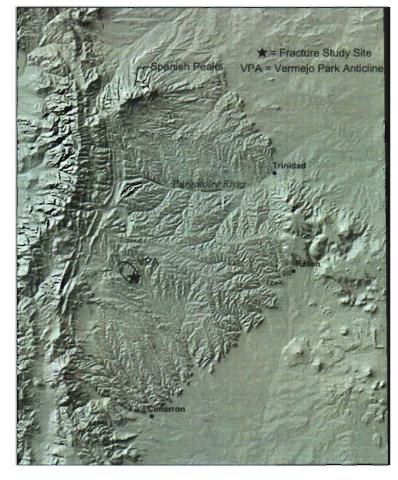
		50)	6	DEPTH, feet	frecture	and C Lility	tides -	COLUDENTE	FRACTURING	GEOLOGY	COMMENTS: Avg. Core Recovery/ Ho	Dritting Interval	% Core Recovered	Core Size	RQD	Sample Interval	
	Sin Project		2	巴 2030-	4.5	tis!	PAC	COAL	FRA	ы Эй	Descriptive Geology	Dillio	% 0 %	Co	œ	S E	
	Haton Basin Project	le: 1" = 10'	Sheet 27 of 27								<u>SANDSTONE</u> quite massive grn-white med ss, locally lam			· · ·			
	5		She	-3040-	0.4				¦ĵ		1037.5-2039 weak law 70-90 CH, Il handling-induced 2039.6-2040 partially open frac wy enerchelow str; may have been initiated by brocking core to fit box			2.3+			Photo 2039.8
	Sandia Neuonal Laboratones		4-9-02	 						••	2043.2' E.O.H.						
	~			-2050-							· · · ·						
	Locoed by:	Log Version:	Log Date:						*		· · · · · · · · · · · · · · · · · · ·	•					
				-2060-													
				-2070-							•						
i	Collar Elevation. Bearing:	Inclination:	Total Depth:								· ·	-					
	38	Incl	Ţot	-21780-													
v																	
	ù Z		Pe	:090													
	Z: Ste	Started:	Complet	2100								• • •					

APPENDIX G

This appendix contains field data collected from 94 sites in the Raton Mesa area. Each entry consists of

- location ID
- latitude and longitude of the site
- an index map showing the location of the site in relation to Raton Mesa
- a rose diagram showing the distribution of fracture orientations at that location
- raw fracture data, including any notes concerning lithology, cross-cutting relationships, fracture fill minerals, etc.

Additional notes and photographs may be included for certain sites.


Fracture dips follow the right hand rule; that is, dip is in the direction 90 degrees clockwise from fracture azimuth.

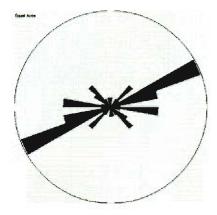
Abbreviations used in this appendix:

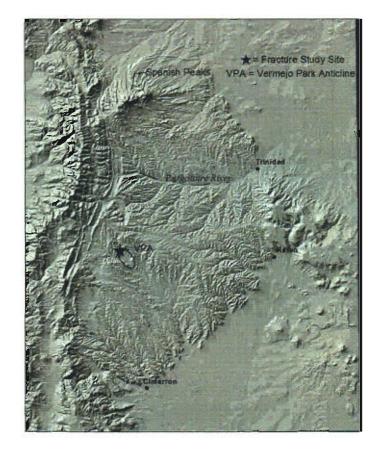
VPA = Vermejo Park Anticline ss = sandstone frac = fracture Location ID: 6/17/2003/1 Latitude: N 36.8883667 Longitude: W 104.9753333

Cliff exposure of Trinidad sandstone north of Vermejo Park Ranch office.

Notes:

Cliff exposure ~50 meters, bed thickness ~6 meters

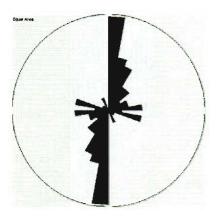

E-W fracture set cuts ~15 meters of cliff

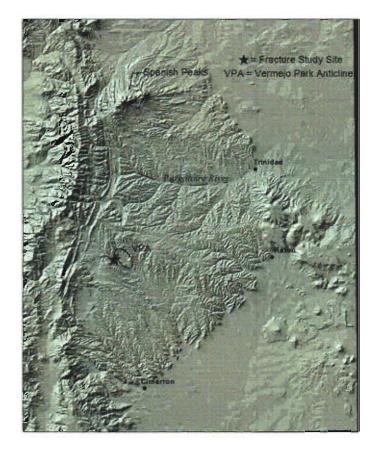

ID	Strike	Dip	Formation	Comment 1	Comment 2
6/17/2003/1	81	80	Trinidad		
6/17/2003/1	83	90	Trinidad		
6/17/2003/1	85	90	Trinidad		
6/17/2003/1	140	80	Trinidad		
6/17/2003/1	310	90	Trinidad		
6/17/2003/1	275	72	Trinidad		
6/17/2003/1	350	88	Trinidad		
6/17/2003/1	84	90	Trinidad		
6/17/2003/1	80	90	Trinidad		
6/17/2003/1	91	90	Trinidad		
6/17/2003/1	329	90	Trinidad		
6/17/2003/1	79	90	Trinidad		

6/17/2003/1	85	88	Trinidad	
6/17/2003/1	84	90	Trinidad	
6/17/2003/1	85	84	Trinidad	
6/17/2003/1	83	80	Trinidad	
6/17/2003/1	104	90	Trinidad	irregular, short
6/17/2003/1	87	90	Trinidad	
6/17/2003/1	1 18	90	Trinidad	irregular, short
6/17/2003/1	273	70	Trinidad	
6/17/2003/1	262	85	Trinidad	
6/17/2003/1	85	90	Trinidad	
6/17/2003/1	269	87	Trinidad	
6/17/2003/1	269	85	Trinidad	
6/17/2003/1	93	55	Trinidad	
6/17/2003/1	87	90	Trinidad	
6/17/2003/1	85	90	Trinidad	
6/17/2003/1	141	90	Trinidad	plume

Location ID: 6/17/2003/2 Latitude: N 36.92451667 Longitude: W 105.0168833

Spring Canyon

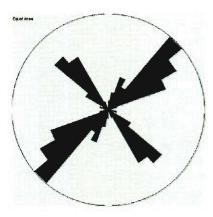

Notes:

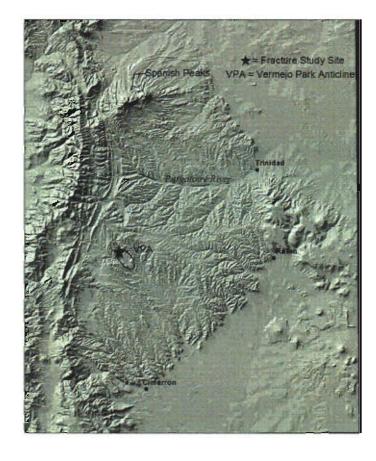

ID	Strike	Dip	Formation	Comment 1	Comment 2
6/17/2003/2	66	64	Trinidad		
6/17/2003/2	66	64	Trinidad		
6/17/2003/2	73	61	Trinidad		
6/17/2003/2	59	90	Trinidad		
6/17/2003/2	45	76	Trinidad		
6/17/2003/2	41	78	Trinidad		
6/17/2003/2	31	78	Trinidad		
6/17/2003/2	48	60	⊤rinidad		
6/17/2003/2	62	74	Trinidad		
6/17/2003/2	64	62	Trinidad		
6/17/2003/2	68	64	Trinidad		
6/17/2003/2	70	65	Trinidad		
6/17/2003/2	68	63	Trinidad		
6/17/2003/2	67	90	Trinidad		
6/17/2003/2	72	78	Trinidad		
6/17/2003/2	89	64	Trinidad		

6/17/2003/2	94	70	Trinidad
	-		
6/17/2003/2	90	70	Trinidad
6/17/2003/2	70	70	Trinidad
6/17/2003/2	90	70	Trinidad
6/17/2003/2	70	70	Trinidad
6/17/2003/2	62	75	Trinidad
6/17/2003/2	62	75	Trinidad
6/17/2003/2	63	76	Trinidad
6/17/2003/2	306	66	Trinidad
6/17/2003/2	313	57	Trinidad
6/17/2003/2	6	90	Trinidad
6/17/2003/2	314	76	Trinidad
6/17/2003/2	305	70	Trinidad
6/17/2003/2	314	60	Trinidad
6/17/2003/2	322	75	Trinidad
6/17/2003/2	350	84	Trinidad
6/17/2003/2	280	55	Trinidad
6/17/2003/2	349	90	Trinidad
6/17/2003/2	278	90	Trinidad
6/17/2003/2	95	75	Trinidad

Location ID: 6/17/2003/3 Latitude: N 36.89933333 Longitude: W 105.0294333

Trinidad roadcut at west gate, thrust fault

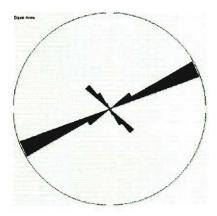

Notes:

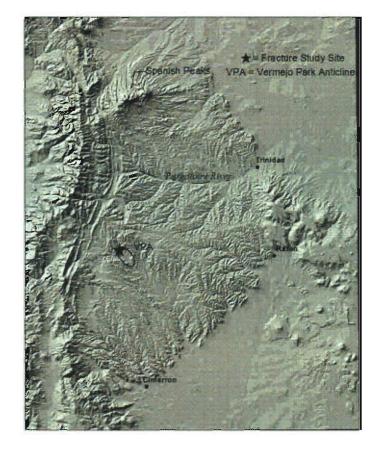

ID	Strike	Dip	Formation	Comment 1	Comment 2
6/17/2003/3	82	90	Trinidad	plume	footwall of thrust
6/17/2003/3	200	82	Trinidad	•	footwall of thrust
6/17/2003/3	83	90	Trinidad	plume	footwall of thrust
6/17/2003/3	184	85	Trinidad		footwall of thrust
6/17/2003/3	282	60	Trinidad		footwall of thrust
6/17/2003/3	192	78	Trinidad		footwall of thrust
6/17/2003/3	93	90	Trinidad	plume	footwall of thrust
6/17/2003/3	90	90	Trinidad		footwall of thrust
6/17/2003/3	185	70	Trinidad	plume	footwall of thrust
6/17/2003/3	84	90	Trinidad	plume	footwall of thrust
6/17/2003/3	84	90	Trinidad		footwall of thrust
6/17/2003/3	200	60	Trinidad		footwall of thrust
6/17/2003/3	64	80	Trinidad	plume	footwall of thrust
6/17/2003/3	75	90	Trinidad		footwall of thrust
6/17/2003/3	202	64	Trinidad		footwall of thrust
6/17/2003/3	73	65	Trinidad		footwall of thrust
6/17/2003/3	216	68	Trinidad		footwall of thrust

6/1	17/2003/3	54	85	Trinidad	
6/1	17/2003/3	212	64	Trinidad	
6/1	17/2003/3	198	65	Trinidad	
6/1	17/2003/3	7	76	Trinidad	
6/1	7/2003/3	314	88	Trinidad	
6/1	7/2003/3	334	90	Trinidad	
6/1	17/2003/3	2	87	Trinidad	
6/1	17/2003/3	9	90	Trinidad	
6/1	17/2003/3	22	65	Trinidad	
6/1	17/2003/3	5	58	Trinidad	
6/1	17/2003/3	15	82	Trinidad	
6/1	17/2003/3	82	88	Trinidad	
	17/2003/3	107	85	Trinidad	
	17/2003/3	6	88	Trinidad	
6/1	17/2003/3	5	84	⊤rinidad	
6/1	17/2003/3	4	88	Trinidad	
	17/2003/3	9	80	Trinidad	
	17/2003/3	8	86	Trinidad	
	17/2003/3	10	74	Trinidad	
	17/2003/3	10	88	Trinidad	
	17/2003/3	159	89	Trinidad	
	17/2003/3	109	80	Trinidad	
	17/2003/3	7	86	Trinidad	
	17/2003/3	70	90	Trinidad	
	17/2003/3	65	85	Trinidad	
6/1	17/2003/3	13	86	Trinidad	
	17/2003/3	15	86	Trinidad	
	17/2003/3	6	89	Trinidad	
	17/2003/3	5	87	Trinidad	
	17/2003/3	57	80	Trinidad	
	17/2003/3	60	79	Trinidad	
	17/2003/3	20	72	Trinidad	
	17/2003/3	216	75	Trinidad	
	17/2003/3	100	85	Trinidad	
	17/2003/3	103	85	Trinidad	
	17/2003/3	34	60	Trinidad	
	17/2003/3	113	90	Trinidad	
	17/2003/3	44	70	Trinidad	
	17/2003/3	48	70	Trinidad	
	17/2003/3	127	90	Trinidad	
	17/2003/3	24	50	Trinidad	slicked plane
	17/2003/3	44	60	Trinidad	plume
	17/2003/3	28	15	Trinidad	shear plane
	17/2003/3	44	20	Trinidad	shear plane
6/1	17/2003/3	14	48	Trinidad	shear plane

footwall of thrust footwall of thrust footwall of thrust hanging wall of thrust associated with thrust Location ID: 6/18/2003/1 Latitude: N 36.92393333 Longitude: W 105.0183667

Spring Canyon, west side

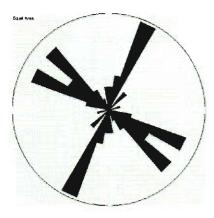

Notes:

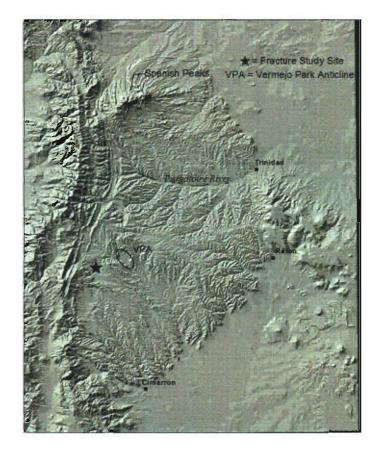

ID	Strike	Dip	Formation	Comment 1
6/18/2003/1	47	52	Trinidad	
6/18/2003/1	145	87	Trinidad	plume
6/18/2003/1	38	48	Trinidad	
6/18/2003/1	45	60	Trinidad	
6/18/2003/1	47	65	Trinidad	
6/18/2003/1	60	68	Trinidad	
6/18/2003/1	64	50	Trinidad	
6/18/2003/1	48	64	Trinidad	
6/18/2003/1	63	62	Trinidad	
6/18/2003/1	59	64	Trinidad	
6/18/2003/1	49	68	Trinidad	
6/18/2003/1	56	62	Trinidad	
6/18/2003/1	48	58	Trinidad	
6/18/2003/1	140	90	Trinidad	
6/18/2003/1	45	78	Trinidad	
6/18/2003/1	44	66	Trinidad	
6/18/2003/1	53	68	Trinidad	

6/18/2003/1	42	58	Trinidad	
6/18/2003/1	55	67	Trinidad	
6/18/2003/1	56	71	Trinidad	
6/18/2003/1	332	78	Trinidad	
6/18/2003/1	57	67	Trinidad	
6/18/2003/1	55	65	Trinidad	
6/18/2003/1	50	67	Trinidad	
6/18/2003/1	38	42	Trinidad	
6/18/2003/1	60	61	Trinidad	shear zone
6/18/2003/1	48	40	Trinidad	shear zone
6/18/2003/1	39	80	Trinidad	fault
6/18/2003/1	316	90	Trinidad	pavement
6/18/2003/1	307	90	Trinidad	pavement
6/18/2003/1	310	90	Trinidad	pavement
6/18/2003/1	322	90	Trinidad	pavement
6/18/2003/1	318	90	Trinidad	pavement
6/18/2003/1	310	90	Trinidad	pavement
6/18/2003/1	326	90	Trinidad	pavement
6/18/2003/1	307	90	Trinidad	pavement
6/18/2003/1	323	90	Trinidad	pavement
6/18/2003/1	318	90	Trinidad	pavement
6/18/2003/1	319	90	Trinidad	pavement
6/18/2003/1	317	90	Trinidad	pavement
6/18/2003/1	329	90	Trinidad	pavement
6/18/2003/1	306	90	Trinidad	pavement
6/18/2003/1	318	90	Trinidad	pavement
6/18/2003/1	321	90	Trinidad	pavement
6/18/2003/1	18	90	Trinidad	pavement
6/18/2003/1	20	90	Trinidad	pavement
6/18/2003/1	25	90	Trinidad	pavement
6/18/2003/1	19	90	Trinidad	pavement
6/18/2003/1	21	90	Trinidad	pavement
6/18/2003/1	25	90	Trinidad	pavement
6/18/2003/1	8	90	Trinidad	pavement
6/18/2003/1	75	90	Trinidad	pavement
6/18/2003/1	64	90	Trinidad	pavement
6/18/2003/1	65	90	Trinidad	pavement
6/18/2003/1	67	90	Trinidad	pavement
6/18/2003/1	40	90	Trinidad	pavement
6/18/2003/1	286	90	Trinidad	pavement
6/18/2003/1	51	90	Trinidad	pavement

Location ID: 6/18/2003/2 Latitude: N 36.92228333 Longitude: W 105.0184833

Deep canyon south of Bartlett mine and 0.5 miles east of Spring Canyon

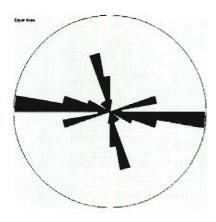

Notes:

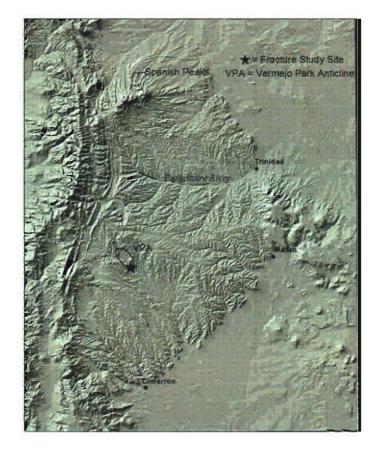

ID	Strike	Dip	Formation	Comment 1
6/18/2003/2	62	65	Trinidad	
6/18/2003/2	65	76	Trinidad	
6/18/2003/2	62	66	Trinidad	
6/18/2003/2	66	70	Trinidad	
6/18/2003/2	60	68	Trinidad	plume
6/18/2003/2	60	73	Trinidad	
6/18/2003/2	61	66	Trinidad	
6/18/2003/2	58	70	Trinidad	
6/18/2003/2	61	72	Trinidad	
6/18/2003/2	61	72	Trinidad	
6/18/2003/2	62	68	Trinidad	
6/18/2003/2	62	73	Trinidad	
6/18/2003/2	61	69	Trinidad	
6/18/2003/2	60	69	Trinidad	
6/18/2003/2	58	70	Trinidad	
6/18/2003/2	60	73	Trinidad	
6/18/2003/2	330	90	Trinidad	

6/18/2003/2	311	90	Trinidad	
6/18/2003/2	320	90	Trinidad	
6/18/2003/2	321	90	Trinidad	plume
6/18/2003/2	318	90	Trinidad	IN THINNER BEDDED UNIT BELOW
6/18/2003/2	319	90	Trinidad	IN THINNER BEDDED UNIT BELOW
6/18/2003/2	319	90	Trinidad	IN THINNER BEDDED UNIT BELOW
6/18/2003/2	320	90	Trinidad	IN THINNER BEDDED UNIT BELOW
6/18/2003/2	318	90	Trinidad	IN THINNER BEDDED UNIT BELOW
6/18/2003/2	238	40	Trinidad	low angle planes
6/18/2003/2	57	25	Trinidad	low angle planes
6/18/2003/2	65	8	Trinidad	low angle planes

Location ID: 6/18/2003/3 Latitude: N 36.87598333 Longitude: W 105.1018667

Castle Rock

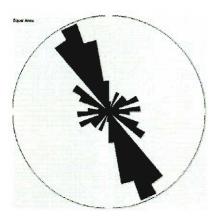

Notes:

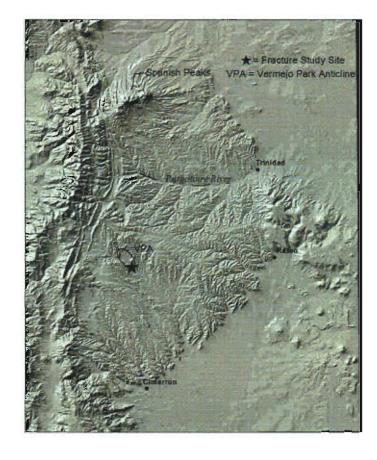

	Strike	Dip	Formation	Comment 1
ID				
6/18/2003/3	305	90	Poison Canyon	SS
6/18/2003/3	292	90	Poison Canyon	SS
6/18/2003/3	108	90	Poison Canyon	SS
6/18/2003/3	291	90	Poison Canyon	SS
6/18/2003/3	286	90	Poison Canyon	SS
6/18/2003/3	124	90	Poison Canyon	SS
6/18/2003/3	6	90	Poison Canyon	SS
6/18/2003/3	158	90	Poison Canyon	SS
6/18/2003/3	293	90	Poison Canyon	SS
6/18/2003/3	306	90	Poison Canyon	SS
6/18/2003/3	202	90	Poison Canyon	SS
6/18/2003/3	258	90	Poison Canyon	SS
6/18/2003/3	297	90	Poison Canyon	SS
6/18/2003/3	353	90	Poison Canyon	SS
6/18/2003/3	118	90	Poison Canyon	6 cm carb shale layer
6/18/2003/3	131	90	Poison Canyon	6 cm carb shale layer

6/18/2003/3	130	90	Poison Canyon	6 cm carb shale layer
6/18/2003/3	134	90	Poison Canyon	6 cm carb shale layer
6/18/2003/3	136	90	Poison Canyon	6 cm carb shale layer
6/18/2003/3	118	90	Poison Canyon	6 cm carb shale layer
6/18/2003/3	132	90	Poison Canyon	6 cm carb shale layer
6/18/2003/3	130	90	Poison Canyon	6 cm carb shale layer
6/18/2003/3	112	90	Poison Canyon	6 cm carb shale layer
6/18/2003/3	134	90	Poison Canyon	6 cm carb shale layer
6/18/2003/3	141	90	Poison Canyon	6 cm carb shale layer
6/18/2003/3	149	90	Poison Canyon	6 cm carb shale layer
6/18/2003/3	18	90	Poison Canyon	SS pavement
6/18/2003/3	8	90	Poison Canyon	SS pavement
6/18/2003/3	23	90	Poison Canyon	SS pavement
6/18/2003/3	20	90	Poison Canyon	SS pavement
6/18/2003/3	41	90	Poison Canyon	SS pavement
6/18/2003/3	11	90	Poison Canyon	SS pavement
6/18/2003/3	29	90	Poison Canyon	SS pavement
6/18/2003/3	19	90	Poison Canyon	SS pavement
6/18/2003/3	40	90	Poison Canyon	SS pavement
6/18/2003/3	357	90	Poison Canyon	SS pavement
6/18/2003/3	22	90	Poison Canyon	SS pavement
6/18/2003/3	23	90	Poison Canyon	SS pavement
6/18/2003/3	120	90	Poison Canyon	SS pavement
6/18/2003/3	28	90	Poison Canyon	SS pavement
6/18/2003/3	21	90	Poison Canyon	SS pavement

Location ID: 6/19/2003/1 Latitude: N 36.87393333 Longitude: W 104.972

"The Steamboat"


Notes:

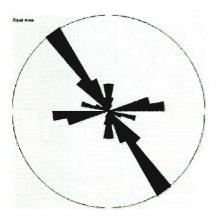

	Strike		Dip	Formation
ID				
6/19/2003/1		110	90	Trinidad
6/19/2003/1		149	85	Trinidad
6/19/2003/1		319	90	Trinidad
6/19/2003/1		107	90	Trinidad
6/19/2003/1		92	90	Trinidad
6/19/2003/1		108	90	Trinidad
6/19/2003/1		158	90	Trinidad
6/19/2003/1		165	90	Trinidad
6/19/2003/1		108	90	Trinidad
6/19/2003/1		88	90	Trinidad
6/19/2003/1		110	90	Trinidad
6/19/2003/1		175	90	Trinidad
6/19/2003/1		5	90	Trinidad
6/19/2003/1		98	90	Trinidad
6/19/2003/1		172	90	Trinidad
6/19/2003/1		279	70	Trinidad

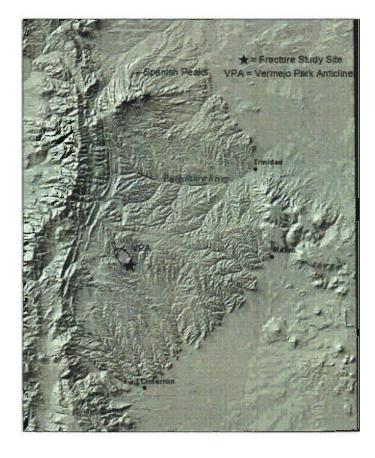
6/19/2003/1	90	90	Trinidad
6/19/2003/1	92	90	Trinidad
6/19/2003/1	168	85	Trinidad
6/19/2003/1	92	80	Trinidad
6/19/2003/1	94	80	Trinidad
6/19/2003/1	91	85	Trinidad
6/19/2003/1	171	90	Trinidad
6/19/2003/1	162	90	Trinidad
6/19/2003/1	100	90	Trinidad
6/19/2003/1	70	90	Trinidad
6/19/2003/1	165	90	Trinidad
6/19/2003/1	257	80	Trinidad
6/19/2003/1	347	90	Trinidad
6/19/2003/1	72	85	Trinidad
6/19/2003/1	73	80	Trinidad

Location ID: 6/19/2003/2 Latitude: N 36.87585 Longitude: W 104.9715333

North of Steamboat, north side of Vermejo River

Notes:


Fracture Data:					
ID	Strike	Dip	Formation	Comment 1	Comment 2
6/19/2003/2	98	85	Trinidad		
6/19/2003/2	350	80	Trinidad		
6/19/2003/2	69	90	Trinidad		
6/19/2003/2	9	90	Trinidad		
6/19/2003/2	83	85	Trinidad		
6/19/2003/2	342	85	Trinidad	plume	
6/19/2003/2	298	75	Trinidad		
6/19/2003/2	160	90	Trinidad	plume	
6/19/2003/2	82	80	Trinidad		
6/19/2003/2	327	70	Trinidad		
6/19/2003/2	53	90	Trinidad		
6/19/2003/2	142	90	Trinidad		
6/19/2003/2	158	90	Pierre		in thin bedded Pierre
6/19/2003/2	81	90	Pierre		in thin bedded Pierre
6/19/2003/2	163	90	Pierre		in thin bedded Pierre
6/19/2003/2	164	90	Pierre		in thin bedded Pierre
6/19/2003/2	167	90	Pierre		in thin bedded Pierre
6/19/2003/2	125	90	Pierre		in thin bedded Pierre


6/19/2003/2	27	90	Pierre	
6/19/2003/2	72	90	Pierre	
6/19/2003/2	158	90	Pierre	
6/19/2003/2	115	90	Pierre	
6/19/2003/2	120	90	Pierre	
6/19/2003/2	69	90	Pierre	
6/19/2003/2	141	90	Pierre	
6/19/2003/2	170	90	Pierre	
6/19/2003/2	167	90	Trinidad	
6/19/2003/2	170	90	Trinidad	
6/19/2003/2	41	90	Trinidad	irreg
6/19/2003/2	146	90	Trinidad	
6/19/2003/2	123	90	Trinidad	
6/19/2003/2	141	90	Trinidad	
6/19/2003/2	150	90	Trinidad	
6/19/2003/2	149	90	Trinidad	
6/19/2003/2	150	90	Trinidad	
6/19/2003/2	152	90	Trinidad	
6/19/2003/2	122	90	Trinidad	
6/19/2003/2	151	90	Trinidad	
6/19/2003/2	25	90	Trinidad	
6/19/2003/2	153	90	Trinidad	
6/19/2003/2	157	90	Trinidad	
6/19/2003/2	160	90	Trinidad	
6/19/2003/2	141	90	Trinidad	
6/19/2003/2	43	90	Trinidad	
6/19/2003/2	149	90	Trinidad	
6/19/2003/2	51	90	Trinidad	
6/19/2003/2	106	90	Trinidad	w/calcite
6/19/2003/2	98	90	Trinidad	w/calcite
6/19/2003/2	64	90	Trinidad	w/calcite
6/19/2003/2	110	90	Trinidad	w/calcite
6/19/2003/2	150	90	Trinidad	

in thin bedded Pierre in higher Trinidad unit, thin bedded, Oph. in higher Trinidad unit, thin bedded, Oph.

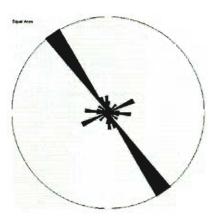
Location ID: 6/19/2003/3 Latitude: N 36.87988333 Longitude: W 104.9697833

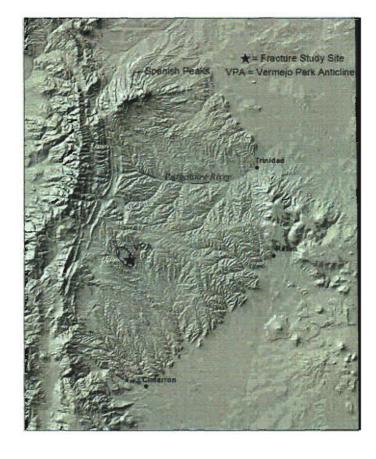
North of Steamboat, near top of ridge, upper Vermejo/Raton

Notes:

ID	Strike	Dip	Formation	Comment 1	Comment 2	Comment 3
6/19/2003/3	102	90	Vermejo		coal cleats	
6/19/2003/3	118	90	Vermejo		coal cleats	
6/19/2003/3	17	90	Vermejo		coal cleats	
6/19/2003/3	28	90	Vermejo		coal cleats	
6/19/2003/3	107	90	Vermejo	face cleat	coal cleats	
6/19/2003/3	106	90	Vermejo		coal cleats	
6/19/2003/3	1	90	Vermejo		coal cleats	
6/19/2003/3	10	90	Vermejo		coal cleats	
6/19/2003/3	111	90	Vermejo		coal cleats	
6/19/2003/3	88	90	Vermejo		higher unit, shear	left lateral
6/19/2003/3	140	90	Vermejo		higher unit, shear	left lateral
6/19/2003/3	130	90	Vermejo		higher unit, shear	left lateral
6/19/2003/3	138	90	Vermejo		higher unit, shear	left lateral
6/19/2003/3	140	90	Vermejo		higher unit, shear	left lateral
6/19/2003/3	138	90	Vermejo		higher unit, shear	left lateral
6/19/2003/3	130	90	Vermejo		higher unit, shear	left lateral
6/19/2003/3	132	90	Vermejo		higher unit, shear	left lateral
6/19/2003/3	142	90	Vermejo		higher unit, shear	left lateral

6/19/2003/3	122	90	Vermejo
6/19/2003/3	140	90	Vermejo
6/19/2003/3	80	90	Vermejo
6/19/2003/3	133	90	Vermejo
6/19/2003/3	162	90	Vermejo
6/19/2003/3	72	90	Vermejo
6/19/2003/3	176	90	Vermejo
6/19/2003/3	152	90	Vermejo
6/19/2003/3	155	90	Vermejo
6/19/2003/3	150	90	Vermejo
6/19/2003/3	158	90	Vermejo
6/19/2003/3	140	90	Vermejo
6/19/2003/3	142	90	Vermejo
6/19/2003/3	142	90	Vermejo
6/19/2003/3	142	90	Vermejo
6/19/2003/3	72	90	Vermejo
6/19/2003/3	84	90	Vermejo
6/19/2003/3	158	90	Vermejo
6/19/2003/3	178	90	Vermejo
6/19/2003/3	180	90	Vermejo
6/19/2003/3	75	90	Vermejo
6/19/2003/3	84	90	Vermejo
6/19/2003/3	360	90	Vermejo
6/19/2003/3	102	90	Vermejo
6/19/2003/3	149	90	Vermejo
6/19/2003/3	8	90	Vermejo
6/19/2003/3	170	90	Vermejo
6/19/2003/3	83	90	Vermejo
6/19/2003/3	84	90	Vermejo
6/19/2003/3	143	90	Vermejo
6/19/2003/3	86	90	Vermejo
6/19/2003/3	81	90	Vermejo
6/19/2003/3	2	90	Vermejo
6/19/2003/3	160	90	Vermejo
6/19/2003/3	145	90	Vermejo
6/19/2003/3	147	90	Vermejo
6/19/2003/3	148	90	Vermejo
6/19/2003/3	73	90	Vermejo
6/19/2003/3	79	90	Vermejo
6/19/2003/3	78	90	Vermejo
6/19/2003/3	170	90	Vermejo
6/19/2003/3	145	90	Vermejo


curves to 141 with no shear

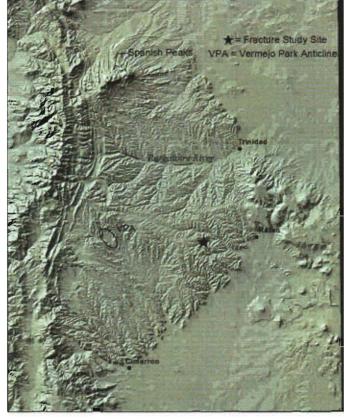

higher unit, shear higher unit, shear higher unit, shear higher unit, shear higher unit, shear higher unit, shear higher unit, shear higher unit, shear higher unit, shear higher unit, shear higher unit, shear higher unit, shear higher unit, shear higher unit, shear higher unit, shear higher unit, shear higher unit, shear higher unit, shear right lateral right lateral right lateral right lateral unknown shear unknown shear

plume

Location ID: 6/19/2003/4 Latitude: N 36.89371667 Longitude: W 104.9772333

Gazebo and trail to gazebo

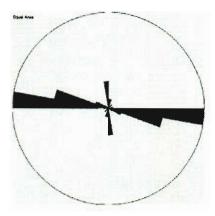
Notes:

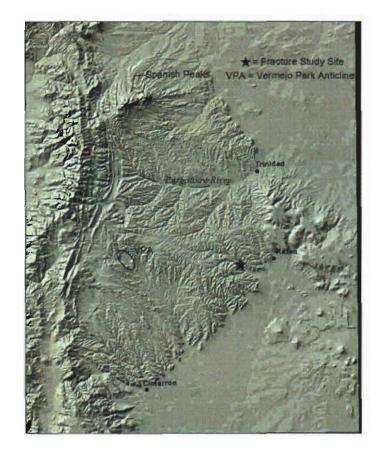

Fracture Data	a:				
ID	Strike	Dip	Formation	Comment 1	Comment 2
6/19/2003/4	5	90	Pierre	sill	
6/19/2003/4	142	90	Pierre	sill	
6/19/2003/4	48	90	Pierre	sill	
6/19/2003/4	128	90	Pierre	sill	
6/19/2003/4	127	90	Pierre	sill	
6/19/2003/4	143	90	Pierre	sill	
6/19/2003/4	144	90	Pierre	sill	
6/19/2003/4	14 1	90	Pierre	sill	
6/19/2003/4	143	90	Pierre	sill	
6/19/2003/4	68	90	Pierre	sill	
6/19/2003/4	67	90	Pierre	sill	
6/19/2003/4	149	90	Pierre	sill	
6/19/2003/4	112	90	Pierre	sill	
6/19/2003/4	62	90	Pierre	sill	
6/19/2003/4	103	90	Trinidad	in overlying Trinidad	plume
6/19/2003/4	69	90	Trinidad	in overlying Trinidad	plume
6/19/2003/4	81	90	Trinidad	in overlying Trinidad	plume
6/19/2003/4	3	90	Trinidad	in overlying Trinidad	plume

6/19/2003/4	178	90	Trinidad	in overlying Trinidad	plume
6/19/2003/4	173	90	Trinidad	in overlying Trinidad	plume
6/19/2003/4	81	90	Trinidad	in overlying Trinidad	plume
6/19/2003/4	163	90	Trinidad	in overlying Trinidad	plume
6/19/2003/4	171	90	Trinidad	in overlying Trinidad	plume
6/19/2003/4	159	90	Trinidad	in overlying Trinidad	plume
6/19/2003/4	72	90	Trinidad	in overlying Trinidad	plume
6/19/2003/4	103	90	Trinidad	in overlying Trinidad	left lateral shear
6/19/2003/4	67	90	Trinidad	in overlying Trinidad	plume
6/19/2003/4	142	90	Trinidad	pavement at Gazebo	plume
6/19/2003/4	143	90	Trinidad	pavement at Gazebo	plume
6/19/2003/4	144	90	Trinidad	pavement at Gazebo	plume
6/19/2003/4	141	90	Trinidad	pavement at Gazebo	plume
6/19/2003/4	143	90	Trinidad	pavement at Gazebo	plume
6/19/2003/4	141	90	Trinidad	pavement at Gazebo	plume
6/19/2003/4	143	90	Trinidad	pavement at Gazebo	plume
6/19/2003/4	43	90	Trinidad	pavement at Gazebo	
6/19/2003/4	140	90	Trinidad	pavement at Gazebo	plume
6/19/2003/4	38	90	Trinidad	pavement at Gazebo	irreg
6/19/2003/4	143	90	Trinidad	pavement at Gazebo	plume
6/19/2003/4	147	90	Trinidad	pavement at Gazebo	plume
6/19/2003/4	167	90	Trinidad	pavement at Gazebo	
6/19/2003/4	92	90	Trinidad	pavement at Gazebo	
6/19/2003/4	96	90	Trinidad	pavement at Gazebo	
6/19/2003/4	153	90	Trinidad	pavement at Gazebo	
6/19/2003/4	98	90	Trinidad	pavement at Gazebo	
6/19/2003/4	148	90	Trinidad	pavement at Gazebo	plume
6/19/2003/4	150	90	Trinidad	pavement at Gazebo	
6/19/2003/4	14	90	Trinidad	pavement at Gazebo	
6/19/2003/4	92	90	Trinidad	pavement at Gazebo	

Location ID: 6/19/2003/5 Latitude: N 36.8902 Longitude: W 104.6377667

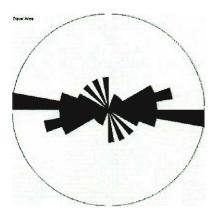
"The Whale"

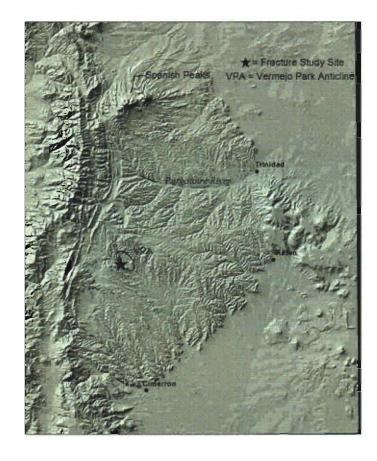



Notes:

Location ID: 6/20/2003/1 Latitude: N 36.88728333 Longitude: W 104.5661333

Hwy 555 east of whale, road cut (both sides) with coal

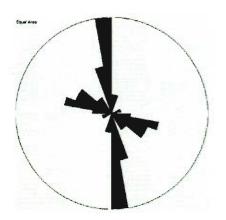

Notes:

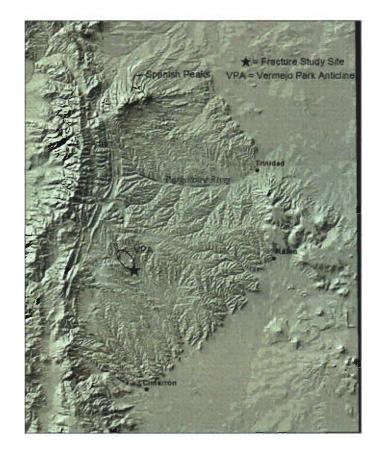

ID	Strike	Dip	Formation	Comment 1	Comment 2
6/20/2003/1	100	90	Vermejo	face cleat	coal
6/20/2003/1	172	90	Vermejo		coal
6/20/2003/1	96	90	Vermejo		coal
6/20/2003/1	104	90	Vermejo		coal
6/20/2003/1	106	90	Vermejo		coal
6/20/2003/1	105	90	Vermejo		coal
6/20/2003/1	110	90	Vermejo		coal
6/20/2003/1	101	90	Vermejo		coal
6/20/2003/1	12	90	Vermejo		coal
6/20/2003/1	104	90	Vermejo		coal
6/20/2003/1	100	90	Vermejo		coal
6/20/2003/1	178	90	Vermejo		coal
6/20/2003/1	83	90	Vermejo		coal
6/20/2003/1	106	90	Vermejo		coal
6/20/2003/1	111	90	Vermejo		coal
6/20/2003/1	171	90	Vermejo		coal
6/20/2003/1	101	90	Vermejo		coal

6/20/2003/1	110	90	Vermejo		coal
6/20/2003/1	99	90	Vermejo		coal
6/20/2003/1	360	90	Vermejo		coal
6/20/2003/1	8	90	Vermejo		coal
6/20/2003/1	101	90	Vermejo	dominant	sand
6/20/2003/1	103	90	Vermejo		sand
6/20/2003/1	93	75	Vermejo		sand
6/20/2003/1	8	90	Vermejo	abuts 100 set	sand
6/20/2003/1	96	90	Vermejo		sand
6/20/2003/1	93	90	Vermejo	plume	sand
6/20/2003/1	94	90	Vermejo	plume	sand
6/20/2003/1	178	90	Vermejo		sand
6/20/2003/1	102	90	Vermejo		sand
6/20/2003/1	98	90	Vermejo		sand
6/20/2003/1	98	90	Vermejo		sand
6/20/2003/1	97	90	Vermejo		sand
6/20/2003/1	92	90	Vermejo		sand
6/20/2003/1	93	90	Vermejo		sand
6/20/2003/1	94	90	Vermejo		sand
6/20/2003/1	94	90	Vermejo	plume	sand
6/20/2003/1	175	90	Vermejo		sand
6/20/2003/1	98	90	Vermejo		sand
6/20/2003/1	98	90	Vermejo		sand
6/20/2003/1	179	90	Vermejo		sand
6/20/2003/1	96	90	Vermejo		sand
				plume and calcite mineralization in	
6/20/2003/1	90	90	Vermejo	concretions	sand
6/20/2003/1	96	90	Vermejo		sand
6/20/2003/1	93	90	Vermejo		sand
6/20/2003/1	44	90	Vermejo		sand
6/20/2003/1	11	90	Vermejo		sand
6/20/2003/1	120	90	Vermejo		sand
6/20/2003/1	92	90	Vermejo		sand
6/20/2003/1	92	90	Vermejo		sand

Location ID: 6/20/2003/2 Latitude: N 36.89156667 Longitude: W 105.01145

Trinidad, south flank of VPA, above water tank


Notes:

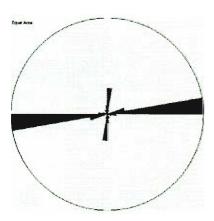

ID	Strike	Dip	Formation	Comment 1
6/20/2003/2	40	90	Trinidad	
6/20/2003/2	97	90	Trinidad	
6/20/2003/2	99	90	Trinidad	
6/20/2003/2	91	90	Trinidad	
6/20/2003/2	93	90	Trinidad	
6/20/2003/2	103	90	Trinidad	
6/20/2003/2	20	90	Trinidad	
6/20/2003/2	58	90	Trinidad	
6/20/2003/2	114	90	Trinidad	
6/20/2003/2	97	90	Trinidad	
6/20/2003/2	107	90	Trinidad	
6/20/2003/2	79	90	Trinidad	
6/20/2003/2	79	90	Trinidad	
6/20/2003/2	69	90	Trinidad	w/3 generations of calcite, up to 1 cm thick
6/20/2003/2	61	90	Trinidad	w/calcite up to 5 cm, multiple generations
6/20/2003/2	60	90	Trinidad	
6/20/2003/2	158	90	Trinidad	

6/20/2003/2	107	90	Trinidad	
6/20/2003/2	138	90	Trinidad	
6/20/2003/2	37	90	Trinidad	
6/20/2003/2	113	90	Trinidad	
6/20/2003/2	152	90	Trinidad	
6/20/2003/2	95	90	Trinidad	
6/20/2003/2	80	90	Trinidad	
6/20/2003/2	85	90	Trinidad	
6/20/2003/2	79	90	Trinidad	
6/20/2003/2	85	90	Trinidad	
6/20/2003/2	318	80	Trinidad	
6/20/2003/2	79	90	Trinidad	
6/20/2003/2	179	90	Trinidad	plume
6/20/2003/2	179	90	Trinidad	plume
				•

Location ID: 6/20/2003/3 Latitude: N 36.87141667 Longitude: W 104.9624

Reed Canyon

Notes:

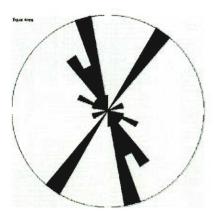

ID	Strike	Dip	Formation	Comment 1	Comment 2	Comment 3
6/20/2003/3	109	90	Raton	horizontal shear		Raton Cong.
6/20/2003/3	125	90	Raton	left lateral shear	photo	Raton Cong.
6/20/2003/3	9	90	Raton	left lateral?		Raton Cong.
6/20/2003/3	108	90	Raton	right lateral shear		Raton Cong.
6/20/2003/3	102	90	Raton	right lateral shear		Raton Cong.
6/20/2003/3	93	90	Raton	right lateral shear		Raton Cong.
6/20/2003/3	114	90	Raton	right lateral shear		Raton Cong.
6/20/2003/3	116	90	Raton	right lateral shear		Raton Cong.
6/20/2003/3	74	90	Raton	right lateral?		Raton Cong.
6/20/2003/3	94	90	Raton	irreg		Raton Cong.
6/20/2003/3	115	90	Raton	near fault		Raton Cong.
6/20/2003/3	114	90	Raton	near fault		Raton Cong.
6/20/2003/3	60	90	Raton			Raton Cong.
6/20/2003/3	170	90	Raton			Raton Cong.
6/20/2003/3	169	90	Raton			Raton Cong.
6/20/2003/3	175	90	Raton			Raton Cong.
6/20/2003/3	177	90	Raton			Raton Cong.

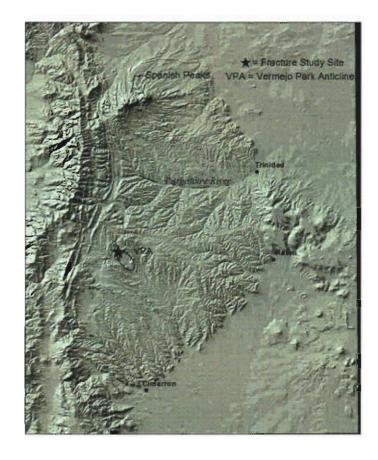

6/20/2003/3	168	90	Raton
6/20/2003/3	172	90	Raton
6/20/2003/3	160	90	Raton
6/20/2003/3	176	90	Raton
6/20/2003/3	148	90	Raton
6/20/2003/3	106	90	Raton
6/20/2003/3	173	90	Raton
6/20/2003/3	125	90	Raton
6/20/2003/3	178	90	Raton
6/20/2003/3	147	90	Raton
6/20/2003/3	176	90	Raton
6/20/2003/3	120	90	Raton
6/20/2003/3	10	90	Raton
6/20/2003/3	168	90	Raton
6/20/2003/3	103	90	Raton
6/20/2003/3	134	90	Raton
6/20/2003/3	124	90	Raton
6/20/2003/3	160	90	Raton
6/20/2003/3	171	90	Raton
6/20/2003/3	136	90	Raton
6/20/2003/3	179	90	Raton
6/20/2003/3	5	90	Raton
6/20/2003/3	16	90	Raton

east side of canyon east side of canyon

Raton Cong. Location ID: 6/20/2003/4 Latitude: N 36.92183333 Longitude: W 104.8927833

Highway 555, Upper Raton?

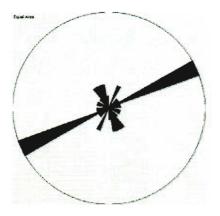

Notes:

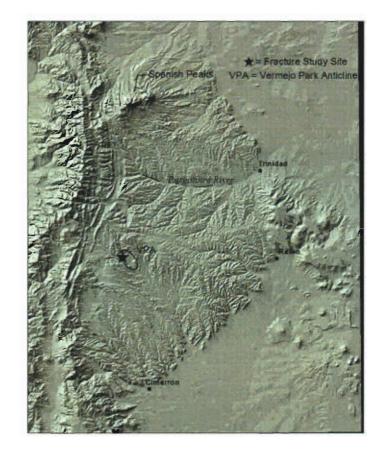

ID	Strike	Dip	Formation	Comment 1	Comment 2
6/20/2003/4	2	90	Raton		SS
6/20/2003/4	88	90	Raton		SS
6/20/2003/4	82	90	Raton		SS
6/20/2003/4	171	90	Raton		SS
6/20/2003/4	180	90	Raton		SS
6/20/2003/4	89	90	Raton		SS
6/20/2003/4	81	90	Raton		SS
6/20/2003/4	90	90	Raton		SS
6/20/2003/4	3	90	Raton		SS
6/20/2003/4	94	90	Raton		SS
6/20/2003/4	1	90	Raton		SS
6/20/2003/4	83	90	Raton		SS
6/20/2003/4	175	90	Raton		SS
6/20/2003/4	88	90	Raton		SS
6/20/2003/4	82	90	Raton		SS
6/20/2003/4	5	90	Raton		SS
6/20/2003/4	80	90	Raton		SS

6/20/2003/4	80	90	Raton		SS
6/20/2003/4	88	90	Raton		SS
6/20/2003/4	9	90	Raton		SS
6/20/2003/4	89	90	Raton		SS
6/20/2003/4	10	90	Raton		SS
6/20/2003/4	108	90	Raton		SS
6/20/2003/4	76	90	Raton		SS
6/20/2003/4	80	90	Raton		SS
6/20/2003/4	78	90	Raton		SS
6/20/2003/4	150	90	Raton		SS
6/20/2003/4	79	90	Raton	face cleat (but cleat approx normal)	coal
6/20/2003/4	80	90	Raton		coal
6/20/2003/4	83	90	Raton		coal
6/20/2003/4	84	90	Raton		coal
6/20/2003/4	85	90	Raton		coal
6/20/2003/4	83	90	Raton		coal
6/20/2003/4	80	90	Raton		coal
6/20/2003/4	82	90	Raton		coal
6/20/2003/4	83	90	Raton		coal
6/20/2003/4	83	90	Raton		coal
6/20/2003/4	81	90	Raton		coal
6/20/2003/4	79	90	Raton		coal

Location ID: 6/25/2003/1 Latitude: N 36.92921667 Longitude: W 105.0213683

Spring Canyon, near Bartlett Mine


Notes:

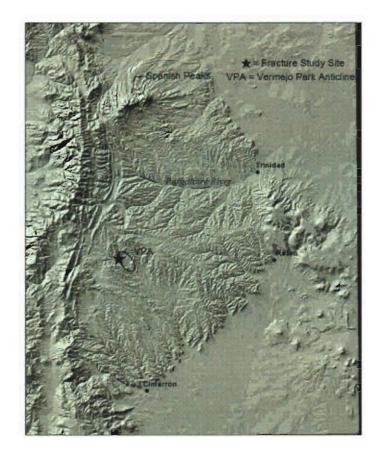

ID 6/25/2003/1 6/25/2003/1 6/25/2003/1 6/25/2003/1 6/25/2003/1 6/25/2003/1 6/25/2003/1 6/25/2003/1 6/25/2003/1 6/25/2003/1 6/25/2003/1 6/25/2003/1 6/25/2003/1 6/25/2003/1	Strike 348 345 341 330 359 346 340 60 38 35 336 328 332 326 340	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	70 75 70 80 85 70 70 65 70 80 80 80 85 80	Formation Raton Raton Raton Raton Raton Raton Raton Raton Raton Raton Raton Raton Raton Raton Raton Raton	Comment 1 irregular irregular irregular	Comment 2 Raton Conglomerate Raton Conglomerate
		٤ ٤				
6/25/2003/1	131	7	75	Raton		Raton Conglomerate

6/25/2003/1	125	85	Raton		Raton Conglomerate
6/25/2003/1	148	90	Raton		Raton Conglomerate
6/25/2003/1	30	58	Raton		Raton Conglomerate
6/25/2003/1	115	78	Raton		Raton Conglomerate
6/25/2003/1	104	78	Raton		Raton Conglomerate
6/25/2003/1	114	78	Raton	possible LL shear	Raton Conglomerate
6/25/2003/1	70	55	Raton		Raton Conglomerate
6/25/2003/1	39	58	Raton		Raton Conglomerate
6/25/2003/1	30	70	Raton		Raton Conglomerate
6/25/2003/1	31	67	Raton		Raton Conglomerate

Location ID: 6/25/2003/2 Latitude: N 36.9106 Longitude: W 105.01655

West end of VP Anticline, Trinidad

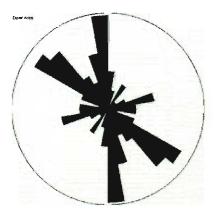
Notes:

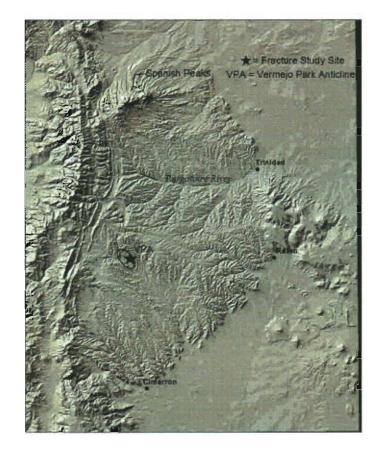

ID	Strike	Dip	Formation	Comment 1
6/25/2003/2	250	85	Trinidad	
6/25/2003/2	20	70	Trinidad	
6/25/2003/2	150	85	Trinidad	
6/25/2003/2	115	90	Trinidad	
6/25/2003/2	62	88	Trinidad	
6/25/2003/2	28	63	Trinidad	
6/25/2003/2	345	85	Trinidad	
6/25/2003/2	132	74	Trinidad	
6/25/2003/2	62	80	Trinidad	
6/25/2003/2	165	88	Trinidad	
6/25/2003/2	62	83	Trinidad	
6/25/2003/2	58	80	Trinidad	
6/25/2003/2	108	90	Trinidad	
6/25/2003/2	140	90	Trinidad	
6/25/2003/2	60	74	Trinidad	
6/25/2003/2	352	85	Trinidad	irregular, curves to north
6/25/2003/2	48	68	Trinidad	plume

6/25/2003/2	338	80	Trinidad	
6/25/2003/2	82	76	Trinidad	
				narrow fracture cluster 15 cm wide containing > 10
6/25/2003/2	328	85	Trinidad	fracs. Down to east displacement of 30 cm?
6/25/2003/2	64	85	Trinidad	down to south displacement of ~5 cm
6/25/2003/2	60	90	Trinidad	
6/25/2003/2	62	85	Trinidad	
6/25/2003/2	62	85	Trinidad	

Location ID: 6/25/2003/3 Latitude: N 36.91045 Longitude: W 105.0196333

West end of VPA, Raton Fm.

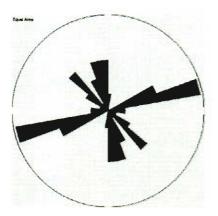

Notes:

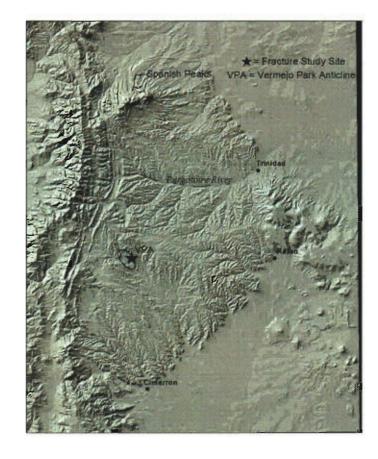

ID	Strike	Dip (right hand rule)	Formation	Comment 1
6/25/2003/3	67	, 90	Raton	
6/25/2003/3	342	88	Raton	
6/25/2003/3	340	78	Raton	
6/25/2003/3	154	90	Raton	
6/25/2003/3	68	85	Raton	
6/25/2003/3	312	75	Raton	
6/25/2003/3	320	70	Raton	
6/25/2003/3	105	90	Raton	
6/25/2003/3	332	85	Raton	
6/25/2003/3	342	80	Raton	
6/25/2003/3	342	82	Raton	
6/25/2003/3	40	90	Raton	
6/25/2003/3	330	86	Raton	
6/25/2003/3	85	55	Raton	
6/25/2003/3	78	90	Raton	
6/25/2003/3	240	88	Raton	good horizontal shear lineations

6/25/2003/3	80	90	Raton
6/25/2003/3	80	90	Raton
6/25/2003/3	158	90	Raton
6/25/2003/3	85	90	Raton
6/25/2003/3	262	85	Raton
6/25/2003/3	136	90	Raton

Location ID: 6/26/2003/1 Latitude: N 36.90341667 Longitude: W 104.9783833

North side of VPA, west of gazebo, Trinidad and sill

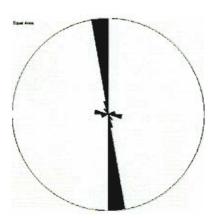

Notes:

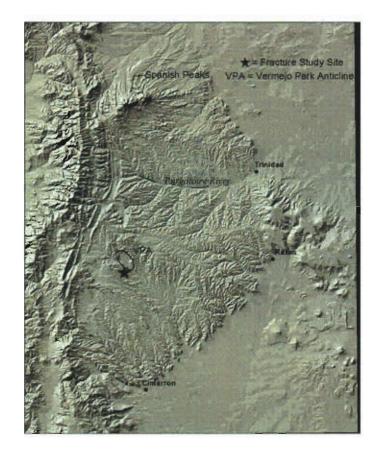

Fracture Data	a:				
ID	Strike	Dip	Formation	Comment 1	Comment 2
6/26/2003/1	158	90	Pierre	sill	w/calcite
6/26/2003/1	120	90	Pierre	sill	
6/26/2003/1	173	90	Pierre	sill	
6/26/2003/1	36	90	Pierre	sill	
6/26/2003/1	142	90	Pierre	sill	w/calcite
6/26/2003/1	121	90	Pierre	sill	
6/26/2003/1	169	90	Pierre	sill	plume
6/26/2003/1	120	90	Pierre	sill	
6/26/2003/1	152	42	Pierre	sill	
6/26/2003/1	120	90	Pierre	sill	
6/26/2003/1	71	90	Pierre	sill	w/calcite
6/26/2003/1	161	90	Pierre	sill	
6/26/2003/1	297	75	Pierre	sill	
6/26/2003/1	170	90	Pierre	sill	
6/26/2003/1	122	90	Pierre	sill	calcite vugs up to 3 cm across
6/26/2003/1	9	90	Pierre	sill	
6/26/2003/1	353	85	Pierre	sill	
6/26/2003/1	118	90	Pierre	sill	

0/00/0000//	0	~~~	D .		
6/26/2003/1	8	90	Pierre	sill	<i>,</i>
6/26/2003/1	47	90	Pierre	sill	w/calcite
6/26/2003/1	310	70	Pierre	sill	w/calcite
6/26/2003/1	160	80	Trinidad	ss (thin bedded Trinidad)	
6/26/2003/1	92	90	Trinidad	ss (thin bedded Trinidad)	
6/26/2003/1	89	90	Trinidad	ss (thin bedded Trinidad)	
6/26/2003/1	71	90	Trinidad	ss (thin bedded Trinidad)	
6/26/2003/1	128	90	Trinidad	ss (thin bedded Trinidad)	
6/26/2003/1	63	90	Trinidad	ss (thin bedded Trinidad)	
6/26/2003/1	308	85	Trinidad Trinidad	ss (thin bedded Trinidad)	
6/26/2003/1	79	90		ss (thin bedded Trinidad)	
6/26/2003/1	139	90	Trinidad	ss (thin bedded Trinidad)	
6/26/2003/1	32	90	Trinidad	ss (thin bedded Trinidad)	
6/26/2003/1	167	90	Trinidad	ss (thin bedded Trinidad)	
6/26/2003/1	310	80	Trinidad	ss (thin bedded Trinidad)	
6/26/2003/1	132	90	Trinidad	ss (thin bedded Trinidad)	
6/26/2003/1	57	90	Trinidad	ss (thin bedded Trinidad)	
6/26/2003/1	142	90	Trinidad	ss (thin bedded Trinidad)	
6/26/2003/1	252	80	Trinidad	ss (thin bedded Trinidad)	
6/26/2003/1	78	90	Trinidad	ss (thin bedded Trinidad)	
6/26/2003/1	292	85	Trinidad	ss (ophiomorph Trinidad)	
6/26/2003/1	60	20	Trinidad	ss (ophiomorph Trinidad)	
6/26/2003/1	358	88	Trinidad	ss (ophiomorph Trinidad)	
6/26/2003/1	100	90	Trinidad	ss (ophiomorph Trinidad)	
6/26/2003/1	270	8	Trinidad	ss (ophiomorph Trinidad)	
6/26/2003/1	175	80	Trinidad	ss (ophiomorph Trinidad)	
6/26/2003/1	160	90	Trinidad	ss (ophiomorph Trinidad)	
6/26/2003/1	175	90	Trinidad	ss (ophiomorph Trinidad)	
6/26/2003/1	175	90	Trinidad	ss (ophiomorph Trinidad)	
6/26/2003/1	170	90	Trinidad	ss (ophiomorph Trinidad)	
6/26/2003/1	88 177	90	Trinidad Trinidad	ss (ophiomorph Trinidad)	
6/26/2003/1	92	90 90	Trinidad	ss (ophiomorph Trinidad)	
6/26/2003/1 6/26/2003/1	92 37	90 20	Trinidad	ss (ophiomorph Trinidad)	
	300	20 62	Trinidad	ss (ophiomorph Trinidad)	
6/26/2003/1 6/26/2003/1	315		Trinidad	ss (ophiomorph Trinidad)	
6/26/2003/1	315	80 85	Trinidad	ss (ophiomorph Trinidad) ss (ophiomorph Trinidad)	
6/26/2003/1	313	85 85	Trinidad	ss (ophiomorph Trinidad)	
6/26/2003/1	162	90	Trinidad	ss (ophiomorph Trinidad)	
6/26/2003/1	84	90 90	Trinidad	ss (ophiomorph Trinidad)	
6/26/2003/1	332	90 85	Trinidad	, , , , , , , , , , , , , , , , , , , ,	
6/26/2003/1	136	90	Trinidad	ss (ophiomorph Trinidad)	
6/26/2003/1	2	90 90	Trinidad	ss (ophiomorph Trinidad) ss (ophiomorph Trinidad)	
6/26/2003/1	10	90 90	Trinidad	ss (ophiomorph Trinidad)	
6/26/2003/1	175	90 90	Trinidad	ss (ophiomorph Trinidad)	
6/26/2003/1	142	90 90	Trinidad	ss (ophiomorph Trinidad) ss (ophiomorph Trinidad)	
6/26/2003/1	142	90 90	Trinidad		
6/26/2003/1	322	90 80	Trinidad	ss (ophiomorph Trinidad)	
6/26/2003/1	322 10	80 90	Trinidad	ss (ophiomorph Trinidad)	
6/26/2003/1	180	90 90	Trinidad	ss (ophiomorph Trinidad)	
0/20/2003/1	100	90	rinuad	ss (ophiomorph Trinidad)	

Location ID: 6/26/2003/2 Latitude: N 36.90678333 Longitude: W 104.9754667

North side of VPA, Vermejo and ? Raton

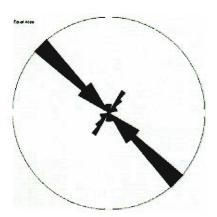

Notes:

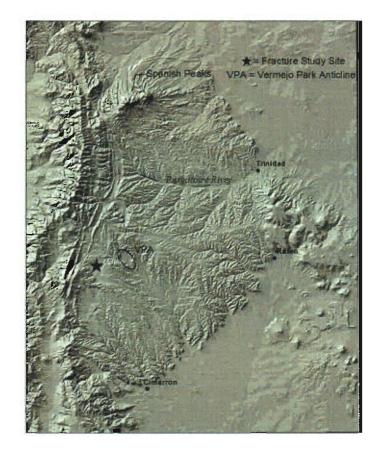

ID	Strike	Dip	Formation	Comment 1	Comment 2
6/26/2003/2	72	85	Vermejo	ss (Vermejo)	w/calcite
6/26/2003/2	164	90	Vermejo	ss (Vermejo)	
6/26/2003/2	61	90	Vermejo	ss (Vermejo)	
6/26/2003/2	78	90	Vermejo	ss (Vermejo)	
6/26/2003/2	165	85	Vermejo	ss (Vermejo)	
6/26/2003/2	164	90	Vermejo	ss (Vermejo)	
6/26/2003/2	133	90	Vermejo	ss (Vermejo)	
6/26/2003/2	77	90	Vermejo	ss (Vermejo)	w/calcite
6/26/2003/2	129	85	Vermejo	ss (Vermejo)	
6/26/2003/2	263	85	Vermejo	ss (Vermejo)	
6/26/2003/2	163	90	Vermejo	ss (Vermejo)	
6/26/2003/2	162	85	Vermejo	ss (Vermejo)	
6/26/2003/2	259	85	Vermejo	ss (Vermejo)	
6/26/2003/2	163	90	Vermejo	ss (Vermejo)	w/calcite
6/26/2003/2	97	90	Vermejo	ss (Vermejo)	
6/26/2003/2	150	90	Vermejo	ss (Vermejo)	
6/26/2003/2	176	85	Vermejo	ss (Vermejo)	
01201200312	170	00	venneju	ss (vernieju)	

6/26/2003/2	150	90	Vermejo	ss (Vermejo)	
6/26/2003/2	131	90	Vermejo	ss (Vermejo)	
6/26/2003/2	70	90	Vermejo	ss (Vermejo)	
6/26/2003/2	133	85	Vermejo	ss (Vermejo)	w/calcite
6/26/2003/2	79	90	Vermejo	ss (Vermejo)	
6/26/2003/2	133	85	Vermejo	ss (Vermejo)	
6/26/2003/2	79	90	Vermejo	ss (Vermejo)	
6/26/2003/2	130	85	Vermejo	ss (Vermejo)	
6/26/2003/2	80	90	Vermejo	ss (Vermejo)	w/calcite
6/26/2003/2	272	80	Raton	ss (basal Raton?)	
6/26/2003/2	8	90	Raton	ss (basal Raton?)	
6/26/2003/2	70	70	Raton	ss (basal Raton?)	
6/26/2003/2	173	90	Raton	ss (basal Raton?)	
6/26/2003/2	1	90	Raton	ss (basal Raton?)	
6/26/2003/2	65	90	Raton	ss (basal Raton?)	
6/26/2003/2	137	90	Raton	ss (basal Raton?)	
6/26/2003/2	79	90	Raton	ss (basal Raton?)	
6/26/2003/2	179	90	Raton	ss (basal Raton?)	
6/26/2003/2	140	90	Raton	ss (basal Raton?)	
6/26/2003/2	60	90	Raton	ss (basal Raton?)	
6/26/2003/2	174	90	Raton	ss (basal Raton?)	
6/26/2003/2	173	90	Raton	ss (basal Raton?)	
6/26/2003/2	65	90	Raton	ss (basal Raton?)	
6/26/2003/2	118	90	Raton	ss (basal Raton?)	
6/26/2003/2	109	90	Raton	ss (basal Raton?)	
6/26/2003/2	125	90	Raton	ss (basal Raton?)	
6/26/2003/2	70	90	Raton	ss (basal Raton?)	
6/26/2003/2	121	90	Raton	ss (basal Raton?)	
6/26/2003/2	69	90	Raton	ss (basal Raton?)	
6/26/2003/2	61	65	Raton	ss (basal Raton?)	
6/26/2003/2	158	90	Raton	ss (basal Raton?)	
6/26/2003/2	157	60	Raton	ss (basal Raton?)	
6/26/2003/2	355	75	Raton	ss (basal Raton?)	
6/26/2003/2	78	90	Raton	ss (basal Raton?)	

Location ID: 6/26/2003/4 Latitude: N 36.8659 Longitude: W 104.9966167

Juan Baca Canyon

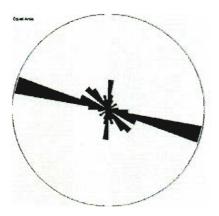

Notes:

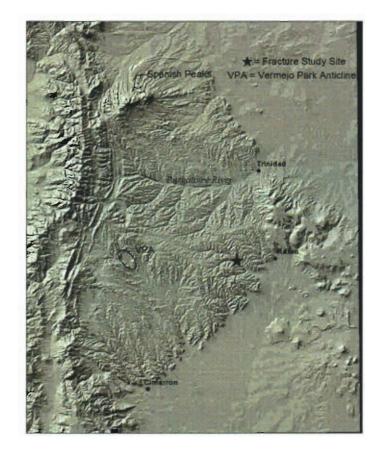

ID	Strike	Dip	Formation	Comment 1
6/26/2003/4	176	80	unknown	ss (Raton? Vermejo?)
6/26/2003/4	173	90	unknown	ss (Raton? Vermejo?)
6/26/2003/4	350	85	unknown	ss (Raton? Vermejo?)
6/26/2003/4	172	90	unknown	ss (Raton? Vermejo?)
6/26/2003/4	283	80	unknown	ss (Raton? Vermejo?)
6/26/2003/4	172	90	unknown	ss (Raton? Vermejo?)
6/26/2003/4	75	90	unknown	ss (Raton? Vermejo?)
6/26/2003/4	173	90	unknown	ss (Raton? Vermejo?)
6/26/2003/4	168	90	unknown	ss (Raton? Vermejo?)
6/26/2003/4	179	90	unknown	ss (Raton? Vermejo?)
6/26/2003/4	67	90	unknown	ss (Raton? Vermejo?)
6/26/2003/4	170	85	unknown	ss (Raton? Vermejo?)
6/26/2003/4	96	90	unknown	ss (Raton? Vermejo?)
6/26/2003/4	173	90	unknown	ss (Raton? Vermejo?)
6/26/2003/4	171	90	unknown	ss (Raton? Vermejo?)
6/26/2003/4	170	80	unknown	ss (Raton? Vermejo?)
6/26/2003/4	88	90	unknown	ss (Raton? Vermejo?)

6/26/2003/4	178	90	unknown	ss (Raton? Vermejo?)
6/26/2003/4	172	90	unknown	ss (Raton? Vermejo?)
6/26/2003/4	173	90	unknown	ss (Raton? Vermejo?)
6/26/2003/4	288	80	unknown	ss (Raton? Vermejo?)
6/26/2003/4	146	90	unknown	ss (Raton? Vermejo?)
6/26/2003/4	97	90	unknown	ss (Raton? Vermejo?)
6/26/2003/4	168	90	unknown	ss (Raton? Vermejo?)

Location ID: 6/26/2003/5 Latitude: N 36.88328333 Longitude: W 105.10665

Castle Rock area, dike

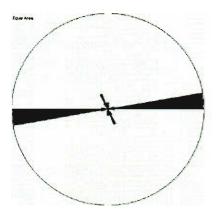

Notes:

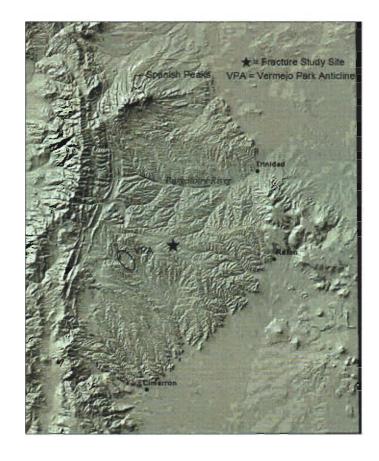

ID	Strike	Dip	Formation	Comment 1	Comment 2
6/26/2003/5	132	90	Poison Canyon	ss (next to dike)	
6/26/2003/5	133	90	Poison Canyon	ss (next to dike)	
6/26/2003/5	135	90	Poison Canyon	ss (next to dike)	
6/26/2003/5	132	90	Poison Canyon	ss (next to dike)	
6/26/2003/5	37	90	Poison Canyon	ss (next to dike)	
6/26/2003/5	40	90	Poison Canyon	ss (next to dike)	
6/26/2003/5	41	90	Poison Canyon	ss (next to dike)	
6/26/2003/5	138	90	Poison Canyon	ss (poison canyon)	
6/26/2003/5	135	90	Poison Canyon	ss (poison canyon)	
6/26/2003/5	128	90	Poison Canyon	ss (poison canyon)	
6/26/2003/5	132	90	Poison Canyon	ss (poison canyon)	
6/26/2003/5	120	90	Poison Canyon	ss (poison canyon)	
6/26/2003/5	147	90	Poison Canyon	ss (poison canyon)	
6/26/2003/5	18	90	Poison Canyon	ss (poison canyon)	
6/26/2003/5	140	90	Poison Canyon	ss (poison canyon)	
6/26/2003/5	178	90	Poison Canyon	ss (poison canyon)	abuts 140

6/26/2003/5	150	90	Poison Canyon	ss (poison canyon)
6/26/2003/5	75	90	Poison Canyon	ss (poison canyon)
6/26/2003/5	128	90	Poison Canyon	ss (poison canyon)
6/26/2003/5	126	90	Poison Canyon	ss (poison canyon)
6/26/2003/5	164	90	Poison Canyon	ss (poison canyon)
6/26/2003/5	37	90	Poison Canyon	ss (poison canyon)
6/26/2003/5	7	90	Poison Canyon	ss (poison canyon)
6/26/2003/5	317	80	Poison Canyon	ss (poison canyon)
6/26/2003/5	35	90	Poison Canyon	ss (poison canyon)
6/26/2003/5	130	90	Poison Canyon	ss (poison canyon)
6/26/2003/5	132	90	Poison Canyon	ss (poison canyon)
6/26/2003/5	131	90	Poison Canyon	ss (poison canyon)
6/26/2003/5	148	90	Poison Canyon	ss (poison canyon)
6/26/2003/5	60	90	Poison Canyon	ss (poison canyon)
6/26/2003/5	58	90	Poison Canyon	ss (poison canyon)
6/26/2003/5	140	90	Poison Canyon	ss (poison canyon)

Location ID: 6/27/2003/1 Latitude: N 36.89768333 Longitude: W 104.583885

Highway 555, sills and coal dike


Notes:

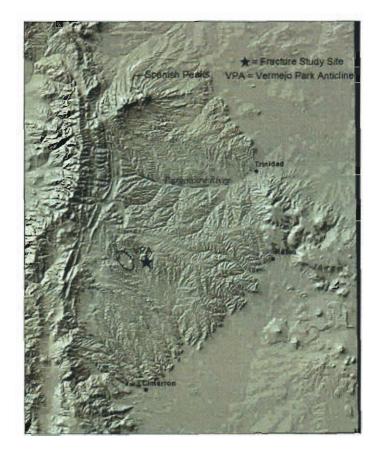

ID	Strike	Dip	Formation	Comment 1	Comment 2
6/27/2003/1	108	90	unknown	sill	plume
6/27/2003/1	111	90	unknown	sill	plume
6/27/2003/1	38	90	unknown	sill	
6/27/2003/1	101	90	unknown	sill	
6/27/2003/1	163	90	unknown	sill	
6/27/2003/1	24	90	unknown	sill	
6/27/2003/1	172	90	unknown	sill	
6/27/2003/1	107	90	unknown	sill	
6/27/2003/1	102	90	unknown	sill	plume
6/27/2003/1	104	90	unknown	sill	
6/27/2003/1	107	90	unknown	sill	
6/27/2003/1	82	90	unknown	sill	
6/27/2003/1	89	90	unknown	sill	
6/27/2003/1	148	90	unknown	sill	
6/27/2003/1	10	90	unknown	sill	
6/27/2003/1	110	90	unknown	sill	
6/27/2003/1	318	78	unknown	sill	

6/27/2003/1	102	90	unknown	sill	plume
6/27/2003/1	91	90	unknown	sill	
6/27/2003/1	3	90	unknown	sill	
6/27/2003/1	94	90	unknown	sill	
6/27/2003/1	174	90	unknown	sill	
6/27/2003/1	102	90·	unknown	sill	plume
6/27/2003/1	107	90	unknown	sill	plume
6/27/2003/1	8	90	unknown	sill	irregular
6/27/2003/1	110	90	unknown	sill	0.1
6/27/2003/1	110	90	unknown	sill	
6/27/2003/1	109	90	unknown	sill	
6/27/2003/1	3	90	unknown	sill	
6/27/2003/1	2	90	unknown	sill	
6/27/2003/1	104	90	unknown	sill	
6/27/2003/1	24	90	unknown	sill	
6/27/2003/1	111	90	unknown	sill	plume
6/27/2003/1	109	90	unknown	sill	1
6/27/2003/1	109	90	unknown	sill	
6/27/2003/1	1	80	unknown	sill	
6/27/2003/1	106	90	unknown	sill	
6/27/2003/1	5	90	unknown	sill	
6/27/2003/1	103	90	unknown	sill	
6/27/2003/1	277	68	unknown	siltstone	
6/27/2003/1	91	90	unknown	siltstone	
6/27/2003/1	152	90	unknown	siltstone	
6/27/2003/1	284	40	unknown	siltstone	
6/27/2003/1	194	90	unknown	siltstone	
6/27/2003/1	111	90	unknown	siltstone	
6/27/2003/1	136	90	unknown	siltstone	
6/27/2003/1	59	90	unknown	siltstone	
6/27/2003/1	13	90	unknown	siltstone	
6/27/2003/1	109	90	unknown	siltstone	
6/27/2003/1	142	90	unknown	siltstone	plume
6/27/2003/1	107	90	unknown	siltstone	-
6/27/2003/1	142	90	unknown	siltstone	abuts 107
6/27/2003/1	155	90	unknown	siltstone	wrenched
6/27/2003/1	168	90	unknown	siltstone	wrenched
6/27/2003/1	148	90	unknown	siltstone	wrenched
6/27/2003/1	143	90	unknown	siltstone	wrenched
6/27/2003/1	160	90	unknown	siltstone	
6/27/2003/1	131	90	unknown	siltstone	
6/27/2003/1	109	90	unknown	siltstone	
6/27/2003/1	132	90	unknown	siltstone	
6/27/2003/1	58	65	unknown	siltstone	
6/27/2003/1	139	90	unknown	siltstone	
6/27/2003/1	136	90	unknown	siltstone	
6/27/2003/1	120	90	unknown	siltstone	

abuts 107 wrenched feature? wrenched feature? wrenched feature? wrenched feature? Location ID: 6/27/2003/2 Latitude: N 36.94733333 Longitude: W 104.81795

Canadian River valley, north side

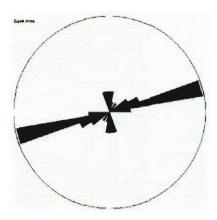
Notes:

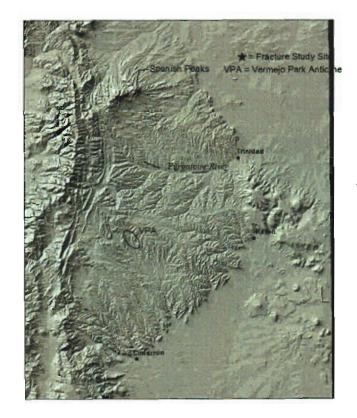

ID	Strike	Dip	Formation	Comment 1
6/27/2003/2	269	85	Poison Canyon	siltstone
6/27/2003/2	147	90	Poison Canyon	siltstone
6/27/2003/2	263	80	Poison Canyon	siltstone
6/27/2003/2	84	90	Poison Canyon	siltstone
6/27/2003/2	89	90	Poison Canyon	siltstone
6/27/2003/2	18	90	Poison Canyon	siltstone
6/27/2003/2	265	80	Poison Canyon	siltstone
6/27/2003/2	86	90	Poison Canyon	siltstone
6/27/2003/2	265	75	Poison Canyon	siltstone
6/27/2003/2	266	85	Poison Canyon	siltstone
6/27/2003/2	89	90	Poison Canyon	siltstone
6/27/2003/2	1	90	Poison Canyon	siltstone
6/27/2003/2	81	90	Poison Canyon	siltstone
6/27/2003/2	83	85	Poison Canyon	siltstone
6/27/2003/2	83	90	Poison Canyon	siltstone
6/27/2003/2	79	85	Poison Canyon	SS
6/27/2003/2	172	90	Poison Canyon	SS

6/27/2003/2	261	88	Poison Canyon	SS
6/27/2003/2	88	90	Poison Canyon	SS
6/27/2003/2	89	90	Poison Canyon	SS
6/27/2003/2	2	90	Poison Canyon	SS
6/27/2003/2	83	90	Poison Canyon	SS
6/27/2003/2	79	90	Poison Canyon	SS
6/27/2003/2	163	90	Poison Canyon	SS
6/27/2003/2	261	80	Poison Canyon	SS
6/27/2003/2	269	75	Poison Canyon	SS
6/27/2003/2	171	90	Poison Canyon	SS
6/27/2003/2	85	90	Poison Canyon	SS
6/27/2003/2	82	75	Poison Canyon	SS
6/27/2003/2	85	55	Poison Canyon	SS
6/27/2003/2	84	90	Poison Canyon	SS
6/27/2003/2	156	90	Poison Canyon	SS
6/27/2003/2	82	75	Poison Canyon	SS
6/27/2003/2	150	90	Poison Canyon	SS
6/27/2003/2	158	90	Poison Canyon	SS
6/27/2003/2	273	85	Poison Canyon	SS
6/27/2003/2	80	90	Poison Canyon	SS
6/27/2003/2	90	90	Poison Canyon	SS
6/27/2003/2	160	80	Poison Canyon	SS
6/27/2003/2	82	90	Poison Canyon	SS
6/27/2003/2	145	90	Poison Canyon	SS
6/27/2003/2	84	90	Poison Canyon	SS
6/27/2003/2	83	90	Poison Canyon	SS
6/27/2003/2	83	90	Poison Canyon	SS
6/27/2003/2	156	85	Poison Canyon	SS
6/27/2003/2	85	90	Poison Canyon	SS
6/27/2003/2	151	80	Poison Canyon	SS

Location ID: 6/27/2003/3 Latitude: N 36.89768333 Longitude: W 104.9128833

Highway 555, coal



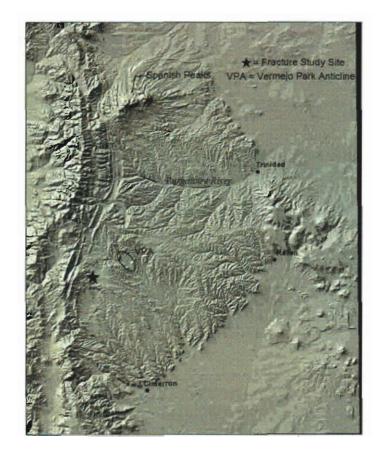

Notes:

ID	Strike	Dip	Formation	Comment 1
6/27/2003/3	34	90	unknown	coal
6/27/2003/3	35	90	unknown	coal
6/27/2003/3	120	90	unknown	coal
6/27/2003/3	136	90	unknown	coal
6/27/2003/3	118	90	unknown	coal
6/27/2003/3	122	90	unknown	coal
6/27/2003/3	123	90	unknown	coal
6/27/2003/3	125	90	unknown	coal
6/27/2003/3	122	90	unknown	coal
6/27/2003/3	123	90	unknown	coal
6/27/2003/3	121	90	unknown	coal
6/27/2003/3	19	90	unknown	coal
6/27/2003/3	21	90	unknown	coal
6/27/2003/3	15	90	unknown	coal
6/27/2003/3	20	90	unknown	coal
6/27/2003/3	43	90	unknown	coal
6/27/2003/3	38	90	unknown	coal

6/27/2003/3	35	90	unknown	coal
6/27/2003/3	175	90	unknown	coal
6/27/2003/3	170	90	unknown	coal
6/27/2003/3	161	90	unknown	coal
6/27/2003/3	28	90	unknown	coal
6/27/2003/3	25	90	unknown	coal
6/27/2003/3	126	90	unknown	coal
6/27/2003/3	126	90	unknown	coal
6/27/2003/3	166	90	unknown	coal
6/27/2003/3	129	90	unknown	coal
6/27/2003/3	14	90	unknown	coal
6/27/2003/3	127	90	unknown	coal
6/27/2003/3	10	90	unknown	coal

Location ID: 7/14/2003/1JL Latitude: N 37.07161667 Longitude: W 103.9953167

Notes:


ID	Strike	Din	Formation	Comment 1
		Dip		Comment
7/14/2003/1JL	72	90	Dakota	
7/14/2003/1JL	58	90	Dakota	
7/14/2003/1JL	60	90	Dakota	
7/14/2003/1JL	76	90	Dakota	
7/14/2003/1JL	71	90	Dakota	
7/14/2003/1JL	77	90	Dakota	
7/14/2003/1JL	79	90	Dakota	
7/14/2003/1JL	78	90	Dakota	
7/14/2003/1JL	80	90	Dakota	
7/14/2003/1JL	79	90	Dakota	
7/14/2003/1JL	70	90	Dakota	
7/14/2003/1JL	68	90	Dakota	
7/14/2003/1JL	57	90	Dakota	
7/14/2003/1JL	78	90	Dakota	
7/14/2003/1JL	80	90	Dakota	
7/14/2003/1JL	64	90	Dakota	RL
7/14/2003/1JL	168	90	Dakota	
7/14/2003/1JL	11	90	Dakota	
7/14/2003/1JL	1	90	Dakota	

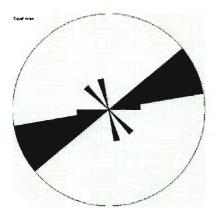
7/14/2003/1JL	172	90	Dakota
7/14/2003/1JL	164	90	Dakota
7/14/2003/1JL	173	90	Dakota
7/14/2003/1JL	5	90	Dakota
7/14/2003/1JL	31	90	Dakota

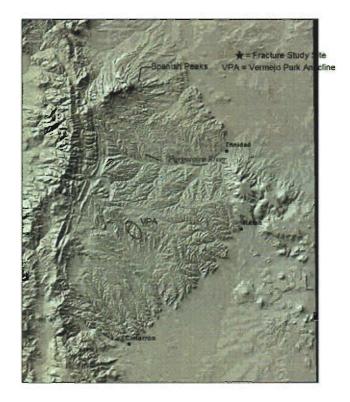
Location ID: 7/14/2003/1MH Latitude: N 36.85375 Longitude: W 105.1185833

West of Castle Rock park, poison canyon

Notes:

Fracture Data:


ID	Strike	Dip	Formation
7/14/2003/1MH	312	82	Poison canyon
7/14/2003/1MH	292	82	Poison canyon
7/14/2003/1MH	313	80	Poison canyon
7/14/2003/1MH	278	82	Poison canyon
7/14/2003/1MH	307	90	Poison canyon
7/14/2003/1MH	318	84	Poison canyon
7/14/2003/1MH	70	54	Poison canyon
7/14/2003/1MH	307	83	Poison canyon
7/14/2003/1MH	300	84	Poison canyon
7/14/2003/1MH	292	70	Poison canyon
7/14/2003/1MH	13	85	Poison canyon
7/14/2003/1MH	320	85	Poison canyon
7/14/2003/1MH	304	90	Poison canyon
7/14/2003/1MH	294	84	Poison canyon
7/14/2003/1MH	310	90	Poison canyon
7/14/2003/1MH	308	86	Poison canyon
7/14/2003/1MH	310	90	Poison canyon

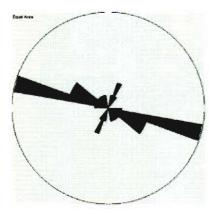

Comment 1 left lateral

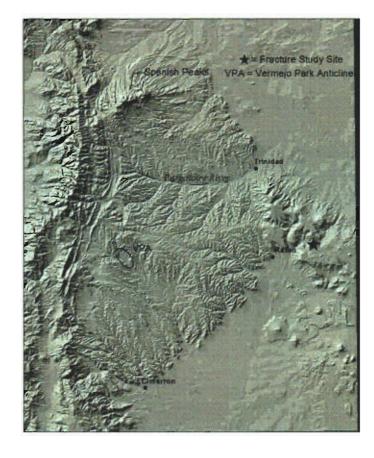
7/14/2003/1MH	300	77	Poison canyon	
7/14/2003/1MH	313	88	Poison canyon	
7/14/2003/1MH	318	86	Poison canyon	
7/14/2003/1MH	308	85	Poison canyon	
7/14/2003/1MH	286	90	Poison canyon	
7/14/2003/1MH	305	82	Poison canyon	left lateral
7/14/2003/1MH	310	82	Poison canyon	
7/14/2003/1MH	310	78	Poison canyon	
7/14/2003/1MH	307	80	Poison canyon	
7/14/2003/1MH	314	80	Poison canyon	
7/14/2003/1MH	302	90	Poison canyon	
7/14/2003/1MH	320	90	Poison canyon	left lateral
7/14/2003/1MH	290	80	Poison canyon	right lateral
7/14/2003/1MH	2 9 5	90	Poison canyon	
7/14/2003/1MH	316	90	Poison canyon	
7/14/2003/1MH	267	90	Poison canyon	
7/14/2003/1MH	22	90	Poison canyon	
7/14/2003/1MH	28	90	Poison canyon	

.

Location ID: 7/14/2003/2JL Latitude: N 36.8471 Longitude: W 103.9220167

*

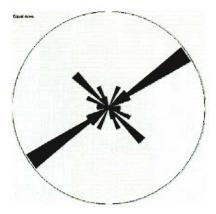

Notes:

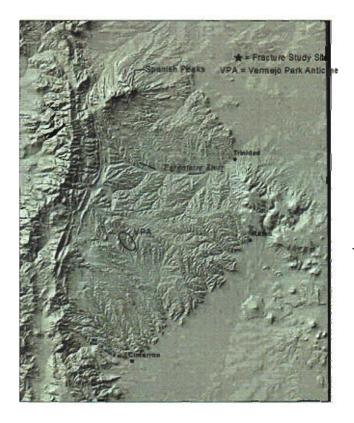

Fracture Data:

ID		Strike	Dip	Formation	Comment
7/14/2003	3/2JL	70	90	Dakota	
7/14/2003	3/2JL	69	90	Dakota	
7/14/2003	3/2JL	130	90	Dakota	
7/14/2003	3/2JL	58	90	Dakota	
7/14/2003	3/2JL	57	90	Dakota	
7/14/2003	3/2JL	82	90	Dakota	
7/14/2003	3/2JL	160	90	Dakota	
7/14/2003	3/2JL	72	90	Dakota	
7/14/2003	3/2JL	64	90	Dakota	
7/14/2003	3/2JL	72	90	Dakota	LL
7/14/2003	3/2JL	50	90	Dakota	RL
7/14/2003	3/2JL	60	90	Dakota	

1

Location ID: 7/14/2003/3JL Latitude: N 36.94171667 Longitude: W 104.28735

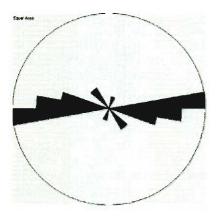


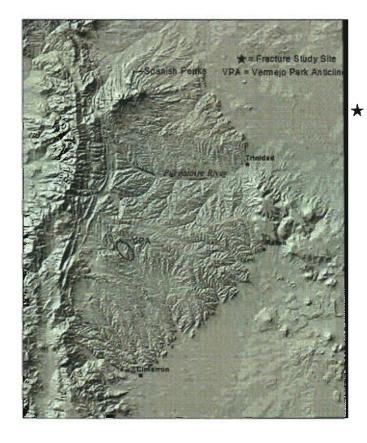

Notes:

ID	Strike	Dip	Formation
7/14/2003/3JL	160	90	Dakota
7/14/2003/3JL	30	90	Dakota
7/14/2003/3JL	115	90	Dakota
7/14/2003/3JL	12	90	Dakota
7/14/2003/3JL	120	90	Dakota
7/14/2003/3JL	91	90	Dakota
7/14/2003/3JL	23	90	Dakota
7/14/2003/3JL	109	90	Dakota
7/14/2003/3JL	106	90	Dakota
7/14/2003/3JL	107	90	Dakota
7/14/2003/3JL	103	90	Dakota
7/14/2003/3JL	138	90	Dakota
7/14/2003/3JL	143	90	Dakota
7/14/2003/3JL	129	90	Dakota
7/14/2003/3JL	154	90	Dakota
7/14/2003/3JL	108	90	Dakota
7/14/2003/3JL	110	90	Dakota

7/14/2003/3JL	100	90	Dakota
7/14/2003/3JL	28	90	Dakota
7/14/2003/3JL	129	90	Dakota
7/14/2003/3JL	103	90	Dakota
7/14/2003/3JL	110	90	Dakota

Location ID: 7/14/2003/4JL Latitude: N 36.86993333 Longitude: W 104.0004167

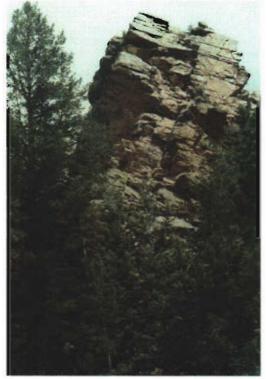


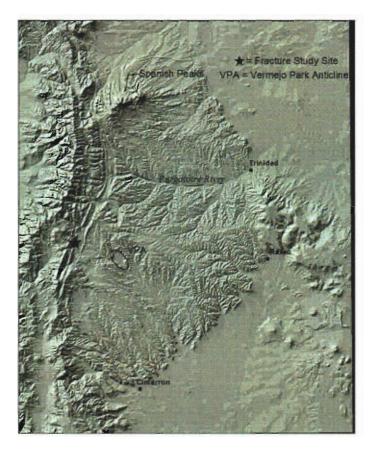

Notes:

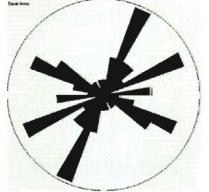
ID	Strike	Dip	Formation
7/14/2003/4JL	93	90	Niobrara
7/14/2003/4JL	119	90	Niobrara
7/14/2003/4JL	119	90	Niobrara
7/14/2003/4JL	81	90	Niobrara
7/14/2003/4JL	102	90	Niobrara
7/14/2003/4JL	50	90	Niobrara
7/14/2003/4JL	51	90	Niobrara
7/14/2003/4JL	57	90	Niobrara
7/14/2003/4JL	51	90	Niobrara
7/14/2003/4JL	56	90	Niobrara
7/14/2003/4JL	66	90	Niobrara
7/14/2003/4JL	63	90	Niobrara
7/14/2003/4JL	57	90	Niobrara
7/14/2003/4JL	48	90	Niobrara
7/14/2003/4JL	51	90	Niobrara
7/14/2003/4JL	52	90	Niobrara
7/14/2003/4JL	49	90	Niobrara
7/14/2003/4JL	21	90	Niobrara
7/14/2003/4JL	24	90	Niobrara

7/14/2003/4JL	163	90	Niobrara
7/14/2003/4JL	153	90	Niobrara
7/14/2003/4JL	152	90	Niobrara
7/14/2003/4JL	143	90	Niobrara
7/14/2003/4JL	132	90	Niobrara
7/14/2003/4JL	130	90	Niobrara
7/14/2003/4JL	138	90	Niobrara
7/14/2003/4JL	130	90	Niobrara

Location ID: 7/16/2003/1JL Latitude: N 37.33688333 Longitude: W 104.0709833


Notes:


ID	Strike	Dip	Formation
7/16/2003/1JL	87	90	Niobrara
7/16/2003/1JL	89	90	Niobrara
7/16/2003/1JL	88	90	Niobrara
7/16/2003/1JL	81	90	Niobrara
7/16/2003/1JL	81	90	Niobrara
7/16/2003/1JL	100	90	Niobrara
7/16/2003/1JL	132	90	Niobrara
7/16/2003/1JL	14	90	Niobrara
7/16/2003/1JL	142	90	Niobrara
7/16/2003/1JL	130	90	Niobrara
7/16/2003/1JL	101	90	Niobrara
7/16/2003/1JL	80	90	Niobrara
7/16/2003/1JL	109	90	Niobrara
7/16/2003/1JL	22	90	Niobrara
7/16/2003/1JL	96	90	Niobrara
7/16/2003/1JL	99	90	Niobrara
7/16/2003/1JL	93	90	Niobrara
7/16/2003/1JL	85	90	Niobrara

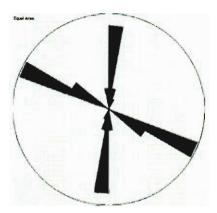

7/16/2003/1JL	92	90	Niobrara
7/16/2003/1JL	140	90	Niobrara
7/16/2003/1JL	105	90	Niobrara
7/16/2003/1JL	99	90	Niobrara
7/16/2003/1JL	94	90	Niobrara
7/16/2003/1JL	84	90	Niobrara

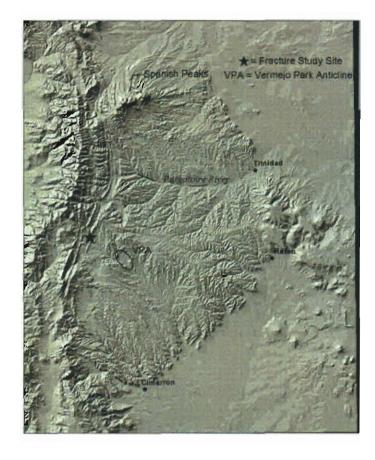
Location ID: 7/17/2003/1MH Latitude: N 36.95443333 Longitude: W 105.1608267

"The Wall", overturned Dakota Fm.

(data rotated to bed-horizontal)

Notes:

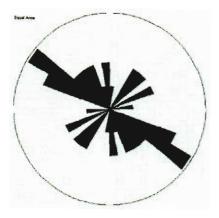

ID	Strike	Dip	Formation	Comment 1	Comment 2	Comment 3
7/17/2003/1MH	70	20	Dakota	Def. Band		
7/17/2003/1MH	168	72	Dakota	Def. Band		


7/17/2003/1MH	158	40	Dakota	Def. Band		
7/17/2003/1MH	296	10	Dakota	Def. Band		
7/17/2003/1MH	197	85	Dakota	Def. Band		
7/17/2003/1MH	183	40	Dakota	Def. Band		
7/17/2003/1MH	280	40	Dakota	Def, Band		
7/17/2003/1MH	312	68	Dakota	Def. Band		
7/17/2003/1MH	200	85	Dakota	Def. Band		
7/17/2003/1MH	29	90	Dakota	Def. Band		
7/17/2003/1MH	323	68	Dakota	Def. Band		
7/17/2003/1MH	337	55	Dakota	Def. Band		
/////2000///////	007	00	Danola	Ben Bund	chatter marks	
					and dip slip	
7/17/2003/1MH	304	40	Dakota	Def. Band	lineations	
7/17/2003/1MH	297	38	Dakota	Def. Band		
7/17/2003/1MH	191	40	Dakota	Def. Band		
7/17/2003/1MH	332	48	Dakota	Def. Band		
7/17/2003/1MH	200	85	Dakota	Def. Band		
7/17/2003/1MH	358	64	Dakota	Def. Band		
7/17/2003/1MH	220	65	Dakota	Def. Band		
7/17/2003/1MH	188	50	Dakota	Def. Band		
1111/2003/11010	100	50	Dakola	Del. Danu		lineations strike
7/17/2003/1MH	80	15	Dakota	Def. Band	fault	110
7/17/2003/1MH	325	75	Dakota	Def. Band	laun	110
7/17/2003/1MH	9	90	Dakota	Def. Band	vertical striations	
					vertical striations	
7/17/2003/1MH	339	78	Dakota	Def. Band	10 parallel DB's	
					parallel to	
7/17/2003/1MH	305	80	Dakota	Def. Band	bedding	
7/17/2003/1MH	215	30	Dakota	Def. Band	bouanig	
7/17/2003/1MH	58	85	Dakota	Def. Band		
7/17/2003/1MH	328	5	Dakota	Def. Band		
7/17/2003/1MH	316	5	Dakota	Def. Band		
7/17/2003/1MH	344	30	Dakota	Def. Band		
7/17/2003/1MH	4	80	Dakota	Def. Band		
7/17/2003/1MH	4 80	90	Dakota	Def. Band		
7/17/2003/1MH	133	85	Dakota	Def. Band		
7/17/2003/1MH	178	90	Dakota	Def. Band		
7/17/2003/1MH	108	90	Dakota	Def. Band		
7/17/2003/1MH	358	78	Dakota	Def. Band		
7/17/2003/1MH	124	90	Dakota	Def. Band		
7/17/2003/1MH	117	90	Dakota	Def. Band		
7/17/2003/1MH	358	40	Dakota	Def. Band	lineations @ 90	
7/17/2003/1MH	331	50	Dakota	Def. Band		
7/17/2003/1MH	18	20	Dakota	Def. Band	lineations @ 115	
7/17/2003/1MH	130	80	Dakota	Def. Band		
7/17/2003/1MH	200	80	Dakota	Def. Band		
7/17/2003/1MH	330	30	Dakota	Def. Band	lineations @ 98	
7/17/2003/1MH	28	18	Dakota	Def. Band	lineations @100	
7/17/2003/1MH	143	62	Dakota	Fracture		
7/17/2003/1MH	80	90	Dakota	Fracture		
7/17/2003/1MH	153	62	Dakota	Fracture		

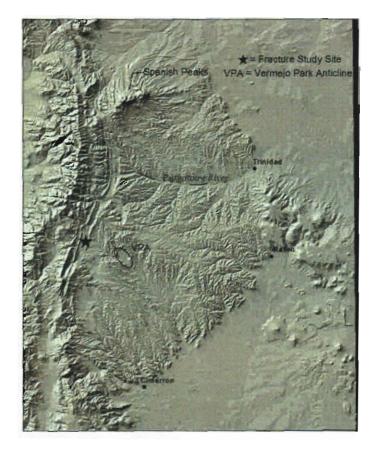
7/17/2003/1MH	359	8	Dakota	Fracture	
7/17/2003/1MH	171	70	Dakota	Fracture	
7/17/2003/1MH	82	60	Dakota	Fracture	
7/17/2003/1MH	29	38	Dakota	Fracture	
7/17/2003/1MH	107	90	Dakota	Fracture	
					w/shear; top
7/17/2003/1MH	41	30	Dakota	Fracture	block went SW
7/17/2003/1MH	92	72	Dakota	Fracture	
7/17/2003/1MH	38	15	Dakota	Fracture	
7/17/2003/1MH	108	90	Dakota	Fracture	
7/17/2003/1MH	11	20	Dakota	Fracture	
7/17/2003/1MH	99	90	Dakota	Fracture	
7/17/2003/1MH	286	85	Dakota	Fracture	
7/17/2003/1MH	22	25	Dakota	Fracture	
7/17/2003/1MH	290	73	Dakota	Fracture	
7/17/2003/1MH	72	50	Dakota	Fracture	
7/ 17/2 003/1MH	103	90	Dakota	Fracture	
7/17/2003/1MH	99	90	Dakota	Fracture	
7/17/2003/1MH	30	10	Dakota	Fracture	
7/17/2003/1MH	300	72	Dakota	Fracture	
7/17/2003/1MH	302	85	Dakota	Fracture	
7/17/2003/1MH	30	70	Dakota	Fracture	
7/17/2003/1MH	28	32	Dakota	Fracture	
7/17/2003/1MH	138	90	Dakota	Fracture	
7/17/2003/1MH	6	40	Dakota	Fracture	
7/17/2003/1MH	119	90	Dakota	Fracture	
7/17/2003/1MH	290	85	Dakota	Fracture	
7/17/2003/1MH	311	38	Dakota	Fracture	
7/17/2003/1MH	305	40	Dakota	Fracture	
7/17/2003/1MH	17	70	Dakota	Fracture	fault w/gouge
7/17/2003/1MH	162	90	Dakota	Fracture	
7/17/2003/1MH	88	32	Dakota	Fracture	
					fault w/lineations
7/17/2003/1MH	350	80	Dakota	Fracture	trending 85
7/17/2003/1MH	5	25	Dakota	Fracture	
7/47/0000/4541	00	40	Deliete	Enc. etc. un	lineations strike
7/17/2003/1MH	32	10	Dakota	Fracture	108

Location ID: 7/17/2003/1RK Latitude: N 36.96968333 Longitude: W 105.1221167

"Little Wall", basal Trinidad



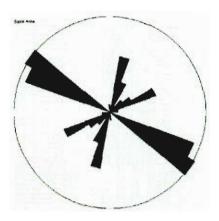
Notes:

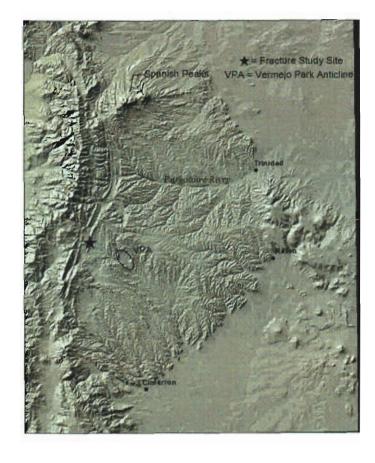

ID	Strike	Dip	Formation	Comment 1	Comment 2 terminates against
7/17/2003/RK	299	90	Trinidad	plume	15/67NW
7/17/2003/RK	298	88	Trinidad		
7/17/2003/RK	297	81	Trinidad		
7/17/2003/RK	301	83	Trinidad		
7/17/2003/RK	294	80	Trinidad		
7/17/2003/RK	299	76	Trinidad	terminates against 11/52 NW	
7/17/2003/RK	112	86	Trinidad	swarm, 60 cm, 8 fracs	
7/17/2003/RK	116	84	Trinidad		
7/17/2003/RK	121	86	Trinidad		
7/17/2003/RK	119	83	Trinidad		
7/17/2003/RK	124	87	Trinidad		
7/17/2003/RK	124	83	Trinidad	plume	
7/17/2003/RK	201	59	Trinidad	-	
7/17/2003/RK	185	55	Trinidad	plume	
7/17/2003/RK	185	56	Trinidad	swarm, 60 cm, 8 fracs	
7/17/2003/RK	185	50	Trinidad		

7/17/2003/RK	179	62	Trinidad	
7/17/2003/RK	175	68	Trinidad	
7/17/2003/RK	186	64	Trinidad	
7/17/2003/RK	185	67	Trinidad	
7/17/2003/RK	183	65	Trinidad	
7/17/2003/RK	184	62	Trinidad	
7/17/2003/RK	191	59	Trinidad	terminates against 298/88
7/17/2003/RK	195	70	Trinidad	
7/17/2003/RK	189	70	Trinidad	
7/17/2003/RK	118	88	Trinidad	

Location ID: 7/17/2003/2MH Latitude: N 36.95073333 Longitude: W 105.1356667

(data rotated to bed-horizontal)

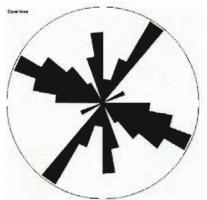



Notes:

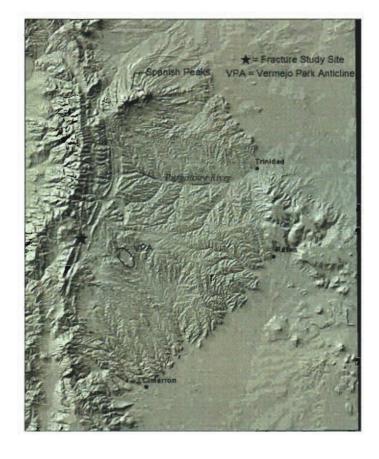
ID	Strike	Dip	Formation	Comment 1	Comment 2
7/17/2003/2MH	140	90	Pierre		
7/17/2003/2MH	137	90	Pierre		
7/17/2003/2MH	132	90	Pierre		
7/17/2003/2MH	264	80	Pierre		
7/17/2003/2MH	228	60	Pierre		Basalt
7/17/2003/2MH	120	90	Pierre		Basalt
7/17/2003/2MH	228	68	Pierre		Basalt
7/17/2003/2MH	120	90	Pierre		Basalt
7/17/2003/2MH	115	90	Pierre		Basalt
7/17/2003/2MH	55	35	Pierre	plume (parallel to bedding)	Basalt
7/17/2003/2MH	162	65	Pierre	plume	Basalt
7/17/2003/2MH	210	58	Pierre		Basalt
7/17/2003/2MH	45	40	Pierre	w/frac fill	Basalt
7/17/2003/2MH	162	50	Pierre		Basalt
7/17/2003/2MH	130	75	Pierre	plume	Basalt
7/17/2003/2MH	164	75	Pierre		Basalt

7/17/2003/2MH	110	90	Pierre	
7/17/2003/2MH	302	85	Pierre	
7/17/2003/2MH	55	70	Pierre	
7/17/2003/2MH	152	80	Pierre	
7/17/2003/2MH	142	50	Pierre	
7/17/2003/2MH	288	80	Pierre	
7/17/2003/2MH	293	80	Pierre	
7/17/2003/2MH	146	70	Pierre	

Basalt Basalt Basalt Basalt Basalt Basalt Basalt Basalt Location ID: 7/17/2003/2RK Latitude: N 36.95426667 Longitude: W 105.12385



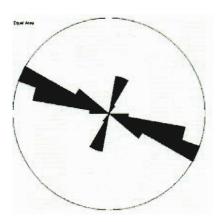
Notes:

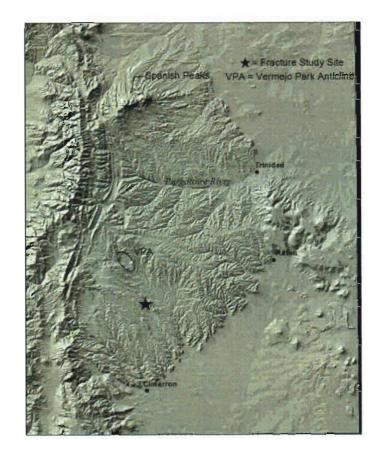

ID	Strike	Dip	Formation	Comment 1
7/17/2003/2RK	196	61	Trinidad	
7/17/2003/2RK	208	65	Trinidad	
7/17/2003/2RK	196	68	Trinidad	
7/17/2003/2RK	194	68	Trinidad	
7/17/2003/2RK	193	69	Trinidad	
7/17/2003/2RK	223	72	Trinidad	
7/17/2003/2RK	14	74	Trinidad	
7/17/2003/2RK	201	74	Trinidad	
7/17/2003/2RK	205	74	Trinidad	
7/17/2003/2RK	243	76	Trinidad	
7/17/2003/2RK	246	76	Trinidad	
7/17/2003/2RK	224	77	Trinidad	
7/17/2003/2RK	245	78	Trinidad	
7/17/2003/2RK	237	78	Trinidad	
7/17/2003/2RK	249	78	Trinidad	terminates against 301
7/17/2003/2RK	205	80	Trinidad	
7/17/2003/2RK	238	80	Trinidad	

7/17/2003/2RK	243	82	Trinidad
7/17/2003/2RK	238	82	Trinidad
7/17/2003/2RK	197	82	Trinidad
7/17/2003/2RK	212	83	Trinidad
7/17/2003/2RK	119	83	Trinidad
7/17/2003/2RK	197	84	Trinidad
7/17/2003/2RK	118	85	Trinidad
7/17/2003/2RK	117	85	Trinidad
7/17/2003/2RK	117	85	Trinidad
7/17/2003/2RK	121	85	Trinidad
7/17/2003/2RK	121	85	Trinidad
7/17/2003/2RK	241	85	Trinidad
7/17/2003/2RK	124	85	Trinidad
7/17/2003/2RK	121	85	Trinidad
7/17/2003/2RK	255	86	Trinidad
7/17/2003/2RK	119	87	Trinidad
7/17/2003/2RK	129	87	Trinidad
7/17/2003/2RK	300	87	Trinidad
7/17/2003/2RK	115	88	Trinidad
7/17/2003/2RK	114	88	Trinidad
7/17/2003/2RK	118	88	Trinidad
7/17/2003/2RK	113	88	Trinidad
7/17/2003/2RK	121	88	Trinidad
7/17/2003/2RK	126	88	Trinidad
7/17/2003/2RK	125	88	Trinidad
7/17/2003/2RK	299	88	Trinidad
7/17/2003/2RK	300	90	Trinidad
7/17/2003/2RK	173	90	Trinidad
7/17/2003/2RK	302	90	Trinidad
7/17/2003/2RK	303	90	Trinidad
7/17/2003/2RK	89	90	Trinidad
7/17/2003/2RK	297	90	Trinidad

Location ID: 7/17/2003/3MH Latitude: N 36.96061667 Longitude: W 105.1611167

(data rotated to bed-horizontal)


Notes:

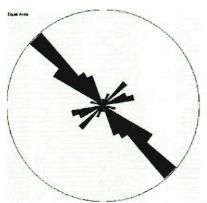

ID	Strike	Dip	Formation	Comment 1	Comment 2
7/17/2003/3MH	306	85	Morrison		
7/17/2003/3MH	38	35	Morrison		
7/17/2003/3MH	61	45	Morrison		
7/17/2003/3MH	34	50	Morrison		
7/17/2003/3MH	42	60	Morrison		
7/17/2003/3MH	42	48	Morrison		
				w/subvertical slickenlines, rake	
7/17/2003/3MH	123	80	Morrison	66 NW, extensive	
7/17/2003/3MH	32	36	Morrison		
7/17/2003/3MH	118	90	Morrison	terminates against 25	
					puts rippled sand
					against conglomerate
					between two more
7/17/2003/3MH	310	65	Morrison	shear plane	competant beds
7/17/2003/3MH	80	70	Morrison		
7/17/2003/3MH	38	46	Morrison		
7/17/2003/3MH	104	75	Morrison	plume	
7/17/2003/3MH	313	85	Morrison		

7/17/2003/3MH	78	55	Morrison	
7/17/2003/3MH	118	82	Morrison	
7/17/2003/3MH	145	85	Morrison	
7/17/2003/3MH	94	58	Morrison	
7/17/2003/3MH	81	52	Morrison	
7/17/2003/3MH	88	56	Morrison	
7/17/2003/3MH	308	60	Morrison	terminates against 88
7/17/2003/3MH	130	90	Dakota	
7/17/2003/3MH	129	90	Dakota	
7/17/2003/3MH	128	25	Dakota	
7/17/2003/3MH	305	76	Dakota	
7/17/2003/3MH	315	55	Dakota	
7/17/2003/3MH	333	32	Dakota	
7/17/2003/3MH	159	88	Dakota	
7/17/2003/3MH	151	90	Dakota	
7/17/2003/3MH	298	60	Dakota	deformation band

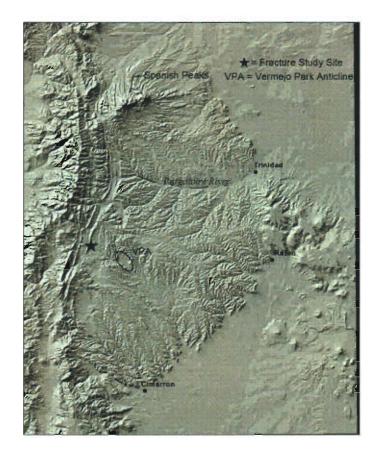
Location ID: 7/17/2003/3RK Latitude: N 36.77546667 Longitude: W 104.9213333

Van Bremmer Canyon

Notes:


ID	Strike	Dip	Formation	Comment 1
7/17/2003/3RK	19	90	Raton	terminates against 294
7/17/2003/3RK	294	82	Raton	-
7/17/2003/3RK	215	84	Raton	plume
7/17/2003/3RK	108	85	Raton	
7/17/2003/3RK	17	88	Raton	terminates against 108
7/17/2003/3RK	291	85	Raton	plume
7/17/2003/3RK	298	83	Raton	plume
7/17/2003/3RK	207	80	Raton	terminates against 298
7/17/2003/3RK	115	86	Raton	
7/17/2003/3RK	308	90	Raton	
7/17/2003/3RK	277	78	Raton	
7/17/2003/3RK	27	90	Raton	
7/17/2003/3RK	289	90	Raton	
7/17/2003/3RK	204	80	Raton	
7/17/2003/3RK	288	81	Raton	
7/17/2003/3RK	294	85	Raton	
7/17/2003/3RK	285	82	Raton	

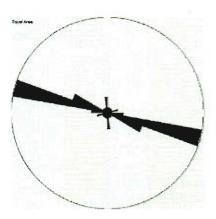
7/17/2003/3RK	208	85	Raton	
7/17/2003/3RK	287	90	Raton	
7/17/2003/3RK	199	86	Raton	termina
7/17/2003/3RK	282	90	Raton	
7/17/2003/3RK	196	88	Raton	
7/17/2003/3RK	104	87	Raton	
7/17/2003/3RK	109	89	Raton	
7/17/2003/3RK	293	86	Raton	
7/17/2003/3RK	117	78	Raton	
7/17/2003/3RK	303	90	Raton	
7/17/2003/3RK	300	90	Raton	
7/17/2003/3RK	127	85	Raton	
7/17/2003/3RK	2 9 4	90	Raton	
7/17/2003/3RK	116	88	Raton	
7/17/2003/3RK	278	84	Raton	
7/17/2003/3RK	293	85	Raton	

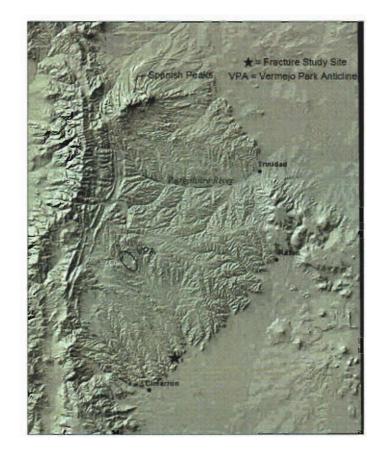

erminates against 287

Location ID: 7/17/2003/4MH Latitude: N 36.94815 Longitude: W 105.1182333

"Little Wall", Raton Conglomerate

(data rotated to bed-horizontal)

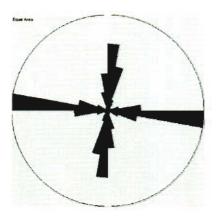

Notes:

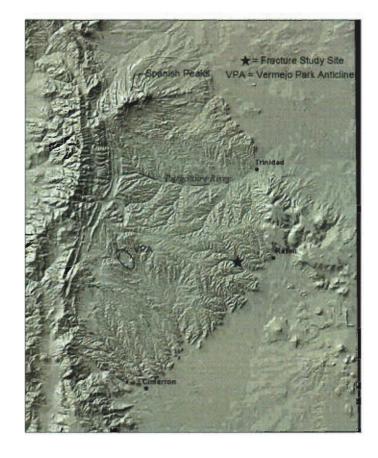

ID	Strike	Dip	Formation	Comment 1	Comment 2
7/17/2003/4MH	128	60	Raton	Deformation band	Raton conglomerate
7/17/2003/4MH	270	45	Raton	Deformation band	Raton conglomerate
7/17/2003/4MH	58	90	Raton	Deformation band	Raton conglomerate
7/17/2003/4MH	262	75	Raton	Deformation band	Raton conglomerate
7/17/2003/4MH	262	75	Raton	Deformation band	Raton conglomerate
7/17/2003/4MH	263	60	Raton	Deformation band	Raton conglomerate
7/17/2003/4MH	70	90	Raton	Deformation band	Raton conglomerate
7/17/2003/4MH	58	70	Raton	Deformation band	Raton conglomerate
7/17/2003/4MH	60	20	Raton	Deformation band	Raton conglomerate
7/17/2003/4MH	45	90	Raton	Deformation band	Raton conglomerate
7/17/2003/4MH	125	90	Raton	Deformation band	Raton conglomerate
7/17/2003/4MH	45	90	Raton	Deformation band	Raton conglomerate
7/17/2003/4MH	62	90	Raton	Deformation band	Raton conglomerate
7/17/2003/4MH	60	90	Raton	Deformation band	Raton conglomerate
7/17/2003/4MH	148	90	Raton	left lateral	Raton conglomerate
7/17/2003/4MH	132	80	Raton	left lateral	Raton conglomerate
7/17/2003/4MH	140	90	Raton	left lateral	Raton conglomerate

7/17/2003/4MH	132	90	Raton	left lateral	Ra
7/17/2003/4MH	134	90	Raton	left lateral	Ra
7/17/2003/4MH	104	90	Raton	right lateral	Ra
7/17/2003/4MH	152	90	Raton	right lateral	Ra
7/17/2003/4MH	128	90	Raton	right lateral	Ra
7/17/2003/4MH	140	90	Raton	right lateral	Ra
7/17/2003/4MH	138	90	Raton	right lateral	Ra
7/17/2003/4MH	138	90	Raton	right lateral	Ra
7/17/2003/4MH	140	90	Raton		Ra
7/17/2003/4MH	110	90	Raton		Ra
7/17/2003/4MH	133	90	Raton		Ra
7/17/2003/4MH	126	90	Raton		Ra
7/17/2003/4MH	145	90	Raton		Ra
7/17/2003/4MH	136	90	Raton		Ra
7/17/2003/4MH	162	90	Raton		Ra
7/17/2003/4MH	160	90	Raton		Ra
7/17/2003/4MH	133	90	Raton		Ra
7/17/2003/4MH	30	90	Raton		Ra
7/17/2003/4MH	134	90	Raton		Ra
7/17/2003/4MH	202	80	Raton		Ra
7/17/2003/4MH	132	90	Raton		Ra
7/17/2003/4MH	132	90	Raton		Ra
7/17/2003/4MH	160	90	Raton		Ra
7/17/2003/4MH	160	90	Raton		Ra
7/17/2003/4MH	39	90	Raton		Ra
7/17/2003/4MH	340	70	Raton		Ra
7/17/2003/4MH	50	90	Raton		Ra
7/17/2003/4MH	22	90	Raton		Ra
7/17/2003/4MH	90	65	Raton		Ra
7/17/2003/4MH	184	65	Raton		Ra
7/17/2003/4MH	178	82	Raton		Ra
7/17/2003/4MH	151	90	Raton		Ra
7/17/2003/4MH	223	70	Raton		Ra
7/17/2003/4MH	139	90	Raton		Ra
7/17/2003/4MH	226	75	Raton		Ra
7/17/2003/4MH	131	90	Raton		Ra
7/17/2003/4MH	140	90	Raton		Ra
7/17/2003/4MH	140	90	Raton		Ra
7/17/2003/4MH	128	90	Raton		Ra
7/17/2003/4MH	131	90	Raton		Ra
7/17/2003/4MH	139	90	Raton		Ra

aton conglomerate Location ID: 7/17/2003/4RK Latitude: N 36.60936667 Longitude: W 104.8205167

Van Bremmer Canyon


Notes:

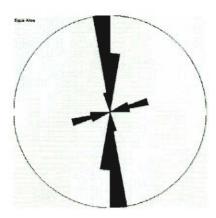

ID	Strike	Dip	Formation	Comment 1	Comment 2	Comment 3
7/17/2003/4RK	354	76	Trinidad		1 m thick basal Trinidad	
7/17/2003/4RK	280	90	Trinidad		1 m thick basal Trinidad	
7/17/2003/4RK	285	85	Trinidad		1 m thick basal Trinidad	
7/17/2003/4RK	109	87	Trinidad		1 m thick basal Trinidad	
7/17/2003/4RK	110	85	Trinidad		1 m thick basal Trinidad	
7/17/2003/4RK	281	88	Trinidad		1 m thick basal Trinidad	
7/17/2003/4RK	286	90	Trinidad		1 m thick basal Trinidad	
7/17/2003/4RK	286	90	Trinidad		1 m thick basal Trinidad	
7/17/2003/4RK	285	88	Trinidad		1 m thick basal Trinidad	
7/17/2003/4RK	287	88	Trinidad		1 m thick basal Trinidad	
				terminates		
7/17/2003/4RK	357	88	Trinidad	against 65	1 m thick basal Trinidad	
7/17/2003/4RK	109	88	Trinidad		1 m thick basal Trinidad	
7/17/2003/4RK	105	90	Trinidad		1 m thick basal Trinidad	
7/17/2003/4RK	285	90	Trinidad		1 m thick basal Trinidad	
7/17/2003/4RK	115	83	Trinidad	plume	1 m thick basal Trinidad	
7/17/2003/4RK	72	64	Trinidad		1 m thick basal Trinidad	

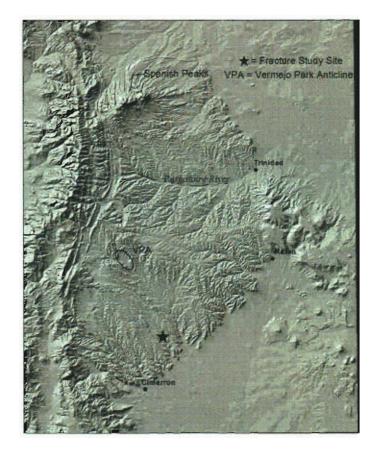
7/17/2003/4RK 280 90 Trinidad 1 m thick basal Trin 7/17/2003/4RK 325 90 Trinidad 1 m thick basal Trin 7/17/2003/4RK 41 81 Trinidad 1 m thick basal Trin 7/17/2003/4RK 74 78 Trinidad 1 m thick basal Trin 7/17/2003/4RK 74 78 Trinidad 1 m thick basal Trin 7/17/2003/4RK 285 90 Trinidad 1 m thick basal Trin 7/17/2003/4RK 348 90 Trinidad 1 m thick basal Trin 7/17/2003/4RK 348 90 Trinidad 1 m thick basal Trin	hidad hidad hidad hidad
7/17/2003/4RK 294 85 Trinidad 8-9 m thick Trinidad	
7/17/2003/4RK 360 85 Trinidad against 294 8-9 m thick Trinidad	d
7/17/2003/4RK 298 86 Trinidad 8-9 m thick Trinidad	
7/17/2003/4RK 359 85 Trinidad 8-9 m thick Trinidad	d
7/17/2003/4RK 275 90 Trinidad plume 8-9 m thick Trinidad	
7/17/2003/4RK 273 90 Trinidad 8-9 m thick Trinidad	b
7/17/2003/4RK 271 85 Trinidad 8-9 m thick Trinidad	d
7/17/2003/4RK 289 86 Trinidad 8-9 m thick Trinidad	b
7/17/2003/4RK 65 78 Trinidad 1 m thick basal Trin	nidad
7/17/2003/4RK 281 85 concretion plume	
7/17/2003/4RK 19 81 concretion plume	
7/17/2003/4RK 297 88 concretion plume	
7/17/2003/4RK 285 90 concretion plume calcite	
7/17/2003/4RK 285 88 concretion	
7/17/2003/4RK 280 90 concretion	
7/17/2003/4RK 317 90 concretion	
7/17/2003/4RK 299 87 concretion plume	
7/17/2003/4RK 202 85 concretion	
7/17/2003/4RK 295 88 concretion plume	

Location ID: 7/18/2003/1RK Latitude: N 36.89425 Longitude: W 104.5738167

Vermejo Roadcut

Notes:

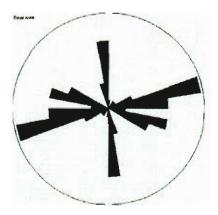

	Otallar	Dia	
ID	Strike	Dip	Formation
7/18/2003/1RK	180	60	Vermejo
7/18/2003/1RK	70	50	Vermejo
7/18/2003/1RK	348	50	Vermejo
7/18/2003/1RK	345	59	Vermejo
7/18/2003/1RK	90	30	Vermejo
7/18/2003/1RK	96	88	Vermejo
7/18/2003/1RK	84	90	Vermejo
7/18/2003/1RK	95	90	Vermejo
7/18/2003/1RK	296	82	Vermejo
7/18/2003/1RK	240	82	Vermejo
7/18/2003/1RK	97	88	Vermejo
7/18/2003/1RK	95	90	Vermejo
7/18/2003/1RK	99	90	Vermejo
7/18/2003/1RK	282	88	Vermejo
7/18/2003/1RK			Vermejo
7/18/2003/1RK	95	90	Vermejo
7/18/2003/1RK	96	89	Vermejo

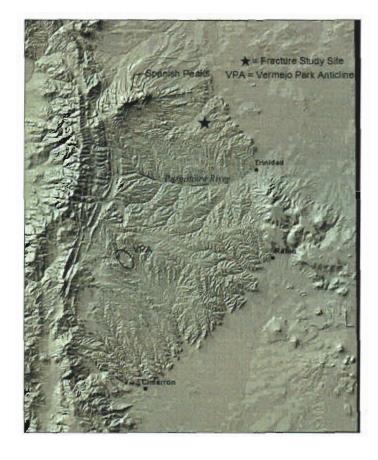

7/18/2003/1RK	101	90	Vermejo
7/18/2003/1RK	100	88	Vermejo
7/18/2003/1RK	93	90	Vermejo
7/18/2003/1RK	104	90	Vermejo
7/18/2003/1RK	93	86	Vermejo
7/18/2003/1RK	94	90	Vermejo
7/18/2003/1RK	99	87	Vermejo
7/18/2003/1RK	277	87	Vermejo
7/18/2003/1RK	91	85	Vermejo
7/18/2003/1RK	99	90	Vermejo
7/18/2003/1RK	99	90	Vermejo
7/18/2003/1RK			Vermejo
7/18/2003/1RK	188	80	Vermejo
7/18/2003/1RK	1	79	Vermejo
7/18/2003/1RK	170	84	Vermejo
7/18/2003/1RK	210	83	Vermejo
7/18/2003/1RK	184	83	Vermejo
7/18/2003/1RK	42	68	Vermejo
7/18/2003/1RK	27	70	Vermejo
7/18/2003/1RK	13	90	Vermejo
7/18/2003/1RK	12	90	Vermejo
7/18/2003/1RK	10	90	Vermejo
7/18/2003/1RK	183	80	Vermejo
	180	90	Vermejo
7/18/2003/1RK	177	90	Vermejo
7/18/2003/1RK	11	90	Vermejo
7/18/2003/1RK	14	90	Vermejo
7/18/2003/1RK	10	85	Vermejo
7/18/2003/1RK	12	90	Vermejo
7/18/2003/1RK	3	85	Vermejo
7/18/2003/1RK	17	90	Vermejo
7/18/2003/1RK	19	68	Vermejo
7/18/2003/1RK	173	90	Vermejo
7/18/2003/1RK	2	90	Vermejo
7/18/2003/1RK	0	90	Vermejo
7/18/2003/1RK	95	90	Vermejo
7/18/2003/1RK	108	88	Vermejo
7/18/2003/1RK	96	90	Vermejo
7/18/2003/1RK	89	90	Vermejo
7/18/2003/1RK	290	83	Vermejo
7/18/2003/1RK	89	89	Vermejo
7/18/2003/1RK	90	90	Vermejo
7/18/2003/1RK	87	89	Vermejo
7/18/2003/1RK	93	89	Vermejo
7/18/2003/1RK	87	90	Vermejo
7/18/2003/1RK	90	89	Vermejo
7/18/2003/1RK	87	88	Vermejo
7/18/2003/1RK	83	90	Vermejo
7/18/2003/1RK	278	88	Vermejo
7/18/2003/1RK	92	87	Vermejo

7/18/2003/1RK	87	88	Vermejo
7/18/2003/1RK	90	88	Vermejo
7/18/2003/1RK	358	88	Vermejo
7/18/2003/1RK	11	84	Vermejo
7/18/2003/1RK	9	90	Vermejo
7/18/2003/1RK	2	90	Vermejo
7/18/2003/1RK	18	80	Vermejo
7/18/2003/1RK	185	85	Vermejo
7/18/2003/1RK	8	70	Vermejo
7/18/2003/1RK	4	83	Vermejo
7/18/2003/1RK	357	85	Vermejo
7/18/2003/1RK	356	80	Vermejo
7/18/2003/1RK	174	90	Vermejo
7/18/2003/1RK	4	81	Vermejo
7/18/2003/1RK	21	90	Vermejo
7/18/2003/1RK	355	86	Vermejo
7/18/2003/1RK	172	90	Vermejo
7/18/2003/1RK	335	90	Vermejo
7/18/2003/1RK	349	90	Vermejo
7/18/2003/1RK	92	40	Vermejo
7/18/2003/1RK	85	60	Vermejo
7/18/2003/1RK	78	45	Vermejo
7/18/2003/1RK	70	65	Vermejo
7/18/2003/1RK	344	90	Vermejo
7/18/2003/1RK	93	90	Vermejo
7/18/2003/1RK	12	90	Vermejo
7/18/2003/1RK	110	90	Vermejo
7/18/2003/1RK	106	90	Vermejo
7/18/2003/1RK	108	90	Vermejo
7/18/2003/1RK	3	90	Vermejo
7/18/2003/1RK	105	90	Vermejo
7/18/2003/1RK	1	30	Vermejo
7/18/2003/1RK	356	35	Vermejo
7/18/2003/1RK	5	34	Vermejo
7/18/2003/1RK	328	50	Vermejo
7/18/2003/1RK	7	30	Vermejo
7/18/2003/1RK	30	42	Vermejo
7/18/2003/1RK	25	40	Vermejo
7/18/2003/1RK	348	50	Vermejo
			-

Location ID: 7/18/2003/2Rk Latitude: N 36.66943333 Longitude: W 104.85115

Van Bremmer Canyon

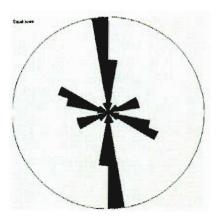


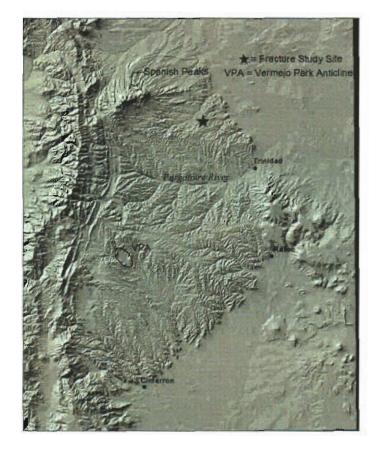


Notes:

ID	Strike	Dip	Formation	Comment 1
7/18/2003/2RK	170	29	Raton	
7/18/2003/2RK	1	50	Raton	
7/18/2003/2RK	180	28	Raton	
7/18/2003/2RK	345	50	Raton	
7/18/2003/2RK	1	44	Raton	
7/18/2003/2RK	354	25	Raton	flame structure
7/18/2003/2RK	350	29	Raton	
7/18/2003/2RK	350	44	Raton	
7/18/2003/2RK	265	25	Raton	
7/18/2003/2RK	355	55	Raton	
7/18/2003/2RK	242	75	Raton	
7/18/2003/2RK	256	75	Raton	
7/18/2003/2RK	256	65	Raton	

Location ID: 9/11/2002/2 Latitude: N 37.31316667 Longitude: W 104.6928333

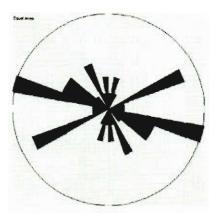


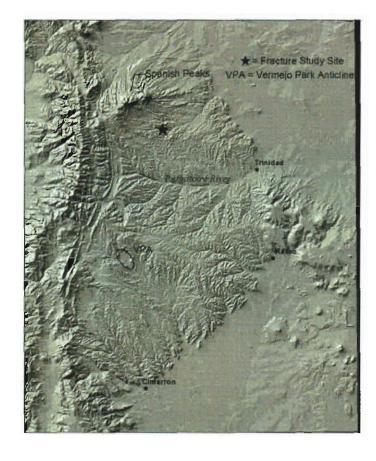

Notes:

Strike	Din	Formation
252	90	Raton
352	90	Raton
350	90	Raton
357	90	Raton
48	90	Raton
50	90	Raton
76	90	Raton
71	90	Raton
101	90	Raton
360	90	Raton
87	90	Raton
177	90	Raton
107	90	Raton
85	90	Raton
109	90	Raton
173	90	Raton
90	90	Raton
	350 357 48 50 76 71 101 360 87 177 107 85 109 173	252 90 352 90 350 90 357 90 48 90 50 90 76 90 71 90 101 90 360 90 87 90 107 90 85 90 109 90 173 90

	~ .		
9/11/2002/2	64	90	Raton
9/11/2002/2	111	90	Raton
9/11/2002/2	77	90	Raton
9/11/2002/2	113	90	Raton
9/11/2002/2	114	90	Raton
9/11/2002/2	79	90	Raton
9/11/2002/2	111	90	Raton
9/11/2002/2	81	90	Raton
9/11/2002/2	100	90	Raton
9/11/2002/2	348	90	Raton
9/11/2002/2	34	90	Raton
9/11/2002/2	350	90	Raton
9/11/2002/2	83	90	Raton
9/11/2002/2	108	90	Raton
9/11/2002/2	79	90	Raton
9/11/2002/2	69	90	Raton
9/11/2002/2	160	90	Raton
9/11/2002/2	83	90	Raton
9/11/2002/2	75	90	Raton
9/11/2002/2	73	90	Raton
9/11/2002/2	103	90	Raton
9/11/2002/2	187	90	Raton
9/11/2002/2	173	90	Raton
9/11/2002/2	70	90	Raton
9/11/2002/2	108	90	Raton
9/11/2002/2	77	90	Raton
9/11/2002/2	68	90	Raton
9/11/2002/2	81	90	Raton
9/11/2002/2	167	90	Raton
9/11/2002/2	97	90	Raton
9/11/2002/2	172	90	Raton
9/11/2002/2	83	90	Raton
9/11/2002/2	114	90	Raton
9/11/2002/2	71	90	Raton

Location ID: 9/11/2002/3 Latitude: N 37.31196667 Longitude: W 104.6947167

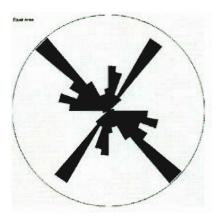


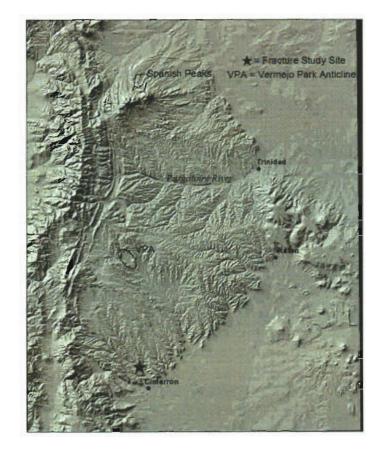

Notes:

ID 9/11/2002/3 9/11/2002/3 9/11/2002/3 9/11/2002/3 9/11/2002/3 9/11/2002/3 9/11/2002/3 9/11/2002/3 9/11/2002/3 9/11/2002/3 9/11/2002/3 9/11/2002/3 9/11/2002/3	Strike 357 1 334 59 68 46 358 62 350 70 98 357 102 107	Dip 90 90 90 90 90 90 90 90 90 90 90 90 90	Formation unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown	Comment 1
		•••		
9/11/2002/3	107	90	unknown	
9/11/2002/3	292	90	unknown	
9/11/2002/3	356	90	unknown	
9/11/2002/3	309	90	unknown	

9/11/2002/3	293	90	unknown	
9/11/2002/3	5	90	unknown	
9/11/2002/3	113	90	unknown	
9/11/2002/3	351	90	unknown	across road in stream channel, thin bedded unit
9/11/2002/3	68	90	unknown	across road in stream channel, thin bedded unit
9/11/2002/3	359	90	unknown	across road in stream channel, thin bedded unit
9/11/2002/3	357	90	unknown	across road in stream channel, thin bedded unit
9/11/2002/3	2	90	unknown	across road in stream channel, thin bedded unit
9/11/2002/3	109	90	unknown	across road in stream channel, thin bedded unit
9/11/2002/3	112	90	unknown	across road in stream channel, thin bedded unit
9/11/2002/3	6	90	unknown	across road in stream channel, thin bedded unit
9/11/2002/3	2	90	unknown	across road in stream channel, thin bedded unit
9/11/2002/3	78	90	unknown	across road in stream channel, thin bedded unit
9/11/2002/3	113	90	unknown	across road in stream channel, thin bedded unit
9/11/2002/3	11	90	unknown	across road in stream channel, thin bedded unit
9/11/2002/3	77	90	unknown	across road in stream channel, thin bedded unit
9/11/2002/3	353	90	unknown	across road in stream channel, thin bedded unit
9/11/2002/3	349	90	unknown	across road in stream channel, thin bedded unit
9/11/2002/3	108	90	unknown	across road in stream channel, thin bedded unit

Location ID: 9/11/2002/5 Latitude: N 37.29438333 Longitude: W 104.8532333

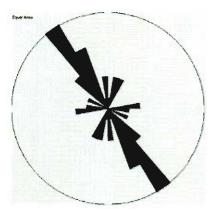


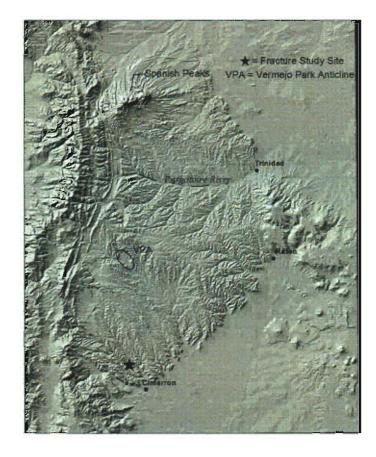

Notes:

ID	Strike	Dip	Formation
		•	_
9/11/2002/5	103	90	Raton
9/11/2002/5	96	90	Raton
9/11/2002/5	122	90	Raton
9/11/2002/5	101	90	Raton
9/11/2002/5	82	90	Raton
9/11/2002/5	67	90	Raton
9/11/2002/5	352	90	Raton
9/11/2002/5	15	90	Raton
9/11/2002/5	62	90	Raton
9/11/2002/5	1 1 8	90	Raton
9/11/2002/5	125	90	Raton
9/11/2002/5	106	90	Raton
9/11/2002/5	157	90	Raton
9/11/2002/5	104	90	Raton
9/11/2002/5	70	90	Raton
9/11/2002/5	356	90	Raton
9/11/2002/5	67	90	Raton

9/11/2002/5	62	90	Raton
9/11/2002/5	342	90	Raton
9/11/2002/5	65	90	Raton
9/11/2002/5	334	90	Raton
9/11/2002/5	330	90	Raton
9/11/2002/5	17	90	Raton
9/11/2002/5	120	90	Raton
9/11/2002/5	104	90	Raton
9/11/2002/5	9	90	Raton
9/11/2002/5	113	90	Raton
9/11/2002/5	134	90	Raton
9/11/2002/5	115	90	Raton
9/11/2002/5	105	90	Raton
9/11/2002/5	22	90	Raton

Location ID: 9/12/2002/1 Latitude: N 36.5763 Longitude: W 104.9499167

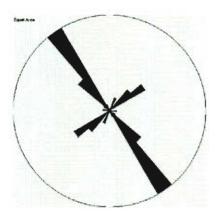

Notes:

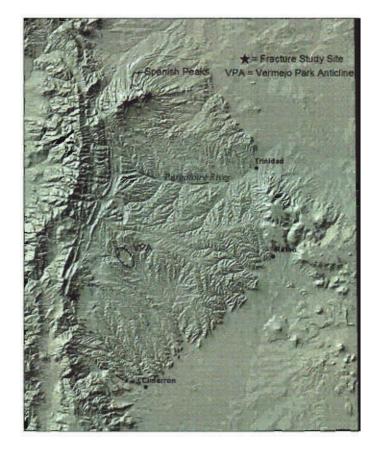

ID	Strike	Dip	Formation	Comment 1	Comment 2 ~5 m
9/12/2002/1	216	15	Vermejo	Thrust	displacement
9/12/2002/1	122	90	Vermejo	away from thrust	Sandstone
9/12/2002/1	130	90	Vermejo	away from thrust	Sandstone
9/12/2002/1	31	90	Vermejo	away from thrust	Sandstone
9/12/2002/1	113	90	Vermejo	away from thrust	Sandstone
9/12/2002/1	47	90	Vermejo	away from thrust	Sandstone
9/12/2002/1	103	90	Vermejo	away from thrust	Sandstone
9/12/2002/1	30	90	Vermejo	away from thrust	Sandstone
9/12/2002/1	19	90	Vermejo	away from thrust	Sandstone
9/12/2002/1	22	90	Vermejo	away from thrust	Sandstone
9/12/2002/1	34	90	Vermejo	away from thrust	Sandstone
9/12/2002/1	110	90	Vermejo	away from thrust	Sandstone
9/12/2002/1	88	90	Vermejo	away from thrust	Sandstone
9/12/2002/1	99	90	Vermejo	away from thrust	Sandstone
9/12/2002/1	101	90	Vermejo	away from thrust	Sandstone
9/12/2002/1	114	90	Vermejo	away from thrust	Sandstone

9/12/2002/1	120	90	Vermejo	away from thrust	Sandstone
9/12/2002/1	105	90	Vermejo	away from thrust	Sandstone
9/12/2002/1	97	90	Vermejo	away from thrust	Sandstone
9/12/2002/1	100	90	Vermejo	away from thrust	Sandstone
9/12/2002/1	106	90	Vermejo	away from thrust	Sandstone
9/12/2002/1	142	90	Vermejo	away from thrust	Coal
9/12/2002/1	34	90	Vermejo	away from thrust	Coal
9/12/2002/1	39	90	Vermejo	away from thrust	Coal
9/12/2002/1	38	90	Vermejo	away from thrust	Coal
9/12/2002/1	42	90	Vermejo	away from thrust	Coal
9/12/2002/1	32	90	Vermejo	away from thrust	Coal
9/12/2002/1	30	90	Vermejo	away from thrust	Coal
9/12/2002/1	31	90	Vermejo	away from thrust	Coal
9/12/2002/1	28	90	Vermejo	away from thrust	Coal
9/12/2002/1	132	90	Vermejo	away from thrust	Coal
9/12/2002/1	130	90	Vermejo	away from thrust	Coal
9/12/2002/1	131	90	Vermejo	away from thrust	Coal
9/12/2002/1	132	90	Vermejo	away from thrust	Coal
9/12/2002/1	127	90	Vermejo	away from thrust	Coal
9/12/2002/1	173	90	Vermejo	away from thrust	Coal
9/12/2002/1	183	90	Vermejo	away from thrust	Coal
9/12/2002/1	184	90	Vermejo	away from thrust	Coal
9/12/2002/1	162	90	Vermejo	away from thrust	Coal
9/12/2002/1	176	90	Vermejo	away from thrust	Coal
9/12/2002/1	172	90	Vermejo	away from thrust	Coal
9/12/2002/1	179	90	Vermejo	away from thrust	Coal
9/12/2002/1	157	90	Vermejo	away from thrust	Coal
9/12/2002/1	156	90	Vermejo	away from thrust	Coal
9/12/2002/1	128	90	Vermejo	away from thrust	Coal
9/12/2002/1	137	90	Vermejo	away from thrust	Coal
9/12/2002/1	36	90	Vermejo	away from thrust	Coal
9/12/2002/1	33	90	Vermejo	away from thrust	Coal
9/12/2002/1	31	90	Vermejo	away from thrust	Coal
9/12/2002/1	33	90	Vermejo	away from thrust	Coal
9/12/2002/1	138	90	Vermejo	away from thrust	Coal
9/12/2002/1	140	90	Vermejo	away from thrust	Coal
9/12/2002/1	169	90	Vermejo	away from thrust	Coal
9/12/2002/1	182	90	Vermejo	away from thrust	Coal
9/12/2002/1	130	90	Vermejo	away from thrust	Coal
9/12/2002/1	133	90	Vermejo	away from thrust	Coal
9/12/2002/1	150	90	Vermejo	away from thrust	Coal
9/12/2002/1	40	90	Vermejo	away from thrust	Coal
9/12/2002/1	139	90	Vermejo	away from thrust	Coal
9/12/2002/1	188	90	Vermejo	away from thrust	Coal
9/12/2002/1	133	90	Vermejo	away from thrust	Coal
9/12/2002/1	18	90	Vermejo	away from thrust	Coal
9/12/2002/1	95	90	Vermejo	near fault, 5 m either side	Sandstone
9/12/2002/1	95	90	Vermejo	near fault, 5 m either side	Sandstone
9/12/2002/1	96	90	Vermejo	near fault, 5 m either side	Sandstone
9/12/2002/1	104	90	Vermejo	near fault, 5 m either side	Sandstone

9/12/2002/1	100	90	Vermejo	near fault, 5 m either side	Sandstone
9/12/2002/1	106	90	Vermejo	near fault, 5 m either side	Sandstone
9/12/2002/1	19	90	Vermejo	near fault, 5 m either side	Sandstone
9/12/2002/1	92	90	Vermejo	near fault, 5 m either side	Sandstone
9/12/2002/1	109	90	Vermejo	near fault, 5 m either side	Sandstone
9/12/2002/1	117	90	Vermejo	near fault, 5 m either side	Sandstone
9/12/2002/1	98	90	Vermejo	near fault, 5 m either side	Sandstone
9/12/2002/1	122	90	Vermejo	near fault, 5 m either side	Sandstone
9/12/2002/1	113	90	Vermejo	near fault, 5 m either side	Sandstone
9/12/2002/1	76	90	Vermejo	near fault, 5 m either side	Sandstone
9/12/2002/1	30	90	Vermejo	near fault, 5 m either side	Sandstone
9/12/2002/1	122	90	Vermejo	near fault, 5 m either side	Sandstone
9/12/2002/1	118	90	Vermejo	near fault, 5 m either side	Sandstone
9/12/2002/1	142	90	Vermejo	near fault, 5 m either side	Coal
9/12/2002/1	143	90	Vermejo	near fault, 5 m either side	Coal
9/12/2002/1	136	90	Vermejo	near fault, 5 m either side	Coal
9/12/2002/1	168	90	Vermejo	near fault, 5 m either side	Coal
9/12/2002/1	145	90	Vermejo	near fault, 5 m either side	Coal
9/12/2002/1	137	90	Vermejo	near fault, 5 m either side	Coal
9/12/2002/1	143	90	Vermejo	near fault, 5 m either side	Coal
9/12/2002/1	136	90	Vermejo	near fault, 5 m either side	Coal
9/12/2002/1	21	90	Vermejo	near fault, 5 m either side	Coal
9/12/2002/1	13	90	Vermejo	near fault, 5 m either side	Coal
9/12/2002/1	19	90	Vermejo	near fault, 5 m either side	Coal
9/12/2002/1	18	90	Vermejo	near fault, 5 m either side	Coal
9/12/2002/1	129	90	Vermejo	near fault, 5 m either side	Coal
9/12/2002/1	122	90	Vermejo	near fault, 5 m either side	Coal
9/12/2002/1	9	90	Vermejo	near fault, 5 m either side	Coal
9/12/2002/1	10	90	Vermejo	near fault, 5 m either side	Coal
9/12/2002/1	5	90	Vermejo	near fault, 5 m either side	Coal
9/12/2002/1	5	90	Vermejo	near fault, 5 m either side	Coal
9/12/2002/1	2	90	Vermejo	near fault, 5 m either side	Coal
9/12/2002/1	132	90	Vermejo	near fault, 5 m either side	Coal
9/12/2002/1	133	90	Vermejo	near fault, 5 m either side	Coal
9/12/2002/1	134	90	Vermejo	near fault, 5 m either side	Coal

Location ID: 9/12/2002/2 Latitude: N 36.58648333 Longitude: W 104.9785333

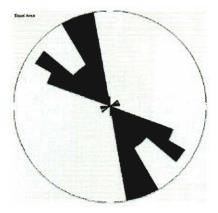

Notes:


				Comment
ID	Strike	Dip	Formation	1
9/12/2002/2	134	90	Unknown	LL
9/12/2002/2	86	90	Unknown	
9/12/2002/2	22	90	Unknown	
9/12/2002/2	28	90	Unknown	RL
9/12/2002/2	10	90	Unknown	
9/12/2002/2	98	90	Unknown	RL
9/12/2002/2	138	90	Unknown	LL
9/12/2002/2	110	90	Unknown	RL
9/12/2002/2	87	90	Unknown	RL
9/12/2002/2	88	90	Unknown	RL
9/12/2002/2	147	90	Unknown	LL
9/12/2002/2	138	90	Unknown	LL
9/12/2002/2	138	90	Unknown	LL
9/12/2002/2	141	90	Unknown	LL
9/12/2002/2	160	90	Unknown	LL
9/12/2002/2	5	90	Unknown	

9/12/2002/2	153	90	Unknown	LL
9/12/2002/2	142	90	Unknown	LL
9/12/2002/2	149	90	Unknown	LL
9/12/2002/2	117	90	Unknown	RL.
9/12/2002/2	145	90	Unknown	LL
9/12/2002/2	150	90	Unknown	
9/12/2002/2	142	90	Unknown	LL
9/12/2002/2	153	90	Unknown	
9/12/2002/2	150	90	Unknown	LL
9/12/2002/2	20	90	Unknown	
9/12/2002/2	143	90	Unknown	LL
9/12/2002/2	97	90	Unknown	RL
9/12/2002/2	156	90	Unknown	LL
9/12/2002/2	19	90	Unknown	
9/12/2002/2	148	90	Unknown	LL
9/12/2002/2	16	90	Unknown	
9/12/2002/2	352	90	Unknown	
9/12/2002/2	355	90	Unknown	
9/12/2002/2	150	90	Unknown	LL
9/12/2002/2	353	90	Unknown	
9/12/2002/2	143	90	Unknown	LL

.

Location ID: 9/12/2002/3 Latitude: N 36.78598333 Longitude: W 105.1858667



Notes:

ID	Strike	Dip	Formation
9/12/2002/3	145	90	Poison Canyon
9/12/2002/3	142	90	Poison Canyon
9/12/2002/3	147	90	Poison Canyon
9/12/2002/3	58	90	Poison Canyon
9/12/2002/3	147	90	Poison Canyon
9/12/2002/3	41	90	Poison Canyon
9/12/2002/3	97	90	Poison Canyon
9/12/2002/3	142	90	Poison Canyon
9/12/2002/3	137	90	Poison Canyon
9/12/2002/3	141	90	Poison Canyon
9/12/2002/3	145	90	Poison Canyon
9/12/2002/3	53	90	Poison Canyon
9/12/2002/3	147	90	Poison Canyon
9/12/2002/3	138	90	Poison Canyon
9/12/2002/3	146	90	Poison Canyon
9/12/2002/3	127	90	Poison Canyon
9/12/2002/3	25	90	Poison Canyon

9/12/2002/3	25	90	Poison Canyon
9/12/2002/3	139	90	Poison Canyon
9/12/2002/3	141	90	Poison Canyon
9/12/2002/3	143	90	Poison Canyon
9/12/2002/3	142	90	Poison Canyon
9/12/2002/3	141	90	Poison Canyon
9/12/2002/3	47	90	Poison Canyon
9/12/2002/3	145	90	Poison Canyon
9/12/2002/3	158	90	Poison Canyon
9/12/2002/3	47	90	Poison Canyon
9/12/2002/3	137	90	Poison Canyon
9/12/2002/3	136	90	Poison Canyon
9/12/2002/3	59	90	Poison Canyon
9/12/2002/3	57	90	Poison Canyon
9/12/2002/3	51	90	Poison Canyon
9/12/2002/3	53	90	Poison Canyon
9/12/2002/3	139	90	Poison Canyon
9/12/2002/3	48	90	Poison Canyon

Location ID: 9/12/2002/4 Latitude: N 36.77965 Longitude: W 105.1738333

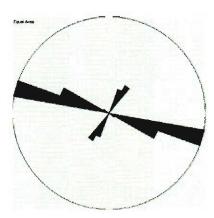
Notes:

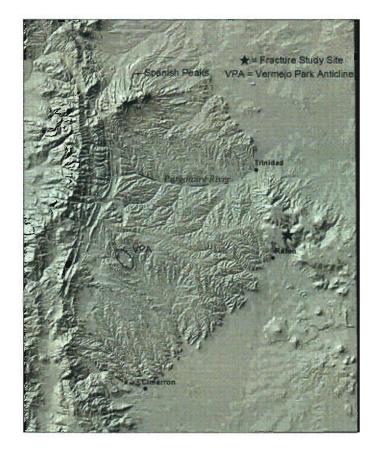
Fracture Data:

ID	Strike	Dip	Formation
9/12/2002/4	152	90	Poison Canyon
9/12/2002/4	128	90	Poison Canyon
9/12/2002/4	114	90	Poison Canyon
9/12/2002/4	164	90	Poison Canyon
9/12/2002/4	168	90	Poison Canyon
9/12/2002/4	148	90	Poison Canyon
9/12/2002/4	122	90	Poison Canyon
9/12/2002/4	58	90	Poison Canyon
9/12/2002/4	130	90	Poison Canyon
9/12/2002/4	152	90	Poison Canyon
9/12/2002/4	131	90	Poison Canyon
9/12/2002/4	144	90	Poison Canyon
9/12/2002/4	153	90	Poison Canyon
9/12/2002/4	132	90	Poison Canyon
9/12/2002/4	152	90	Poison Canyon
9/12/2002/4	153	90	Poison Canyon

Comment

1 LL

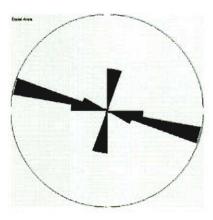

RL

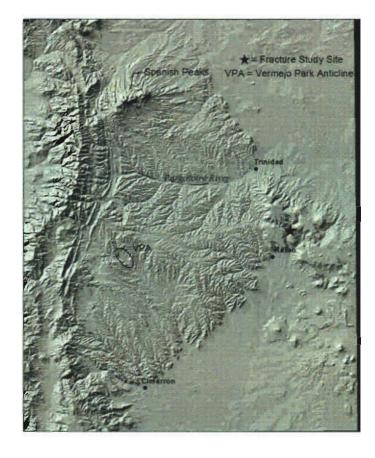

9/12/2002/4	78	90	Poison Canyon	
9/12/2002/4	160	90	Poison Canyon	
9/12/2002/4	154	90	Poison Canyon	
9/12/2002/4	162	90	Poison Canyon	
9/12/2002/4	85	90	Poison Canyon	
9/12/2002/4	167	90	Poison Canyon	
9/12/2002/4	120	90	Poison Canyon	
9/12/2002/4	161	90	Poison Canyon	
9/12/2002/4	115	90	Poison Canyon	LL
9/12/2002/4	161	90	Poison Canyon	
9/12/2002/4	161	90	Poison Canyon	LL
9/12/2002/4	116	90	Poison Canyon	LL
9/12/2002/4	116	90	Poison Canyon	LL
9/12/2002/4	126	90	Poison Canyon	
9/12/2002/4	160	90	Poison Canyon	
9/12/2002/4	149	90	Poison Canyon	LL
9/12/2002/4	121	90	Poison Canyon	
9/12/2002/4	120	90	Poison Canyon	
9/12/2002/4	145	90	Poison Canyon	
9/12/2002/4	118	90	Poison Canyon	
9/12/2002/4	174	90	Poison Canyon	
9/12/2002/4	153	90	Poison Canyon	LL
9/12/2002/4	151	90	Poison Canyon	LL
9/12/2002/4	122	90	Poison Canyon	
9/12/2002/4	121	90	Poison Canyon	LL
9/12/2002/4	111	90	Poison Canyon	LL
9/12/2002/4	145	90	Poison Canyon	LL
9/12/2002/4	114	90	Poison Canyon	LL
9/12/2002/4	138	90	Poison Canyon	LL
9/12/2002/4	158	90	Poison Canyon	LL
9/12/2002/4	128	90	Poison Canyon	LL
9/12/2002/4	162	90	Poison Canyon	LL
9/12/2002/4	132	90	Poison Canyon	LL
9/12/2002/4	150	90	Poison Canyon	LL

- _L
- _L _L _L
- - L

Location ID: 9/13/2002/1 Latitude: N 36.97386667 Longitude: W 104.3817

Sugarite


Notes:

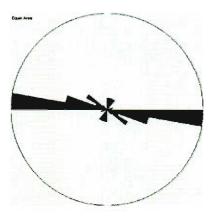

lD.	Otalles	Die	Formation	Commont 4
ID	Strike	Dip	Formation	Comment 1
9/13/2003/1	108	90	Vermejo	
9/13/2003/1	107	90	Vermejo	
9/13/2003/1	28	90	Vermejo	RL
9/13/2003/1	115	90	Vermejo	
9/13/2003/1	30	90	Vermejo	
9/13/2003/1	32	90	Vermejo	
9/13/2003/1	120	90	Vermejo	
9/13/2003/1	27	90	Vermejo	
9/13/2003/1	103	90	Vermejo	
9/13/2003/1	106	90	Vermejo	
9/13/2003/1	108	90	Vermejo	
9/13/2003/1	34	90	Vermejo	
9/13/2003/1	103	90	Vermejo	
9/13/2003/1	105	90	Vermejo	
9/13/2003/1	111	90	Vermejo	
9/13/2003/1	31	90	Vermejo	
9/13/2003/1	106	90	Vermejo	

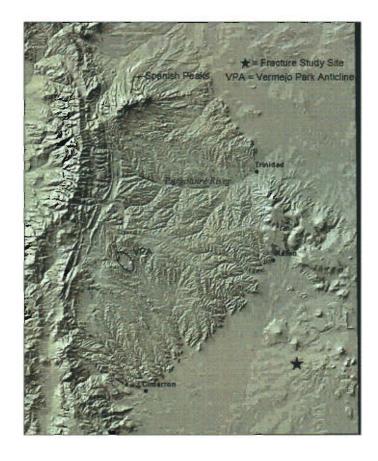
9/13/2003/110490Vermejo9/13/2003/111990Vermejo9/13/2003/110390Vermejo9/13/2003/111090Vermejo9/13/2003/111190Vermejo9/13/2003/110490Vermejo9/13/2003/13190Vermejo9/13/2003/13190Vermejo9/13/2003/110690Vermejo9/13/2003/111090Vermejo
9/13/2003/110390Vermejo9/13/2003/111090Vermejo9/13/2003/111190Vermejo9/13/2003/110490Vermejo9/13/2003/13190Vermejo9/13/2003/110690Vermejo
9/13/2003/111090Vermejo9/13/2003/111190Vermejo9/13/2003/110490Vermejo9/13/2003/13190Vermejo9/13/2003/110690Vermejo
9/13/2003/111190Vermejo9/13/2003/110490Vermejo9/13/2003/13190Vermejo9/13/2003/110690Vermejo
9/13/2003/110490Vermejo9/13/2003/13190Vermejo9/13/2003/110690Vermejo
9/13/2003/1 31 90 Vermejo 9/13/2003/1 106 90 Vermejo
9/13/2003/1 106 90 Vermejo
9/13/2003/1 110 90 Vermejo
9/13/2003/1 108 90 Vermejo
9/13/2003/1 110 90 Vermejo
9/13/2003/1 29 90 Vermejo
9/13/2003/1 105 90 Vermejo
9/13/2003/1 110 90 Vermejo
9/13/2003/1 103 90 Vermejo

Location ID: 9/13/2002/2 Latitude: N 36.9835 Longitude: W 104.3720667

Lake Maloya spillway

Notes:

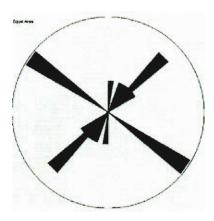

ID 9/13/2002/2 9/13/2002/2 9/13/2002/2 9/13/2002/2 9/13/2002/2	Strike 110 105 109 108 108	Dip 90 90 90 90 90	Formation Raton Raton Raton Raton Raton	Comment 1 Sandstone Sandstone Sandstone Sandstone Sandstone
				_
				Sandstone
9/13/2002/2	108	90	Raton	Sandstone
9/13/2002/2	110	90	Raton	Sandstone
9/13/2002/2	114	90	Raton	Sandstone
9/13/2002/2	104	90	Raton	Sandstone
9/13/2002/2	104	90	Raton	Sandstone
9/13/2002/2	105	90	Raton	Sandstone
9/13/2002/2	111	90	Raton	Sandstone
9/13/2002/2	106	90	Raton	Sandstone
9/13/2002/2	109	90	Raton	Sandstone
9/13/2002/2	16	90	Raton	Sandstone
9/13/2002/2	97	90	Raton	Sandstone
9/13/2002/2	111	90	Raton	Sandstone

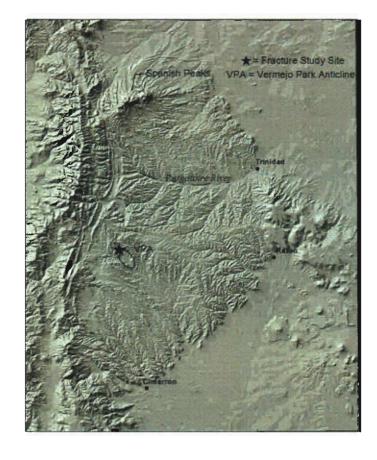

9/13/2002/2	100	90	Raton	Sandstone
9/13/2002/2	101	90	Raton	Sandstone
9/13/2002/2	104	90	Raton	Sandstone
9/13/2002/2	100	90	Raton	Sandstone
9/13/2002/2	110	90	Raton	Sandstone
9/13/2002/2	120	90	Raton	Sandstone
9/13/2002/2	111	90	Raton	Sandstone
9/13/2002/2	112	90	Raton	Sandstone
9/13/2002/2	100	90	Raton	Sandstone
9/13/2002/2	30	90	Raton	Sandstone
9/13/2002/2	97	90	Raton	Sandstone
9/13/2002/2	102	90	Raton	Coal
9/13/2002/2	109	90	Raton	Coal
9/13/2002/2	106	90	Raton	Coal
9/13/2002/2	107	90	Raton	Coal
9/13/2002/2	103	90	Raton	Coal
9/13/2002/2	103	90	Raton	Coal
9/13/2002/2	106	90	Raton	Coal
9/13/2002/2	105	90	Raton	Coal
9/13/2002/2	136	90	Raton	Coal
9/13/2002/2	100	90	Raton	Coal
9/13/2002/2	99	90	Raton	Coal
9/13/2002/2	98	90	Raton	Coal
9/13/2002/2	98	90	Raton	Coal
9/13/2002/2	99	90	Raton	Coal
9/13/2002/2	101	90	Raton	Coal
9/13/2002/2	102	90	Raton	Coal
9/13/2002/2	102	90	Raton	Coal
9/13/2002/2	101	90	Raton	Coal
9/13/2002/2	99	90	Raton	Coal
9/13/2002/2	99	90	Raton	Coal
9/13/2002/2	99	90	Raton	Coal
9/13/2002/2	97	90	Raton	Coal
9/13/2002/2	99	90	Raton	Coal
9/13/2002/2	102	90	Raton	Coal
9/13/2002/2	101	90	Raton	Coal
9/13/2002/2	8	90	Raton	Coal
9/13/2002/2	11	90	Raton	Coal
9/13/2002/2	10	90	Raton	Coal
9/13/2002/2	12	90	Raton	Coal
9/13/2002/2	7	90	Raton	Coal
9/13/2002/2	14	90	Raton	Coal
9/13/2002/2	9	90	Raton	Coal
9/13/2002/2	10	90	Raton	Coal
9/13/2002/2	9	90	Raton	Coal
9/13/2002/2	7	90	Raton	Coal
9/13/2002/2	4	90	Raton	Coal
9/13/2002/2	6	90	Raton	Coal
9/13/2002/2	5	90	Raton	Coal
9/13/2002/2	13	90	Raton	Coal

9/13/2002/2	7	90	Raton	Coal
9/13/2002/2	10	90	Raton	Coal
9/13/2002/2	8	90	Raton	Coal
9/13/2002/2	11	90	Raton	Coal
9/13/2002/2	10	90	Raton	Coal
9/13/2002/2	11	90	Raton	Coal
9/13/2002/2	12	90	Raton	Coal
9/13/2002/2	4	90	Raton	Coal
9/13/2002/2	9	90	Raton	Coal
9/13/2002/2	9	90	Raton	Coal
9/13/2002/2	. 11	90	Raton	Coal

Location ID: Maxwell Latitude: N 36.59137 Longitude: W 104.35306

Niobrara LS East of Maxwell, road pavement

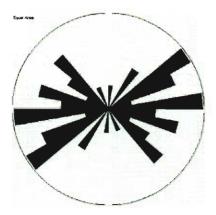


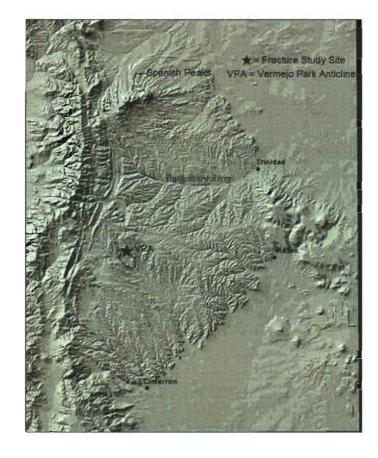

Notes:

ID Maxwell Maxwell Maxwell Maxwell Maxwell Maxwell	Strike 103 92 93 119 96 96	Dip	90 90 90 90 90	Formation Niobrara Niobrara Niobrara Niobrara Niobrara Niobrara	Comment 1
Maxwell	104		90	Niobrara	
Maxwell	127		90	Niobrara	
Maxwell	13		90	Niobrara	
Maxwell	21		90	Niobrara	
Maxwell	97		90	Niobrara	
Maxwell	104		90	Niobrara	
Maxwell	100		90	Niobrara	
Maxwell	99		90	Niobrara	
Maxwell	91		90	Niobrara	
Maxwell	90		90	Niobrara	

Maxwell	33	90	Niobrara	
Maxwell	130	90	Niobrara	
Maxwell	94	90	Niobrara	
Maxwell	95	90	Niobrara	
Maxwell	18	90	Niobrara	
Maxwell	96	90	Niobrara	
Maxwell	97	90	Niobrara	
Maxwell	93	90	Niobrara	
Maxwell	8	90	Niobrara	
Maxwell	105	90	Niobrara	
Maxwell	120	90	Niobrara	
Maxwell	74	90	Niobrara	
Maxwell	99	90	Niobrara	
Maxwell	100	90	Niobrara	
Maxwell	120	90	Niobrara	
Maxwell	126	90	Niobrara	
Maxwell	22	90	Niobrara	
Maxwell	93	90	Niobrara	
Maxwell	96	90	Niobrara	youngest
Maxwell	7	90	Niobrara	
Maxwell	30	90	Niobrara	
Maxwell	112	90	Niobrara	
Maxwell	102	90	Niobrara	

Location ID: RK1 Latitude: N 36.93011667 Longitude: W 105.0189833

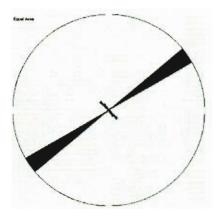

Notes:

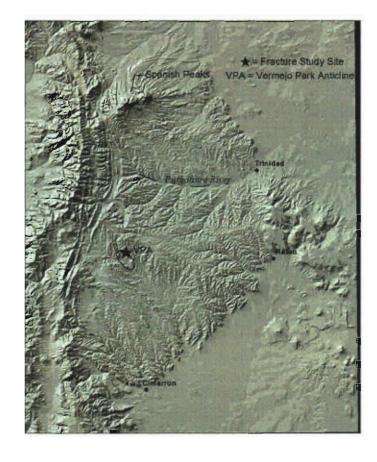

ID	Strike	Dip	Formation
RK1	28	53	Raton
RK1	51	54	Raton
RK1	35	75	Raton
RK1	31	70	Raton
RK1	48	62	Raton
RK1	4	78	Raton
RK1	8	77	Raton
RK1	42	42	Raton
RK1	56	62	Raton
RK1	48	62	Raton
RK1	41	82	Raton
RK1	203	86	Raton
RK1	123	88	Raton
RK1	127	80	Raton
RK1	128	86	Raton
RK1	127	88	Raton
RK1	123	84	Raton

RK1	125	88	Raton
RK1	48	65	Raton

Location ID: RK2 Latitude: N 36.92536667

Longitude: W 104.9926333

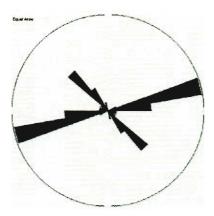


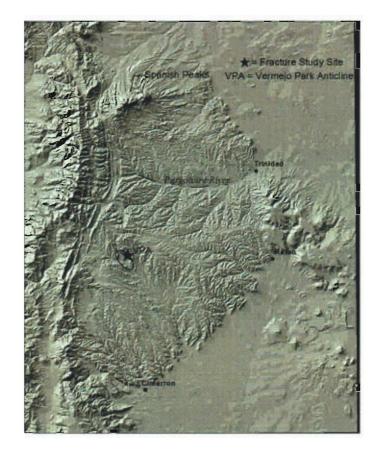

Notes:

ID	Strike	Dip	Formation
RK2	130		88 Trinidad
RK2	131		90 Trinidad
RK2	124		90 Trinidad
RK2	126		90 Trinidad
RK2	62		78 Trinidad
RK2	85		90 Trinidad
RK2	238		80 Trinidad
RK2	247		87 Trinidad
RK2	104		90 Trinidad
RK2	282		88 Trinidad
RK2	56		85 Trinidad
RK2	58		82 Trinidad
RK2	37		90 Trinidad
RK2	33		87 Trinidad
RK2	316		78 Trinidad
RK2	81		88 Trinidad
RK2	186		85 Trinidad

RK2	65	90	Trinidad
RK2	262	85	Trinidad
RK2	83	90	Trinidad
RK2	76	90	Trinidad
RK2	298	87	Trinidad
RK2	339	90	Trinidad
RK2	93	90	Trinidad
RK2	59	90	Trinidad
RK2	103	90	Trinidad
RK2	90	90	Trinidad

Location ID: RK3 Latitude: N 36.92548333 Longitude: W 104.99155

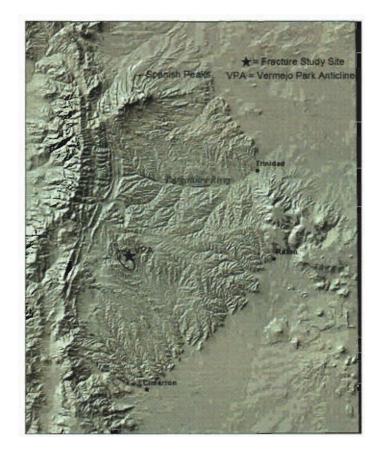



Notes:

ID	Strike	Dip	Formation	Comment 1
RK3	53	80	Trinidad	
RK3	54	80	Trinidad	
RK3	55	80	Trinidad	
RK3	54	80	Trinidad	
RK3	54	80	Trinidad	
RK3	52	80	Trinidad	
RK3	51	80	Trinidad	
RK3	53	80	Trinidad	
RK3	55	80	Trinidad	
RK3	56	80	Trinidad	
RK3	55	80	Trinidad	
RK3	55	80	Trinidad	
RK3	54	80	Trinidad	
RK3	53	80	Trinidad	
RK3	50	80	Trinidad	
RK3	58	80	Trinidad	
RK3	47	80	Trinidad	

RK3	50	80	Trinidad	
RK3	53	80	Trinidad	
RK3	52	80	Trinidad	
RK3	53	80	Trinidad	
RK3	54	80	Trinidad	
RK3	57	80	Trinidad	
RK3	56	80	Trinidad	
RK3	51	80	Trinidad	
RK3	148	88	Trinidad	
RK3	309	85	Trinidad	terminates against 58 degree set
RK3	138	86	Trinidad	terminates against 58 degree set
RK3	328	90	Trinidad	terminates against 58 degree set
RK3	312	90	Trinidad	terminates against 58 degree set
RK3	335	90	Trinidad	terminates against 58 degree set
RK3	135	85	Trinidad	terminates against 58 degree set

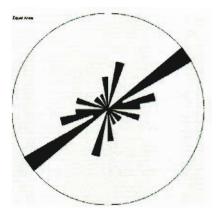
Location ID: RK4 Latitude: N 36.91711667 Longitude: W 104.9821

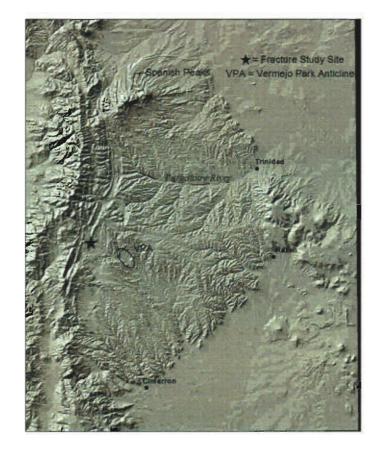

Notes:

ID	Strike	Dip	Formation
RK4	78	79	Trinidad
RK4	286	86	Trinidad
RK4	79	72	Trinidad
RK4	81	82	Trinidad
RK4	76	84	Trinidad
RK4	73	85	Trinidad
RK4	160	74	Trinidad
RK4	75	82	Trinidad
RK4	64	80	Trinidad
RK4	70	85	Trinidad
RK4	86	76	Trinidad
RK4	80	82	Trinidad
RK4	318	90	Trinidad
RK4	319	90	Trinidad
RK4	139	87	Trinidad
RK4	137	86	Trinidad
RK4	325	88	Trinidad

RK4	323	88	Trinidad
RK4	270	88	Trinidad
RK4	88	90	Trinidad
RK4	79	90	Trinidad
RK4	255	88	Trinidad
RK4	320	90	Trinidad
RK4	73	89	Trinidad
RK4	74	85	Trinidad
RK4	76	90	Trinidad
RK4	81	89	Trinidad
RK4	121	84	Trinidad
RK4	314	88	Trinidad
RK4	132	88	Trinidad

Location ID: RK5 Latitude: N 36.91441667 Longitude: W 104.9809

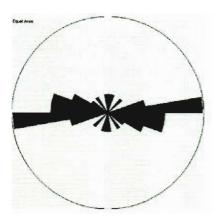

Notes:

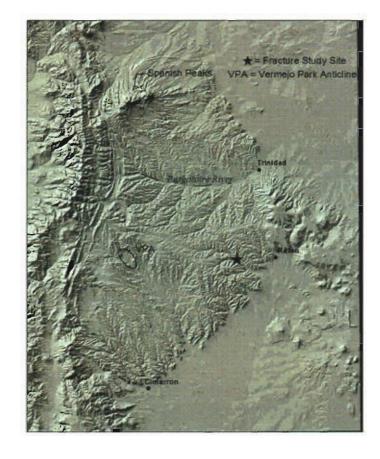

ID	Strike	Dip	Formation	Comment 1	Comment 2
RK5	159	76	Trinidad		Trinidad
RK5	79	81	Trinidad		Trinidad
RK5	76	84	Trinidad		Trinidad
RK5	310	90	Trinidad		Trinidad
RK5	308	90	Trinidad		Trinidad
RK5	304	90	Trinidad		Trinidad
RK5	310	90	Trinidad		Trinidad
RK5	337	79	Trinidad		Trinidad
RK5	73	82	Trinidad		Trinidad
RK5	133	89	Trinidad		Trinidad
RK5	343	90	Trinidad		Trinidad
RK5	146	88	Trinidad		Trinidad
RK5	52	78	Trinidad		Trinidad
RK5	310	90	Trinidad		Trinidad
RK5	2	90	Trinidad		Trinidad
RK5	323	90	Trinidad		Trinidad
RK5	73	86	Trinidad		Trinidad

RK5	138	88	Trinidad		Trinidad
RK5	287	90	Trinidad		Trinidad
RK5	332	90	Trinidad		Trinidad
RK5	48	78	Trinidad		Trinidad
RK5	78	86	Trinidad		Trinidad
RK5	89	88	Trinidad		Trinidad
RK5	293	90	Trinidad		Trinidad
RK5	233 77	30 76	Trinidad		Trinidad
RK5	312	90	unknown	calcite	Sill
RK5	48	90	unknown	calcite	Sill
RK5	48 77	90 82	unknown	calcite	Sill
RK5	173	86	unknown	calcite	Sill
RK5	144	87	unknown	calcite	Sill
RK5	356	90	unknown		Sill
	356 316	90 82			Sill
RK5 RK5		o∠ 82	unknown		Sill
	146		unknown		
RK5	338	90	unknown		Sill
RK5	76	82	unknown		Sill
RK5	33	87	unknown	calcite	Sill
RK5	318	90	unknown		Sill
RK5	312	90	unknown		Sill
RK5	50	85	unknown		Sill
RK5	328	90	unknown		Sill
RK5	329	90	unknown		Sill
RK5	318	90	unknown		Sill
RK5	316	90	unknown		Sill
RK5	153	82	unknown		Sill
RK5	138	88	unknown		Sill
RK5	119	86	unknown	calcite	Sill
RK5	239	79	unknown		Sill
RK5	335	85	unknown		Sill
RK5	148	85	unknown		Sill
RK5	249	83	unknown		Sill
RK5	341	90	unknown		Sill
RK5	340	90	Trinidad		Trinidad
RK5	319	90	unknown		Sill
RK5	320	90	Trinidad		Trinidad

Location ID: RK6

Latitude: N 36.94926667 Longitude: W 105.1241

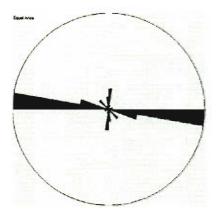

Notes:

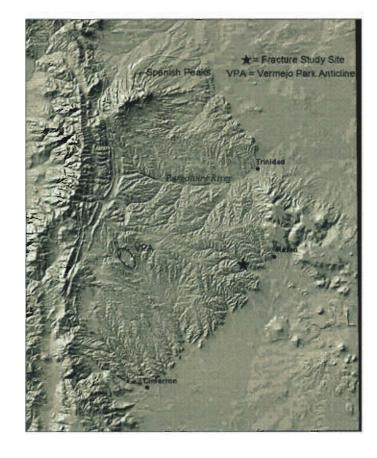

ID RK6	Strike 175	Dip 72	Formation Trinidad	Comment 1
RK6	12	16	Trinidad	Indications of shear, steps that suggest the overlying block moved up- westward perpendicular to steps, movement would be striking 282 Indications of shear, steps that suggest the overlying block moved
RK6	12	14	Trinidad	up- westward perpendicular to steps, movement would be striking 283 Indications of shear, steps that suggest the overlying block moved
RK6	10	16	Trinidad	up- westward perpendicular to steps, movement would be striking 284
RK6	287	65	Trinidad	Slightly arcuate, sheer steps suggest left lateral movement
RK6	261	88	Trinidad	Slightly arcuate, sheer steps suggest left lateral movement
RK6	74	86	Trinidad	
RK6	281	60	Trinidad	
RK6	75	88	Trinidad	
RK6	239	82	Trinidad	
RK6	269	85	Trinidad	
RK6	76	73	Trinidad	

RK6	150	82	Trinidad	
RK6	123	70	Trinidad	
RK6	232	64	Trinidad	
				Reide
RK6	245	40	Trinidad	perpe
RK6	233	22	Trinidad	
RK6	56	73	Trinidad	
RK6	238	62	Trinidad	
RK6	237	14	Trinidad	
RK6	174	74	Trinidad	
RK6	314	90	Trinidad	

Reidel shear steps indicate upper block moving east, lineation perpendicular @ 332 deg

Location ID: RK7 Latitude: N 36.89911667 Longitude: W 104.5851167

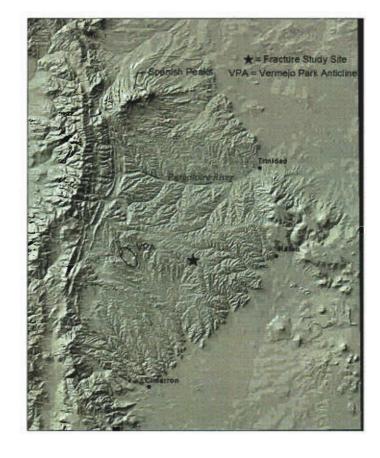

Notes:


ID	Strike	Dip	Formation	Comment 1
RK7	256	86	Vermejo	
RK7	269	82	Vermejo	
RK7	115	72	Vermejo	
RK7	293	84	Vermejo	
RK7	302	77	Vermejo	
RK7	262	76	Vermejo	
RK7	271	90	Vermejo	
RK7	42	90	Vermejo	terminates against EW set
RK7	277	86	Vermejo	
RK7	280	86	Vermejo	
RK7	283	88	Vermejo	
RK7	268	88	Vermejo	
RK7	267	88	Vermejo	
RK7	322	90	Vermejo	
RK7	12	90	Vermejo	terminates against EW set
RK7	76	87	Vermejo	
RK7	102	80	Vermejo	

RK7	93	72	Vermejo	
RK7	87	76	Vermejo	
RK7	4	88	Vermejo	
RK7	358	90	Vermejo	terminates against EW set

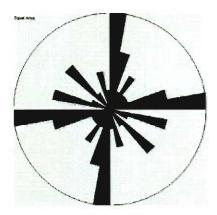
Location ID: RK8

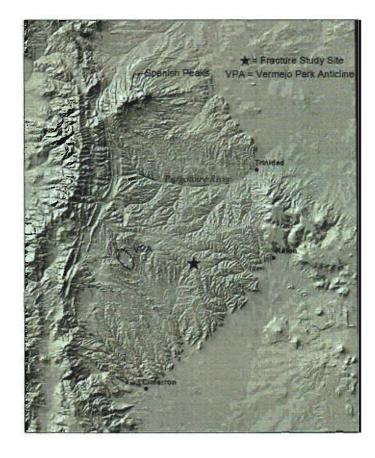
Latitude: N 36.88196667 Longitude: W 104.55665


Notes:

ID	Strike	Dip	Formation	Comment 1.
RK8	280	86	Trinidad	
RK8	91	86	Trinidad	
RK8	5	90	Trinidad	terminates against EW set
RK8	279	82	Trinidad	
RK8	285	90	Trinidad	
RK8	271	88	Trinidad	plume
RK8	101	86	Trinidad	
RK8	274	90	Trinidad	
RK8	184	82	Trinidad	
RK8	273	83	Trinidad	
RK8	278	90	Trinidad	
RK8	274	90	Trinidad	
RK8	184	82	Trinidad	
RK8	186	82	Trinidad	
RK8	373	83	Trinidad	
RK8	278	90	Trinidad	
RK8	274	90	Trinidad	

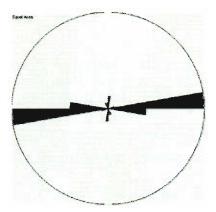
RK8	95	82	Trinidad	
RK8	271	86	Trinidad	
RK8	277	89	Trinidad	
RK8	179	88	Trinidad	
RK8	284	82	Trinidad	
RK8	286	89	Trinidad	
RK8	192	82	Trinidad	terminates against EW set
RK8	279	88	Trinidad	
RK8	99	88	Trinidad	
RK8	7	90	Trinidad	terminates against EW set
RK8	105	85	Trinidad	
RK8	283	88	Trinidad	
RK8	179	74	Trinidad	
RK8	277	90	Trinidad	
RK8	317	90	Trinidad	
RK8	317	90	Trinidad	
RK8	319	88	Trinidad	
RK8	330	90	Trinidad	
RK8	273	89	Trinidad	
RK8	273	90	Trinidad	
RK8	81	90	Trinidad	
RK8	96	86	Trinidad	
RK8	96	86	Trinidad	
RK8	98	88	Trinidad	
RK8	273	90	Trinidad	
RK8	68	90	Trinidad	
RK8	172	80	Trinidad	
RK8	278	88	Trinidad	
RK8	97	88	Trinidad	

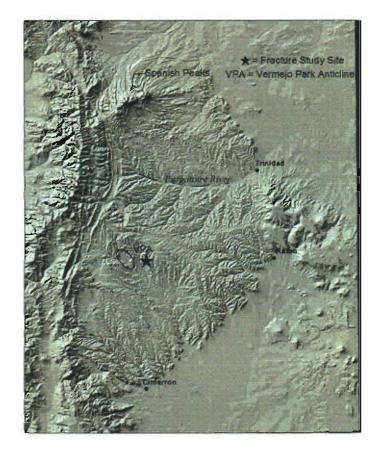

Location ID: RK9


Latitude: N 36.89311667 Longitude: W 104.7512167

Notes:

Location ID: RK10 Latitude: N 36.88915 Longitude: W 104.7383833

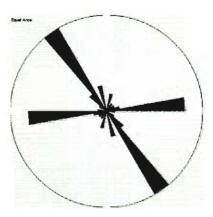

1

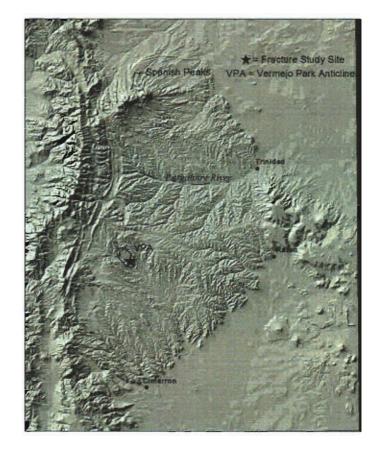

Notes:

ID	Strike	Dip	Formation	Comment
RK10	186	90	Poison Canyon	
RK10	35	90	Poison Canyon	
RK10	67	90	Poison Canyon	
RK10	14	90	Poison Canyon	
RK10	4	90	Poison Canyon	
RK10	78	90	Poison Canyon	
RK10	282	90	Poison Canyon	
RK10	1	90	Poison Canyon	
RK10	85	90	Poison Canyon	
RK10	81	90	Poison Canyon	
RK10	83	90	Poison Canyon	
RK10	25	90	Poison Canyon	
RK10	30	90	Poison Canyon	
RK10	310	90	Poison Canyon	
RK10	41	90	Poison Canyon	
RK10	19	90	Poison Canyon	
RK10	130	72	Poison Canyon	

RK10	132	70	Poison Canyon	
RK10	84	90	Poison Canyon	
RK10	86	90	Poison Canyon	
RK10	177	72	Poison Canyon	
RK10	239	75	Poison Canyon	
RK10	119	90	Poison Canyon	
RK10	325	90	Poison Canyon	
RK10	11	90	Poison Canyon	
RK10	8	90	Poison Canyon	
RK10	8	90	Poison Canyon	
RK10	106	88	Poison Canyon	
RK10	74	90	Poison Canyon	
RK10	344	90	Poison Canyon	terminates against 74
RK10	77	90	Poison Canyon	
RK10	342	90	Poison Canyon	terminates against 77
RK10	103	68	Poison Canyon	

Location ID: RK11 Latitude: N 36.89788333 Longitude: W 104.91455

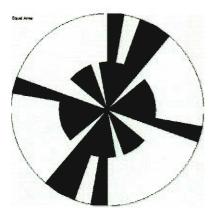

Notes:

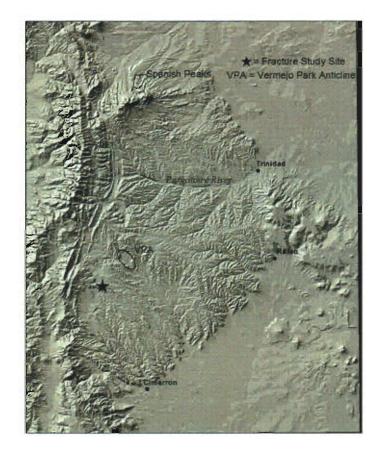

ID RK11 RK11	Strike 89 82	Dip 82 80	Formation Vermejo Vermejo	Comment 1 plume plume
RK11	84	82	Vermejo	F
RK11	84	75	Vermejo	4 cm normal displacement
RK11	87	82	Vermejo	
RK11	87	80	Vermejo	
RK11	268	85	Vermejo	38 cm normal displacement
RK11	275	88	Vermejo	
RK11	272	88	Vermejo	
RK11	80	82	Vermejo	
RK11	271	88	Vermejo	
RK11	86	84	Vermejo	
RK11	270	88	Vermejo	
RK11	85	82	Vermejo	
RK1 1	268	87	Vermejo	
RK11	95	90	Vermejo	
RK11	1 81	72	Vermejo	

RK11	85	86	Vermejo
RK11	89	87	Vermejo
RK11	89	88	Vermejo
RK11	175	86	Vermejo
RK11	79	90	Vermejo
RK11	187	68	Vermejo
RK11	85	90	Vermejo
RK11	159	75	Vermejo
RK11	95	86	Vermejo

Location ID: RK13 Latitude: N 36.89208333 Longitude: W 104.9776

Below and east of Gazebo, Trinidad

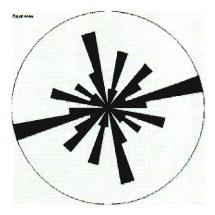

Notes:

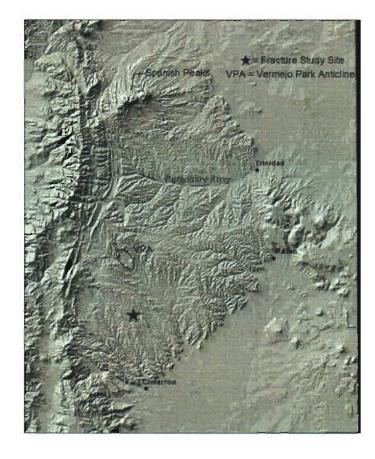

ID	Strike	Dip	Formation	Comment 1	Comment 2	Comment 3
RK13	82	90	Trinidad			
				terminates @ 82		
RK13	22	90	Trinidad	degree fracture		
RK13	144	90	Trinidad			
RK13	82	88	Trinidad			
RK13	148	90	Trinidad			
RK13	56	86	Trinidad			
RK13	144	86	Trinidad			
RK13	134	90	Trinidad			
RK13	222	86	Trinidad			
RK13	265	82	Trinidad			
RK13	321	85	Trinidad			
RK 13	141	90	Trinidad			
RK13	321	86	Trinidad			
RK13	83	54	Trinidad			
RK13	323	85	Trinidad			
RK13	10	90	Trinidad			

				swarm of about 11		
				fractures, 18 cm wide,		
RK13	321	86	Trínidad	calcite		
RK13	314	63	Trinidad			
RK 13	162	90	Trinidad			
RK 13	150	74	Trinidad			
RK13	87	80	Trinidad			
RK 13	137	90	Trínidad			
RK13	162	74	Trinidad			
				swarm, over 18 cm		
				wide, 9 fractures, cut		
RK13	322	80	Trinidad	through entire bed thickness ~15 m		
RK13	322 143	80 80	Trinidad	INCRNESS ~ 15 III		
RK13	38	35	Trinidad			
RK13	130	90	Trinidad			
RK13	84	90	Trinidad			
RK13	86	88	Trinidad			
RK13	164	74	Trinidad			
RK13	323	87	Trinidad			
RK13	65	83	Trinidad			
RK13	1 1	90	Trinidad			
RK13	323	88	Trinidad			
RK13	140	90	Trinidad			
RK13	88	65	Trinidad			
RK13	169	83	Trinidad			
RK13	88	76	Trinidad			
RK13	147	84	Trinidad			
RK13	321	90	Trinidad			
RK13	325	90	Trinidad			
RK13	321	90	Trinidad			
RK13	348	82	Trinidad			
RK13	169	60	Trinidad			
RK13	83	87	Trínidad			
RK13	125	90	Trinidad			
RK13	82	88	Trinidad			
RK13	39	90	Trinidad			
RK13	324	86	Trinidad	swarm, 33 cm, 8 fracs		
RK13	198	79	Trinidad			
RK13	92	73	Trinidad			
RK13	325	85	Trinidad	swarm, 13 cm, 6 fracs		
RK13	322	87	Trinidad	swarm, 15 cm, 5 fracs		
				ala a sata na sista		large swarm
RK13	70	90	Trinidad	shear steps, right Iateral	calcite up to 2 cm wide	zone 2 m wide
10113	10	50	Thildad	secondary fracture	MIC	WING .
				terminates against 70	shear steps, left	
RK13	121	90	Trinidad	degree	lateral	
RK13	83	53	Trinidad	-		
RK 13	140	90	Trinidad			
RK13	86	60	Trinidad			
RK13	58	88	Trinidad			

RK13	242	72	Trinidad	
RK13	74	78	Trinidad	
RK13	76	85	Trinidad	plume
RK13	90	82	Trinidad	
RK13	83	83	Trinidad	
RK13	141	90	Trinidad	plume
RK13	269	82	Trinidad	
RK13	132	90	Trinidad	plume
RK13	145	85	Trinidad	
RK13	85	82	Trinidad	
RK13	85	79	Trinidad	
RK13	86	82	Trinidad	

Location ID: RK14 Latitude: N 36.82423333 Longitude: W 105.0835

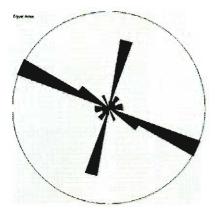


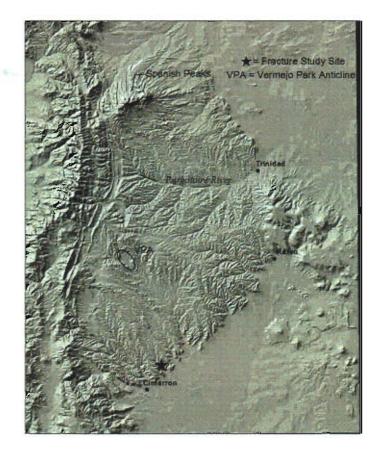


Notes:

Fracture Data:				
ID	Strike	Dip		Formation
RK14	6		90	Poison Canyon
RK14	173		90	Poison Canyon
RK14	235		85	Poison Canyon
RK14	87		90	Poison Canyon
RK14	22		90	Poison Canyon
RK14	102		85	Poison Canyon
RK 14	63		90	Poison Canyon
RK 14	335		90	Poison Canyon
RK14	97		90	Poison Canyon
RK14	184		85	Poison Canyon
RK 14	100		90	Poison Canyon
RK14	259		84	Poison Canyon
RK 14	28		90	Poison Canyon
RK 14	214		68	Poison Canyon
RK14	210		6 9	Poison Canyon
RK14	323		90	Poison Canyon
RK1 4	130		60	Poison Canyon
RK14	195		86	Poison Canyon

Location ID: RK15 Latitude: N 36.73605 Longitude: W 104.9645333



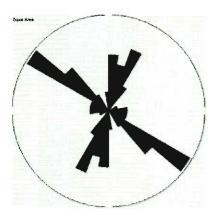

Notes:

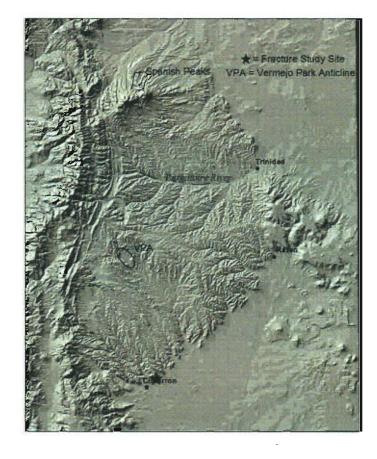
ID RK15 RK15	Strike 164 85	Dip 85 90	Formation Raton Raton
RK15	158	87	Raton
RK15	64	90	Raton
RK15	109	90	Raton
RK15	347	90	Raton
RK15	130	82	Raton
RK15	165	68	Raton
RK15	108	80	Raton
RK15	51	88	Raton
RK15	107	75	Raton
RK15	70	90	Raton
RK15	72	90	Raton
RK15	79	90	Raton
RK15	8	90	Raton
RK15	13	76	Raton
RK15	72	90	Raton

RK15	77	90	Raton
RK15	17	82	Raton
RK15	223	68	Raton
RK15	117	60	Raton
RK15	161	64	Raton
RK15	13	90	Raton
RK15	83	90	Raton
RK15	155	90	Raton
RK15	305	84	Raton
RK15	29	85	Raton
RK15	44	90	Raton
RK15	227	74	Raton
RK15	53	90	Raton
RK15	124	90	Raton

Location ID: RK16 Latitude: N 36.58628333 Longitude: W 104.8619167

Notes:

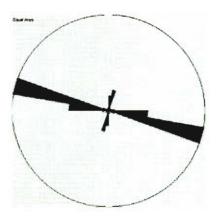

ID	Strike	Dip	Formation	Comment 1
RK16	228	70	Trinidad	
RK16	92	90	Trinidad	
RK16	62	82	Trinidad	
RK16	198	48	Trinidad	
RK16	85	75	Trinidad	
RK 16	191	79	Trinidad	
RK16	217	72	Trinidad	
RK16	51	90	Trinidad	
RK16	118	80	Trinidad	
RK16	118	85	Trinidad	
RK16	30	82	Trinidad	
RK16	122	90	Trinidad	
RK16	13	90	Trinidad	
RK16	18	90	Trinidad	
RK 16	9	90	Trinidad	
RK16	18	90	Trinidad	
RK16	278	72	Trinidad	

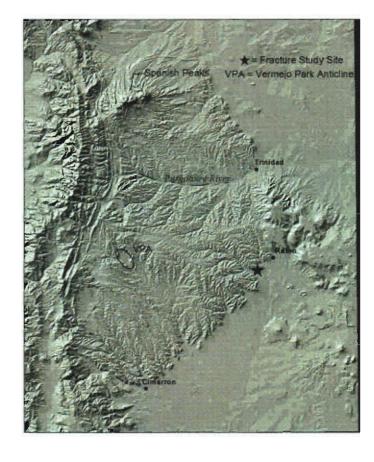

DICCO	~ ~ ~			
RK16	280	80	Trinidad	plume
RK16	229	60	Trinidad	
RK16	198	83	Trinidad	
RK16	10	90	Trinidad	
RK16	13	90	Trinidad	
RK16	129	90	Trinidad	
RK16	115	90	Trinidad	
RK16	16	90	Trinidad	
RK16	295	90	Trinidad	plume
RK16	293	90	Trinidad	
RK16	115	88	Trinidad	
RK16	295	90	Trinidad	
RK16	299	90	Trinidad	
RK16	115	85	Trinidad	
RK16	152	90	Trinidad	
RK16	150	90	Trinidad	
RK16	115	90	Trinidad	
RK16	25	90	Trinidad	terminates against 115
RK16	121	90	Trinidad	
RK16	195	82	Trinidad	
RK16	118	75	Trinidad	
RK16	112	89	Trinidad	
RK16	116	82	Trinidad	
RK16	70	90	Trinidad	
RK16	122	72	Trinidad	plume
RK16	305	90	Trinidad	
RK16	115	88	Trinidad	
RK16	85	70	Trinidad	
RK16	71	70	Trinidad	

Location ID: RK17

Latitude: N 36.53773333 Longitude: W 104.88275

North of Highway 64, Trinidad outcrop ~1 mile from road

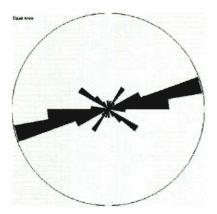

Notes:

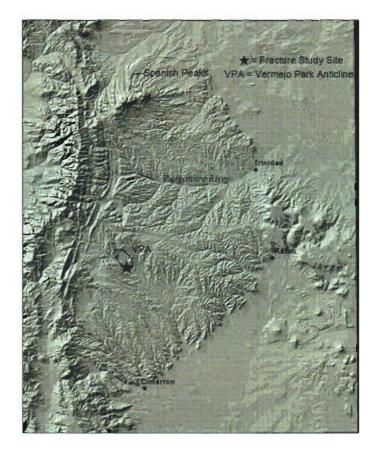

ID	Strike	Dip	Formation	Comment 1
RK17	133	88	Trinidad	
RK17	63	78	Trinidad	
RK17	24	80	Trinidad	
RK17	28	79	Trinidad	
RK17	72	82	Trinidad	
RK17	93	67	Trinidad	
RK17	88	85	Trinidad	
RK17	31	90	Trinidad	
RK17	15	85	Trinidad	swarm, 11 cm, 6 fracs
RK17	24	84	Trinidad	swarm, 20 cm, 10 fracs
RK17	105	86	Trinidad	
RK17	1	90	Trinidad	
RK17	19	90	Trinidad	
RK17	278	90	Trinidad	
RK17	140	86	Trinidad	swarm, 1 m, 6 fracs
RK17	195	82	Trinidad	swarm, 15 cm, 7 fracs
RK 17	24	72	Trinidad	swarm, 15 cm, 4 fracs

RK17	178	84	Trinidad	swarm, 15 cm, 5 fracs
RK17	6	90	Trinidad	
RK17	120	75	Trinidad	
RK17	12	90	Trinidad	
RK17	301	90	Trinidad	
RK17	127	86	Trinidad	
RK17	119	90	Trinidad	swarm, 1 m, >10 fracs
RK17	306	74	Trinidad	plume
RK17	130	88	Trinidad	
RK17	32	90	Trinidad	
RK17	20	84	Trinidad	
RK17	319	76	Trinidad	
RK17	145	75	Trinidad	
RK17	1	74	Trinidad	
RK17	318	85	Trinidad	
RK17	26	90	Trinidad	
RK17	133	84	Trinidad	
RK17	129	78	Trinidad	
RK17	109	90	Trinidad	
RK17	7	73	Trinidad	
RK17	136	85	Trinidad	
RK17	305	90	Trinidad	
RK17	9	85	Trinidad	terminates against 304/85 sw
RK17	10	80	Trinidad	terminates against 307/75 NE
RK17	0	82	Trinidad	
RK17	301	78	Trinidad	
RK17	89	90	Trinidad	
RK17	301	77	Trinidad	plume, calcite
RK17	35	80	Trinidad	terminates against 301
RK17	303	80	Trinidad	
RK17	350	82	Trinidad	
RK17	121	85	Trinidad	
RK17	20	79	Trinidad	terminates against 121
RK17	295	90	Trinidad	

-

Location ID: RK18 Latitude: N 36.86788333 Longitude: W 104.4991333

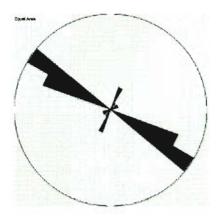


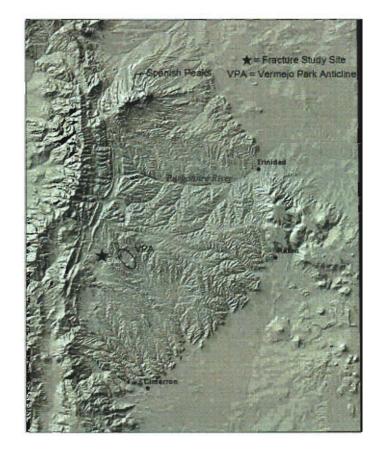

Notes:

ID	Strike	Dip	Formation	Comment 1	Comment 2
RK18	82	62	Trinidad		
RK18	93	90	Trinidad		
RK18	128	90	Trinidad		
RK18	107	88	Trinidad		
RK18	101	88	Trinidad		
RK18	115	90	Trinidad		
RK18	104	90	Trinidad		
RK18	107	90	Trinidad		
RK18	10	90	Trinidad	terminates against 104	
RK18	109	79	Trinidad		
RK18	106	90	Trinidad		
RK18	170	90	Trinidad		
RK18	93	90	Trinidad		
RK18	107	90	Trinidad		
RK18	93	90	Trinidad		
RK18	90	90	Trinidad		
RK18	101	90	Trinidad		

RK18	105	90	Trinidad		
RK18	109	90 90	Trinidad		
RK18	109	90 90	Trinidad		
RK18	108	90 90	Trinidad		
RK18	101				
		90	Trinidad		
RK18	109	88	Trinidad Trinidad		
RK18	106	90	Trinidad		
RK18	115	90	Trinidad		
RK18	106	90	Trinidad		
RK18	23	90	Trinidad	terminate against EW set	
RK18	14	90	Trinidad	terminate against EW set	
RK18	15	90	Trinidad	terminate against EW set	
RK18	1	9	Trinidad	terminate against EW set	
RK18	4	88	Trinidad	terminate against EW set	
RK18	105	90	Trinidad		
RK18	109	90	Trinidad		
RK18	101	90	Trinidad		
RK18	103	90	Trinidad		
RK18	99	90	Trinidad		
RK18	10	90	Trinidad	terminates against 105	
RK18	14	80	Trinidad	terminates against 109	
RK18	9	90	Trinidad	terminates against 101	
RK18	14	86	Trinidad		
RK18	108	90	Trinidad		
RK18	92	90	Trinidad	swarm, 30 cm, 12 fracs	
RK18	93	90	Trinidad	w/ calcite	
RK18	91	85	Trinidad		
RK18	55	90	Trinidad		
RK18	165	90	Trinidad		
RK18	89	90	Trinidad		
RK18	97	87	Trinidad		thin unit below SS
RK18	16	88	Trinidad	terminates against 97	thin unit below SS
RK18	105	90	Trinidad		thin unit below SS
RK18	189	88	Trinidad	terminates against 105	thin unit below SS
RK18	102	90	Trinidad		thin unit below SS
RK18	7	90	Trinidad	terminates against 102	thin unit below SS
RK18	102	90	Trinidad	-	thin unit below SS
RK18	101	90	Trinidad		thin unit below SS
RK18	105	90	Trinidad		thin unit below SS
RK18	103	90	Trinidad		thin unit below SS
RK18	99	90	Trinidad		thin unit below SS
RK18	279	88	Trinidad		thin unit below SS
RK18	100	90	Trinidad		thin unit below SS
RK18	101	90	Trinidad		thin unit below SS
RK18	102	90	Trinidad		thin unit below SS
RK18	103	85	Trinidad	calcite	thin unit below SS
RK18	95	85	Trinidad	calcite	thin unit below SS
RK18	103	90	Trinidad		thin unit below SS
RK18	99	87	Trinidad		thin unit below SS
	* *				

Location ID: RK19 Latitude: N 36.87838333 Longitude: W 104.9836667

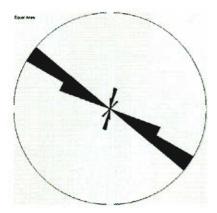


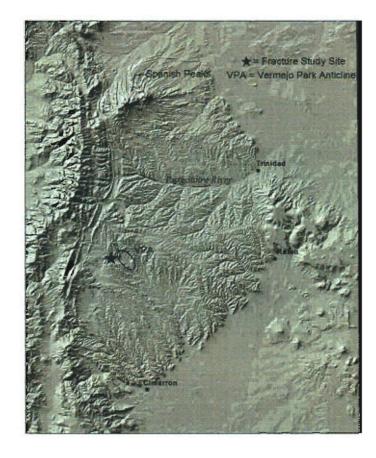

Notes:

ID	Strike	Dip	Formation	Comment 1
RK19	75	90	Trinidad	
RK19	78	90	Trinidad	
RK19	89	90	Trinidad	
RK19	92	90	Trinidad	plume
RK19	81	90	Trinidad	swarm, 15 cm, 3-4 fracs w/some calcite
RK19	266	88	Trinidad	
RK19	82	90	Trinidad	
RK19	77	90	Trinidad	
RK19	319	85	Trinidad	
RK19	83	90	Trinidad	swarm, 30 cm, 15 fracs
RK19	99	85	Trinidad	
RK19	85	88	Trinidad	
RK19	12	79	Trinidad	
RK19	357	83	Trinidad	
RK19	123	90	Trinidad	
RK19	252	75	Trinidad	
RK19	77	85	Trinidad	

RK 19	124	90	Trinidad	
RK19	128	90	Trinidad	
RK19	212	88	Trinidad	
RK19	70	90	Trinidad	
RK19	75	80	Trinidad	
RK19	252	88	Trinidad	calcite
RK19	213	85	Trinidad	
RK19	63	84	Trinidad	
RK19	323	84	Trinidad	
RK19	68	76	Trinidad	plume
RK19	70	84	Trinidad	
RK19	77	76	Trinidad	
RK19	67	80	Trinidad	
RK19	80	76	Trinidad	
RK19	72	85	Trinidad	
RK19	220	83	Trinidad	
RK19	124	90	Trinidad	
RK19	218	86	Trinidad	
RK19	318	86	Trinidad	
RK19	63	90	Trinidad	

Location ID: RK20 Latitude: N 36.91148333 Longitude: W 105.08735

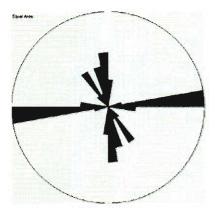

Notes:

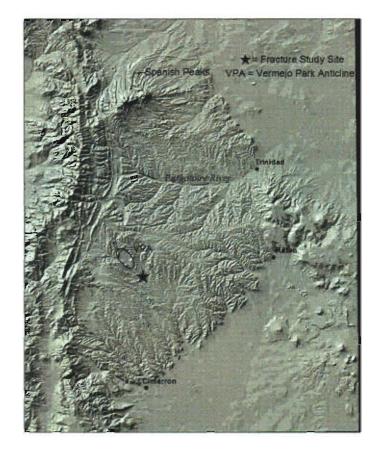

ID	Strike	Dip	Formation	Comment 1	Comment 2
RK20	309	88	unknown		Raton? Vermejo?
RK20	306	85	unknown	plant trace fossil	Raton? Vermejo?
RK20	294	84	unknown		Raton? Vermejo?
RK20	302	84	unknown		Raton? Vermejo?
RK20	296	86	unknown		Raton? Vermejo?
RK20	301	85	unknown		Raton? Vermejo?
RK20	306	84	unknown	plume	Raton? Vermejo?
RK20	299	84	unknown		Raton? Vermejo?
RK20	23	80	unknown		Raton? Vermejo?
RK20	297	86	unknown	terminates against 35/86 SE	Raton? Vermejo?
RK20	301	88	unknown	plume	Raton? Vermejo?
RK20	306	86	unknown		Raton? Vermejo?
RK20	292	82	unknown		Raton? Vermejo?
RK20	290	88	unknown		Raton? Vermejo?
RK20	28	80	unknown		Raton? Vermejo?
RK20	216	75	unknown		Raton? Vermejo?
RK20	301	87	unknown		Raton? Vermejo?

RK20	113	90	unknown		Raton? Vermejo?
RK20	301	84	unknown	terminates against 27/89 NW	Raton? Vermejo?
RK20	119	90	unknown		Raton? Vermejo?
RK20	305	78	unknown		Raton? Vermejo?
RK20	61	90	unknown		Raton? Vermejo?
RK20	302	89	unknown		Raton? Vermejo?
RK20	75	90	unknown		Raton? Vermejo?
RK20	201	85	unknown		Raton? Vermejo?
RK20	301	90	unknown		Raton? Vermejo?
RK2 0	230	89	unknown		Raton? Vermejo?
RK20	115	87	unknown		Raton? Vermejo?

i.

Location ID: RK21 Latitude: N 36.90858333 Longitude: W 105.0499667

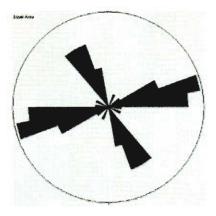


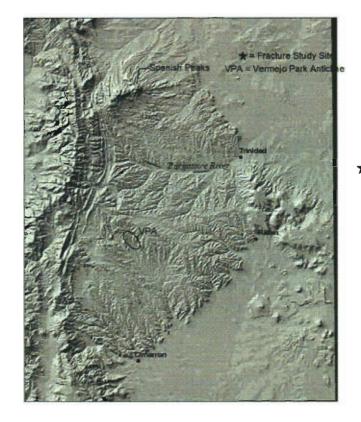

Notes:

ID	Strike	Dip	Formation	Comment 1	Comment 2
RK21	301	84	Raton		
RK21	118	90	Raton		
RK21	301	88	Raton	terminates against 25/80	
RK21	5	80	Raton		
RK21	13	80	Raton		
RK21	308	78	Raton	terminates against 34/85 SE	
RK21	119	90	Raton		
RK21	302	88	Raton	terminates against 19/85 NW	
RK21	118	86	Raton		
RK 21	300	90	Raton	terminates against 40/80 SE	plume
RK21	119	90	Raton		
RK21	305	87	Raton		
RK21	303	86	Raton		
RK21	122	90	Raton		
RK21	43	90	Raton		
RK21	14	75	Raton		

RK21	296	86	Raton
RK21	301	87	Raton

Location ID: RK22 Latitude: N 36.84831667 Longitude: W 104.9277833



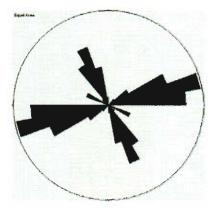

Notes:

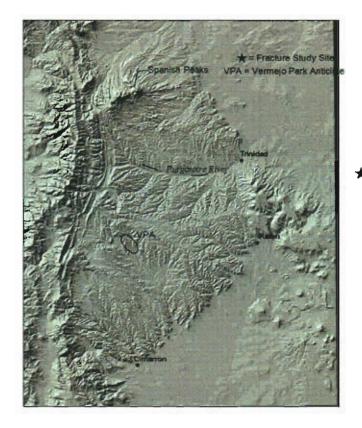
ID	Strike	Dip	Formation	Comment 1	Comment 2
RK22	80	90	unknown		Vermejo?
RK22	81	90	unknown		Vermejo?
RK22	186	86	unknown		Vermejo?
RK22	160	90	unknown		Vermejo?
RK22	83	86	unknown		Vermejo?
RK22	84	81	unknown		Vermejo?
RK22	341	90	unknown	terminates against 271/90	Vermejo?
RK22	152	9 0	unknown		Vermejo?
RK22	180	87	unknown		Vermejo?
RK22	356	90	unknown		Vermejo?
RK22	82	90	unknown		Vermejo?
RK22	83	90	unknown		Vermejo?
RK22	175	89	unknown		Vermejo?
RK22	79	90	unknown		Vermejo?
RK22	325	90	unknown		Vermejo?
RK22	85	85	unknown		Vermejo?

RK22	320	88	unknown		Vermejo?
RK22	356	90	unknown		Vermejo?
RK22	313	88	unknown		Vermejo?
RK22	271	82	unknown		Vermejo?
RK22	165	80	unknown		Vermejo?
RK22	326	75	unknown		Vermejo?
RK22	174	83	unknown	terminates against 93/79	Vermejo?
RK22	273	79	unknown		Vermejo?

Location ID: SC1 Latitude: N 37.13128333 Longitude: W 104.00545

Notes:


ID SC1	Strike 266	Dip 90	Formation Dakota
SC1	260	90	Dakota
SC1	265	90	Dakota
SC1	264	90	Dakota
SC1	269	90	Dakota
SC1	338	80	Dakota
SC1	334	72	Dakota
SC1	339	76	Dakota
SC1	328	69	Dakota
SC1	339	75	Dakota
SC1	252	90	Dakota
SC1	24	90	Dakota
SC1	342	90	Dakota
SC1	63	90	Dakota
SC1	321	90	Dakota
SC1	58	90	Dakota
SC1	332	90	Dakota
SC1	251	90	Dakota
SC1	250	90	Dakota


SC1	323	90	Dakota
SC1	259	90	Dakota
SC1	254	90	Dakota
SC1	254	90	Dakota
SC1	349	90	Dakota
SC1	321	90	Dakota
SC1	67	90	Dakota
SC1	68	90	Dakota
SC1	321	90	Dakota
SC1	296	90	Dakota
SC1	67	90	Dakota
SC1	74	90	Dakota
SC1	271	90	Dakota
SC1	84	90	Dakota
SC1	345	90	Dakota

Location ID: SC2

Latitude: N 37.12718333 Longitude: W 104.0216333

Highway 160, east of Trinidad, CO Dakota Fm.

Notes:

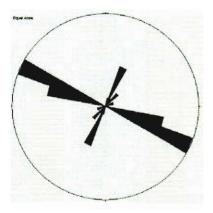
Fracture Data:

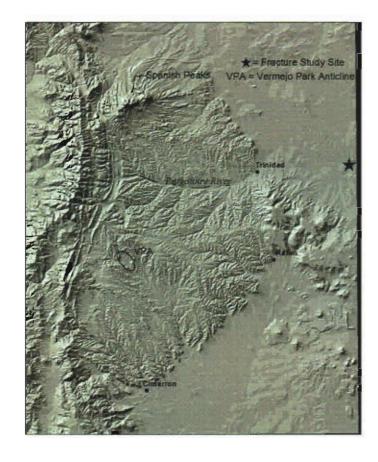
ID	Strike	Dip	Formation	Comment 1
SC2	330	90	Dakota	
SC2	327	90	Dakota	
SC2	341	90	Dakota	
SC2	335	90	Dakota	
SC2	338	90	Dakota	
SC2	351	90	Dakota	
SC2	341	90	Dakota	
SC2	249	90	Dakota	
SC2	247	90	Dakota	
SC2	248	90	Dakota	
SC2	323	90	Dakota	
SC2	232	90	Dakota	
SC2	321	90	Dakota	
SC2	249	90	Dakota	
SC2	247	90	Dakota	
SC2	331	90	Dakota	
SC2	40	90	Dakota	
SC2	59	90	Dakota	
SC2	325	90	Dakota	

Comment 2

SC2	234	90	Dakota	
SC2	338	90	Dakota	
SC2	63	90	Dakota	
SC2	334	90	Dakota	
SC2	325	90	Dakota	
SC2	345	90	Dakota	
SC2	324	90	Dakota	
SC2	340	90	Dakota	
SC2	312	90 90	Dakota	
SC2	334	90 90	Dakota Dakota	
SC2	340			
SC2	331	90	Dakota	
SC2	291	90	Dakota	
SC2	290	90	Dakota	
SC2	294	90	Dakota	
SC2	62	90	Dakota	
SC2	72	90	Dakota	
SC2	76	90	Dakota	
SC2	75	90	Dakota	
SC2	77	90	Dakota	
SC2	74	90	Dakota	
SC2	85	90	Dakota	
SC2	82	90	Dakota	
SC2	80	90	Dakota	
SC2	85	90	Dakota	
SC2	89	90	Dakota	
SC2	68	90	Dakota	
SC2	82	90	Dakota	
SC2	72	90	Dakota	
SC2	71	90	Dakota	
SC2	79	90	Dakota	
SC2	72	90	Dakota	
SC2	82	90	Dakota	
SC2	83	90	Dakota	
SC2	77 84	90	Dakota	
SC2		90	Dakota	
SC2	76	90	Dakota	
SC2	83	90	Dakota	
SC2	79	90	Dakota	
SC2	254	90	Dakota	coal cleat
SC2	342	90	Dakota	coal cleat
SC2	352	90	Dakota	coal cleat
SC2	18	90	Dakota	coal cleat
SC2	3	90	Dakota	coal cleat
SC2	355	90	Dakota	coal cleat
SC2	77	90	Dakota	coal cleat
SC2	354	90	Dakota	coal cleat
SC2	280	90	Dakota	coal cleat
SC2	342	90	Dakota	coal cleat
SC2	337	90	Dakota	coal cleat

SC2	245	90	Dakota	coal cleat
SC2	38	90	Dakota	coal cleat
SC2	310	90	Dakota	coal cleat
SC2	26	90	Dakota	coal cleat
SC2	28	90	Dakota	coal cleat
SC2	68	90	Dakota	coal cleat
SC2	73	90	Dakota	coal cleat
SC2	65	90	Dakota	coal cleat
SC2	61	90	Dakota	coal cleat
SC2	266	90	Dakota	coal cleat
			Dakota	
SC2	260	90		
SC2	265	90	Dakota	
SC2	264	90	Dakota	
SC2	269	90	Dakota	
SC2	338	80	Dakota	
SC2	334	72	Dakota	
SC2	339	76	Dakota	
SC2	328	69	Dakota	
SC2	339	75	Dakota	
SC2	252	90	Dakota	
SC2	24	90	Dakota	
SC2	342	90	Dakota	
SC2	63	90	Dakota	
SC2	321	90	Dakota	
SC2	58	90	Dakota	
SC2	332	90	Dakota	
SC2	251	90	Dakota	
SC2	250	90	Dakota	
SC2	323	90	Dakota	
SC2	259	90	Dakota	
SC2	254	90	Dakota	
SC2	254	90	Dakota	
SC2	349	90	Dakota	
SC2	321	90	Dakota	
SC2	67	90	Dakota	
			Dakota	
SC2	68 321	90		
SC2		90	Dakota	
SC2	296	90	Dakota	
SC2	67	90	Dakota	
SC2	74	90	Dakota	
SC2	271	90	Dakota	
SC2	84	90	Dakota	
SC2	345	90	Dakota	
SC2	68	90	Dakota	
SC2	77	90	Dakota	
SC2	65	90	Dakota	
SC2	67	90	Dakota	
SC2	69	90	Dakota	
SC2	92	90	Dakota	
SC2	65	90	Dakota	


MM374 MM374 MM374 MM374 MM374 MM374 MM374


SC2	81	90	Dakota	MM374
SC2	68	90	Dakota	MM374
SC2	79	90	Dakota	MM374
SC2	79	90	Dakota	MM374
SC2	75	90	Dakota	MM374
SC2	88	90	Dakota	MM374
SC2	340	90	Dakota	MM374
SC2	282	90	Dakota	MM374
SC2	336	90	Dakota	MM374
SC2	68	90	Dakota	MM374
SC2	87	90	Dakota	MM374
SC2	86	90	Dakota	MM374
SC2	84	90	Dakota	MM374
SC2	78	90	Dakota	MM374
SC2	76	90	Dakota	MM374
SC2	286	90	Dakota	MM374
SC2	76	90	Dakota	MM374
SC2	88	90	Dakota	MM374
SC2	85	90	Dakota	MM374
SC2	61	90	Dakota	MM374
SC2	62	90	Dakota	MM374
SC2	67	90	Dakota	MM374
SC2	63	90	Dakota	MM374
SC2	340	90	Dakota	MM374
SC2	333	90	Dakota	MM374
SC2	76	90	Dakota	MM374
SC2	81	90	Dakota	MM374
SC2	327	90	Dakota	MM374
SC2	324	90	Dakota	MM374
SC2	335	90	Dakota	MM374
SC2	327	90	Dakota	MM374
SC2	337	90	Dakota	MM374
SC2	330	90	Dakota	MM374
SC2	328	90	Dakota	MM374
SC2	303	90	Dakota	MM374
SC2	315	90	Dakota	MM374
SC2	315	90	Dakota	MM374
SC2	315	90	Dakota	MM374
SC2	310	90	Dakota	MM374
SC2	340	90	Dakota	MM374
SC2	325	90	Dakota	MM374
SC2	316	90	Dakota	MM374
SC2	325	90	Dakota	MM374
SC2	329	90	Dakota	MM374
SC2	329	90	Dakota	MM374
SC2	317	90	Dakota	MM374
SC2	330	90	Dakota	MM374
SC2	333	90	Dakota	MM374
SC2	321	90	Dakota	MM374
SC2	62	90	Dakota	MM374

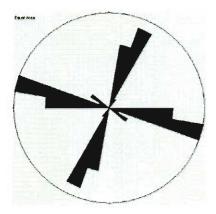
SC2	65	90	Dakota	MM374
SC2	332	90	Dakota	MM374
SC2	318	90	Dakota	MM374
SC2	325	90	Dakota	MM374
SC2	332	90	Dakota	MM374
SC2	326	90	Dakota	MM374
SC2	337	90	Dakota	MM374
SC2	324	90	Dakota	MM374
SC2	315	90	Dakota	MM374
SC2	42	90	Dakota	MM374
SC2	310	90	Dakota	MM374
SC2	326	90	Dakota	MM374
SC2	327	90	Dakota	MM374
SC2	320	90	Dakota	MM374
SC2	318	90	Dakota	MM374
SC2	327	90	Dakota	MM374
SC2	325	90	Dakota	MM374
SC2	323	90	Dakota	MM374
SC2	330	90	Dakota	MM374
SC2	68	90	Dakota	MM374
SC2	75	90	Dakota	MM374
SC2	350	90	Dakota	MM374
SC2	336	72	Dakota	mm375
SC2	155	74	Dakota	mm375
SC2	332	80	Dakota	mm375
SC2	78	90	Dakota	mm375
SC2	337	74	Dakota	mm375
SC2	79	90	Dakota	mm375
SC2	81	90	Dakota	mm375
SC2	262	87	Dakota	mm375
SC2	156	75	Dakota	mm375
SC2	335	78	Dakota	mm375
SC2	81	90	Dakota	mm375
SC2	335	90	Dakota	mm375
SC2	76	90	Dakota	mm375
SC2	314	90	Dakota	mm375
SC2	59	90	Dakota	mm375
SC2	70	90	Dakota	mm375
SC2	329	90	Dakota	mm375
SC2	73	90	Dakota	mm375
SC2	60	90	Dakota	mm375
SC2	338	90	Dakota	mm375
SC2	71	90	Dakota	mm375
SC2	15	90	Dakota	mm375
SC2	61	90	Dakota	mm375
SC2	63	90	Dakota	mm375
SC2	324	90	Dakota	mm375
SC2	81	90	Dakota	mm375
SC2	351	90	Dakota	mm375

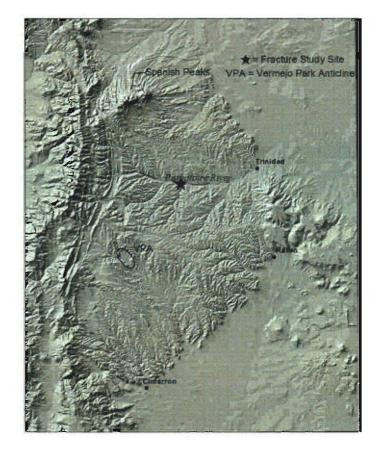
Location ID: SC3 Latitude: N 37.18996667 Longitude: W 104.1549833

Highway 160, east of Trinidad, CO Niobrara Fm.

Notes:

ID	Strike	Dip	Formation
SC3	290	90	Niobrara
SC3	286	90	Niobrara
SC3	296	90	Niobrara
SC3	288	90	Niobrara
SC3	294	90	Niobrara
SC3	24	90	Niobrara
SC3	26	90	Niobrara
SC3	23	90	Niobrara
SC3	290	90	Niobrara
SC3	289	90	Niobrara
SC3	291	90	Niobrara
SC3	288	90	Niobrara
SC3	289	90	Niobrara
SC3	19	90	Niobrara
SC3	47	90	Niobrara
SC3	291	90	Niobrara
SC3	298	90	Niobrara

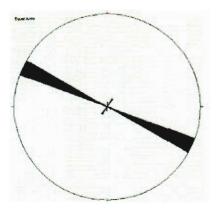

SC3	294	90	Niobrara
SC3	40	90	Niobrara
SC3	21	90	Niobrara
SC3	287	90	Niobrara
SC3	27	90	Niobrara
SC3	79	90 90	Niobrara
SC3	281	90	Niobrara
SC3	295	90	Niobrara
SC3	69	90	Niobrara
SC3	297	90	Niobrara
SC3	294	90	Niobrara
SC3	32	90	Niobrara
SC3	292	90	Niobrara
SC3	288	90	Niobrara
SC3	288	90	Niobrara
SC3	294	90	Niobrara
SC3	288	90	Niobrara
SC3	293	90	Niobrara
SC3	293	90	Niobrara
SC3	293	90	Niobrara
SC3	293	90	Niobrara
SC3	294	90 90	Niobrara
SC3	294	90 90	
			Niobrara
SC3	287	90	Niobrara
SC3	291	90	Niobrara
SC3	290	90	Niobrara
SC3	283	90	Niobrara
SC3	284	90	Niobrara
SC3	293	90	Niobrara
SC3	293	90	Niobrara
SC3	23	90	Niobrara
SC3	287	90	Niobrara
SC3	287	90	Niobrara
SC3	298	90	Niobrara
SC3	290	90	Niobrara
SC3	284	90	Niobrara
SC3	284	90	Niobrara
SC3	285	90	Niobrara
SC3	286	90	Niobrara
SC3	285	90	Niobrara
SC3	272	90	Niobrara
SC3	268	90	Niobrara
SC3	284	90	Niobrara
SC3	284	90	Niobrara
SC3	288	90	Niobrara
SC3			
	289	90	Niobrara
SC3	271	90	Niobrara
SC3	250	90	Niobrara
SC3	221	90	Niobrara
SC3	295	90	Niobrara

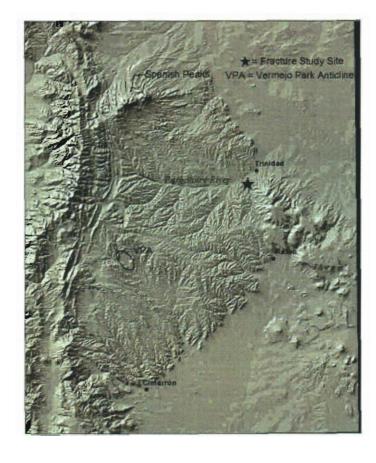

SC3	292	90	Niobrara
SC3	287	90	Niobrara
SC3	295	90	Niobrara
SC3	295	90	Niobrara
SC3	295	90	Niobrara
SC3	295	90	Niobrara
SC3	287	90	Niobrara
SC3	266	90	Niobrara
SC3	74	90	Niobrara
SC3	92	90	Niobrara
SC3	91	90	Niobrara
SC3	87	90	Niobrara
SC3	90	90	Niobrara
SC3	91	90	Niobrara
SC3	110	90	Niobrara
SC3	98	90	Niobrara
SC3	97	90	Niobrara
SC3	112	90	Niobrara
SC3	113	90	Niobrara
SC3	108	90	Niobrara
SC3	10 9	90	Niobrara
SC3	118	90	Niobrara
SC3	118	90	Niobrara
SC3	114	90	Niobrara
SC3	112	90	Niobrara
SC3	118	90	Niobrara
SC3	117	90	Niobrara
SC3	111	90	Niobrara
SC3	107	90	Niobrara
SC3	111	90	Niobrara
SC3	37	90	Niobrara
SC3	21	90	Niobrara
SC3	29	90	Niobrara
SC3	119	90	Niobrara
SC3	109	90	Niobrara
SC3	105	90	Niobrara
SC3	23	90	Niobrara
SC3	98	90	Niobrara
SC3	108	90	Niobrara
SC3	103	90	Niobrara
SC3	15	90	Niobrara
SC3	18	90	Niobrara
SC3	30	90	Niobrara
SC3	350	90	Niobrara
SC3	118	90	Niobrara
SC3	106	90	Niobrara
SC3	8	90	Niobrara
SC3	111	90	Niobrara
SC3	112	90	Niobrara
SC3	2	90	Niobrara

SC3	111	90	Niobrara
SC3	101	90	Niobrara
SC3	107	90	Niobrara
SC3	109	90	Niobrara
SC3	350	90	Niobrara
SC3	13	90	Niobrara
SC3	19	90	Niobrara
SC3	100	90	Niobrara
SC3	107	90	Niobrara
SC3	109	90	Niobrara
SC3	346	90	Niobrara
SC3	17	90	Niobrara
SC3	103	90 90	Niobrara
SC3	107	90	Niobrara
SC3	109	90	Niobrara
SC3	110	90	Niobrara
SC3	110	90	Niobrara
SC3	1 1 1	90	Niobrara
SC3	22	90	Niobrara
SC3	20	90	Niobrara
SC3	107	90	Niobrara
SC3	108	90	Niobrara
SC3	16	90	Niobrara
SC3	350	90	Niobrara
SC3	105	90	Niobrara
SC3	114	90	Niobrara
SC3	108	90	Niobrara
SC3	108	90	Niobrara
SC3	107	90	Niobrara
SC3	24	90	Niobrara
SC3	25	90	Niobrara
SC3	106	90	Niobrara
SC3	105	90	Niobrara
SC3	104	90	Niobrara
SC3	102	90	Niobrara
SC3	15	90	Niobrara
SC3	20	90	Niobrara
SC3	110	90	Niobrara
SC3	106	90	Niobrara
SC3	355	90	Niobrara
SC3	22	90	Niobrara
SC3	112	90	Niobrara
SC3	104	90	Niobrara
SC3	105	90	Niobrara
SC3	21	90	Niobrara
SC3	22	90	Niobrara
SC3	24	90	Niobrara
SC3	104	90	Niobrara
SC3	106	90	Niobrara
SC3	108	90	Niobrara

SC3	18	90	Niobrara
SC3	19	90	Niobrara

Location ID: SC4 Latitude: N 37.12551667 Longitude: W 104.7874833

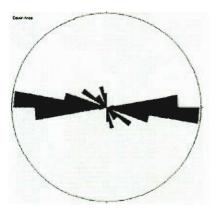

Notes:

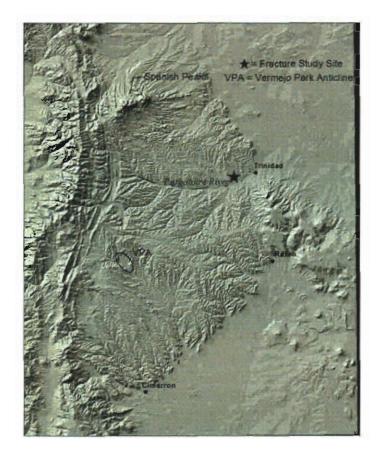

ID SC4	Strike 20	Dip 90	Formation Raton	Comment 1 Sandstone
SC4	294	90	Raton	Sandstone
SC4	287	90	Raton	Sandstone
SC4	278	90	Raton	Sandstone
SC4	300	90	Raton	Sandstone
SC4	278	90	Raton	Sandstone
SC4	25	90	Raton	Sandstone
SC4	25	90	Raton	Sandstone
SC4	19	90	Raton	Sandstone
SC4	15	90	Raton	Sandstone
SC4	276	90	Raton	Sandstone
SC4	18	90	Raton	Sandstone
SC4	287	90	Raton	Sandstone
SC4	12	90	Raton	Sandstone
SC4	303	90	Raton	Sandstone
SC4	18	90	Raton	Sandstone
SC4	279	90	Raton	Sandstone

SC4	27	90	Raton	Sandstone
SC4	19	90	Raton	Sandstone
SC4	34	90	Raton	Sandstone
SC4	275	90	Raton	Sandstone
SC4	284	90	Raton	Sandstone
SC4	283	90	Raton	Sandstone
SC4	283	90	Raton	Sandstone
SC4	29	90	Raton	Sandstone
SC4	27	90	Raton	Sandstone
SC4	25	90	Raton	Sandstone
SC4	287	90 90	Raton	Sandstone
SC4				
	285	90	Raton	Sandstone
SC4	285	90	Raton	Sandstone
SC4	278	90	Raton	Sandstone
SC4	29	90	Raton	Sandstone
SC4	284	90	Raton	Sandstone
SC4	17	90	Raton	Sill
SC4	305	90	Raton	Sill
SC4	318	90	Raton	Sill
SC4	359	90	Raton	Sill
SC4	319	90	Raton	Sill
SC4	32	90	Raton	Sill
SC4	318	90	Raton	Sill
SC4	274	90	Raton	Sill
SC4	91	90	Raton	Sill
SC4	312	90	Raton	Sill
SC4	215	90	Raton	Sill
SC4	311	90	Raton	Sill
SC4	14	90	Raton	Sill
SC4	309	90	Raton	Sill
SC4	292	90	Raton	Sill
SC4	23	90	Raton	Sill
SC4	303	90	Raton	Sill
SC4	36	90	Raton	Sill
SC4	86	90	Raton	Sill
SC4	276	90 90		Sill
SC4 SC4	270	90 90	Raton	Sill
			Raton	
SC4	345	90	Raton	Sill
SC4	274	90	Raton	Sill
SC4	25	90	Raton	Sill
SC4	273	90	Raton	Sill
SC4	28	90	Raton	Sill
SC4	31	90	Raton	Sill
SC4	272	90	Raton	Sill
SC4	271	90	Raton	Sill
SC4	10	90	Raton	Sill
SC4	29	90	Raton	Sill
SC4	66	90	Raton	Sill
SC4	87	90	Raton	Sill
SC4	304	90	Raton	Sill

SC4	35	90	Raton	Sill
SC4	87	90	Raton	Sill
SC4	37	90	Raton	Sill
	35			
SC4		90	Raton	Sill
SC4	31	90	Raton	Sill
SC4	295	90	Raton	Sill
SC4	17	90	Raton	Sill
SC4	300	90	Raton	Sill
SC4	294	90	Raton	Sill
SC4	301	90	Raton	Sill
SC4	303	90	Raton	Sill
SC4	301	90	Raton	Sill
SC4	316	90	Raton	Sill
SC4	1	90	Raton	Sill
SC4	301	90	Raton	Sill
SC4	301	90	Raton	Coal cleats
SC4	45	90	Raton	Coal cleats
SC4	293	90	Raton	Coal cleats
SC4	301	90	Raton	Coal cleats
SC4	26	90		Coal cleats
			Raton	
SC4	77	90	Raton	Coal cleats
SC4	15	90	Raton	Coal cleats
SC4	31	90	Raton	Coal cleats
SC4	294	90	Raton	Coal cleats
SC4	303	90	Raton	Coal cleats
SC4	303	90	Raton	Coal cleats
SC4	16	90	Raton	Coal cleats
SC4	325	90	Raton	Coal cleats
SC4	72	90	Raton	Coal cleats
SC4	325	90	Raton	Coal cleats
SC4	24	90	Raton	Coal cleats
SC4	301	90	Raton	Coal cleats
SC4	19	90	Raton	Coal cleats
SC4	329	90	Raton	Coal cleats
SC4	298	90	Raton	Coal cleats
SC4	303	90	Raton	Coal cleats
SC4	78	90	Raton	Coal cleats
SC4	76	90	Raton	Coal cleats
SC4	296	90	Raton	Coal cleats
SC4	82	90	Raton	Coal cleats
SC4	82	90	Raton	Coal cleats
SC4	355	90	Raton	Coal cleats
SC4	325	90	Raton	Coal cleats
SC4	330	90	Raton	Coal cleats
SC4	84	90	Raton	Coal cleats
SC4	11	90	Raton	Coal cleats
SC4	33	90	Raton	Coal cleats
	**			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Location ID: SC5 Latitude: N 37.13101667 Longitude: W 104.53315

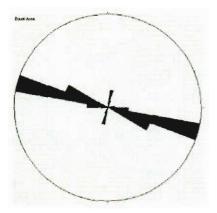


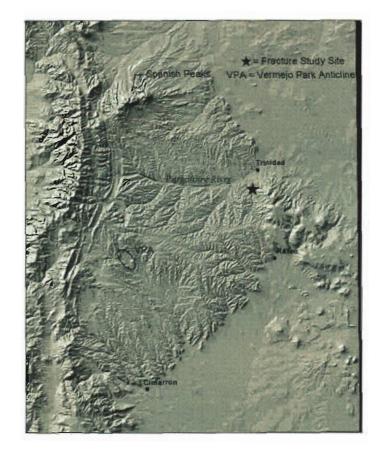

Notes:

ID	Strike	Dip	Formation	Comment 1
SC5	290	90	Vermejo	Sandstone
SC5	291	90	Vermejo	Sandstone
SC5	291	90	Vermejo	Sandstone
SC5	293	90	Vermejo	Sandstone
SC5	296	90	Vermejo	Sandstone
SC5	298	90	Vermejo	Sandstone
SC5	297	90	Vermejo	Sandstone
SC5	297	90	Vermejo	Sandstone
SC5	293	90	Vermejo	Sandstone
SC5	296	90	Vermejo	Sandstone
SC5	291	90	Vermejo	Sandstone
SC5	300	90	Vermejo	Sandstone
SC5	298	90	Vermejo	Sandstone
SC5	30	90	Vermejo	Sandstone
SC5	297	90	Vermejo	Sandstone
SC5	291	90	Vermejo	Sandstone
SC5	39	90	Vermejo	Sandstone

SC5	289	90	Vermejo	Sandstone
SC5	290	90	Vermejo	Sandstone
SC5	293	90	Vermejo	Sandstone
SC5	8	90	Vermejo	Sandstone
SC5	291	90	Vermejo	Sandstone
SC5	295	90	Vermejo	Sandstone
SC5	290	90	Vermejo	Sandstone
SC5	291	90	Vermejo	Sandstone

Location ID: SC6 Latitude: N 37.1580333 Longitude: W 104.5821667

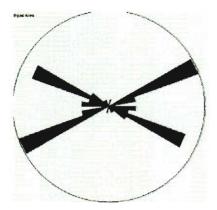


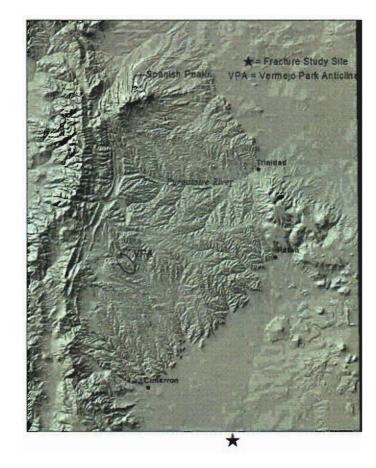

Notes:

ID	Strike	Dip	Formation	Comment 1
SC6	340	90	unknown	sandstone
SC6	82	90	unknown	sandstone
SC6	99	90	unknown	sandstone
SC6	84	90	unknown	sandstone
SC6	90	90	unknown	sandstone
SC6	355	90	unknown	sandstone
SC6	349	90	unknown	sandstone
SC6	88	90	unknown	sandstone
SC6	103	90	unknown	sandstone
SC6	79	90	unknown	sandstone
SC6	100	90	unknown	sandstone
SC6	109	90	unknown	sandstone
SC6	93	90	unknown	sandstone
SC6	90	90	unknown	sandstone
SC6	89	90	unknown	sandstone
SC6	92	90	unknown	sandstone
SC6	137	90	unknown	sandstone

SC6	120	90	unknown	sandstone
SC6	102	90	unknown	sandstone
SC6	91	90	unknown	sandstone
SC6	91	90	unknown	sandstone
SC6	128	90	unknown	sandstone
SC6	121	90	unknown	sandstone
SC6	93	90	unknown	sandstone
SC6	87	90	unknown	sandstone
SC6	88	90	unknown	sandstone
SC6	109	90	unknown	sandstone
SC6	108	90	unknown	sandstone
SC6	97	90	unknown	sandstone
SC6	92	90	unknown	sandstone
SC6	141	90	unknown	sandstone
SC6	88	90	unknown	sandstone
SC6	89	90	unknown	sandstone
SC6	97	90	unknown	sandstone
SC6	1 1 7	90	unknown	sandstone
SC6	84	90	unknown	sandstone
SC6	345	90	unknown	sandstone
SC6	329	90	unknown	sandstone
SC6	93	90	unknown	sandstone
SC6	138	90	unknown	sandstone
SC6	121	90	unknown	sandstone
SC6	91	90	unknown	sandstone
SC6	87	90	unknown	sandstone
SC6	351	90	unknown	sandstone

Location ID: SC7 Latitude: N 37.11378333 Longitude: W 104.5205167


Notes:

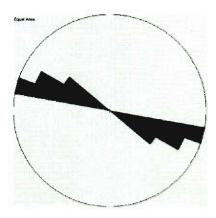

1

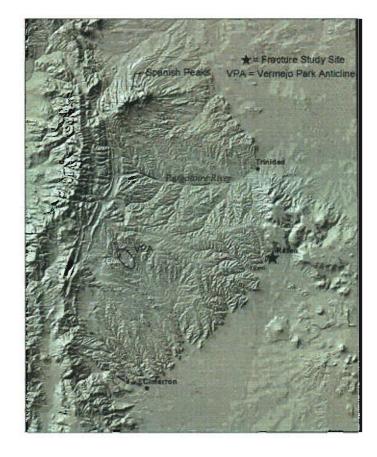
SC7	291	90	Vermejo	sandstone
SC7	285	90	Vermejo	sandstone
SC7	290	90	Vermejo	sandstone
SC7	18	90	Vermejo	sandstone
SC7	295	90	Vermejo	sandstone
SC7	25	90	Vermejo	sandstone
SC7	288	90	Vermejo	sandstone
SC7	296	90	Vermejo	sandstone
SC7	16	90	Vermejo	sandstone
SC7	286	90	Vermejo	sandstone
SC7	285	90	Vermejo	sandstone
SC7	292	90	Vermejo	sandstone
SC7	286	90	Vermejo	sandstone
SC7	26	90	Vermejo	sandstone
SC7	288	90	Vermejo	sandstone
SC7	278	90	Vermejo	sandstone
SC7	285	90	Vermejo	sandstone
SC7	280	90	Vermejo	sandstone
SC7	281	90	Vermejo	sandstone
SC7	281	90	Vermejo	sandstone
SC7	293	90	Vermejo	sandstone
SC7	268	90	Vermejo	sandstone
SC7	268	90	Vermejo	sandstone
SC7	290	90	Vermejo	sandstone
SC7	289	90	Vermejo	sandstone
SC7	292	90	Vermejo	sandstone
SC7	291	90	Vermejo	sandstone
SC7	286	90	Vermejo	sandstone
SC7	15	90	Vermejo	sandstone
SC7	277	90	Vermejo	sandstone
SC7	11	90	Vermejo	sandstone
SC7	289	90	Vermejo	sandstone
SC7	11	90	Vermejo	sandstone
SC7	289	90	Vermejo	sandstone
SC7	286	90	Vermejo	sandstone
SC7	276	90	Vermejo	sandstone
SC7	279	90	Vermejo	sandstone
SC7	279	90	Vermejo	sandstone
SC7	279	90	Vermejo	coal cleats
SC7	283	90	Vermejo	coal cleats
SC7	283	90	Vermejo	coal cleats
SC7	283	90	Vermejo	coal cleats
SC7	284	90	Vermejo	coal cleats
SC7	281	90	Vermejo	coal cleats
SC7	282	90	Vermejo	coal cleats
SC7	283	90	-	coal cleats
SC7	285 285	90 90	Vermejo Vermejo	coal cleats
SC7	283	90 90	Vermejo Vermejo	coal cleats
SC7	285	90 90	Vermejo	coal cleats
SC7	280	90 90	Vermejo	coal cleats
507	201	30	vennejo	cual cleats

SC7	287	90	Vermejo	coal cleats
SC7	288	90	Vermejo	coal cleats
SC7	286	90	Vermejo	coal cleats
SC7	285	90	Vermejo	coal cleats
SC7	286	90	Vermejo	coal cleats
SC7	290	90	Vermejo	coal cleats
SC7	281	90	Vermejo	coal cleats
SC7	284	90	Vermejo	coal cleats
SC7	288	90	Vermejo	coal cleats
SC7	287	90	Vermejo	coal cleats
SC7	285	90	Vermejo	coal cleats
SC7	287	90	Vermejo	coal cleats
SC7	282	90	Vermejo	coal cleats
SC7	283	90	Vermejo	coal cleats
SC7	8	90	Vermejo	coal cleats
SC7	13	90	Vermejo	coal cleats
SC7	13	90	Vermejo	coal cleats
SC7	13	90	Vermejo	coal cleats
SC7	10	90	Vermejo	coal cleats
SC7	17	90	Vermejo	coal cleats
SC7	9	90	Vermejo	coal cleats
SC7	13	90	Vermejo	coal cleats
SC7	10	90	Vermejo	coal cleats
SC7	10	90 90	-	
			Vermejo	coal cleats
SC7	12	90	Vermejo	coal cleats
SC7	12	90	Vermejo	coal cleats
SC7	14	90	Vermejo	coal cleats
SC7	9	90	Vermejo	coal cleats
SC7	14	90	Vermejo	coal cleats
SC7	6	90	Vermejo	coal cleats
SC7	8	90	Vermejo	coal cleats
SC7	16	90	Vermejo	coal cleats
SC7	11	90	Vermejo	coal cleats
SC7	15	90	Vermejo	coal cleats
SC7	13	90	Vermejo	coal cleats
SC7	11	90	Vermejo	coal cleats
SC7	6	90	Vermejo	coal cleats
SC7	268	54	Vermejo	faults in coal
SC7	343	48	Vermejo	faults in coal
SC7	284	40	Vermejo	faults in coal
SC7	57	50	Vermejo	faults in coal
SC7	42	45	Vermejo	faults in coal
SC7	259	45	Vermejo	faults in coal
SC7	18	50	Vermejo	faults in coal
SC7	109	55	Vermejo	faults in coal
SC7	283	40	Vermejo	faults in coal
SC7	328	50	Vermejo	faults in coal
SC7	84	88	unknown	dike

Location ID: SC8 Latitude: N 36.3526 Longitude: W 104.6014

Notes:


ID	Strike	Dip	Formation	Comment 1
SC8	280	90	Niobrara	
SC8	289	90	Niobrara	
SC8	250	90	Niobrara	
SC8	10	90	Niobrara	
SC8	251	90	Niobrara	
SC8	278	90	Niobrara	
SC8	308	90	Niobrara	
SC8	258	90	Niobrara	
SC8	300	90	Niobrara	
SC8	309	90	Niobrara	
SC8	245	90	Niobrara	
SC8	299	90	Niobrara	
SC8	247	90	Niobrara	
SC8	248	90	Niobrara	
SC8	292	90	Niobrara	
SC8	248	90	Niobrara	
SC8	292	90	Niobrara	

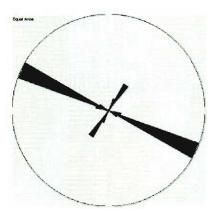

000	000	~~	N.C. 1	
SC8	290	90	Niobrara	
SC8	290	90	Niobrara	
SC8	330	90	Niobrara	
SC8	298	90	Niobrara	
SC8	243	90	Niobrara	
SC8	244	90	Niobrara	
SC8	248	90	Niobrara	
SC8	298	90	Niobrara	
SC8	299	90	Niobrara	
SC8	249	90	Niobrara	
SC8	297	90	Niobrara	
SC8	296	90	Niobrara	
SC8	245	90	Niobrara	
SC8	279	90	Niobrara	
SC8	294	90	Niobrara	
SC8	243	90	Niobrara	
SC8	242	90	Niobrara	
SC8	252	90	Niobrara	
SC8	278	90	Niobrara	
SC8	315	90	Niobrara	
SC8	241	90	Niobrara	
SC8	269	90	Niobrara	
SC8	242	90	Niobrara	
SC8	277	90	Niobrara	
SC8	245	90	Niobrara	
SC8	289	90	Niobrara	
SC8	292	90	Niobrara	
SC8	344	70	Niobrara	fault
SC8	327	50	Niobrara	fault
SC8	29	50	Niobrara	fault
SC8	210	48	Niobrara	fault
SC8	185	60	Niobrara	fault

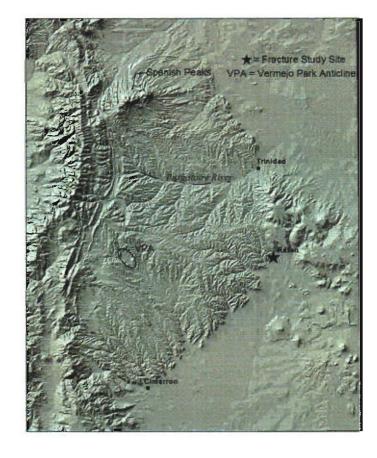
Location ID: SC9a

Latitude: N 36.9043167 Longitude: W 104.4462833

Goat Hill overlook, Vermejo coal

Notes:

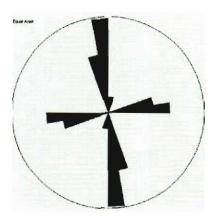

ID	Strike	Dip		Formation
SC9a	283		82	Vermejo
SC9a	283		82	Vermejo
SC9a	282		84	Vermejo
SC9a	282		84	Vermejo
SC9a	283		82	Vermejo
SC9a	283		82	Vermejo
SC9a	284		82	Vermejo
SC9a	284		81	Vermejo
SC9a	284		80	Vermejo
SC9a	284		82	Vermejo
SC9a	302		79	Vermejo
SC9a	300		79	Vermejo
SC9a	302		76	Vermejo
SC9a	306		86	Vermejo
SC9a	299		84	Vermejo
SC9a	306		76	Vermejo
SC9a	300		72	Vermejo

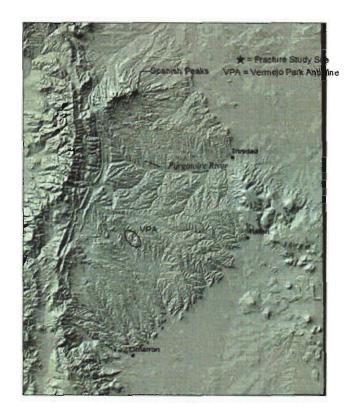

SC9a SC9a	288 296	80 79	Vermejo Vermejo
SC9a SC9a	294 296	79 85	Vermejo Vermejo
SC9a	297	81	Vermejo
SC9a	297	85	Vermejo
SC9a	294	85	Vermejo
SC9a	295	82	Vermejo
SC9a	293	68	Vermejo

Location ID: SC9b

Latitude: N 36.9043167 Longitude: W 104.4462833

Goat Hill overlook, sandstone

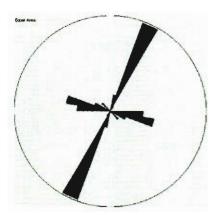

Notes:

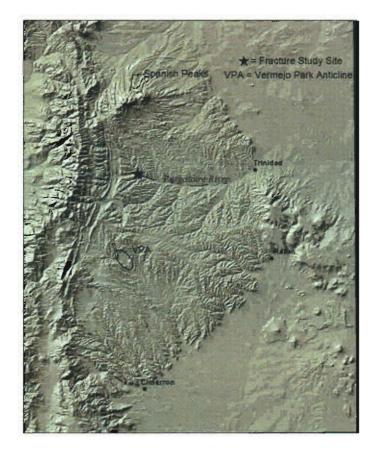

ID	Strike	Dip	Formation	Comment 1
SC9b	289	90	Unknown	Vermejo or Trinidad
SC9b	287	90	Unknown	Vermejo or Trinidad
SC9b	292	90	Unknown	Vermejo or Trinidad
SC9b	295	90	Unknown	Vermejo or Trinidad
SC9b	296	90	Unknown	Vermejo or Trinidad
SC9b	299	90	Unknown	Vermejo or Trinidad
SC9b	299	90	Unknown	Vermejo or Trinidad
SC9b	298	90	Unknown	Vermejo or Trinidad
SC9b	298	90	Unknown	Vermejo or Trinidad
SC9b	299	90	Unknown	Vermejo or Trinidad
SC9b	302	90	Unknown	Vermejo or Trinidad
SC9b	287	90	Unknown	Vermejo or Trinidad
SC9b	298	90	Unknown	Vermejo or Trinidad
SC9b	300	90	Unknown	Vermejo or Trinidad
SC9b	299	90	Unknown	Vermejo or Trinidad
SC9b	298	90	Unknown	Vermejo or Trinidad
SC9b	297	90	Unknown	Vermejo or Trinidad

SC9b	296	90	Unknown	Vermejo or Trinidad
SC9b	293	90	Unknown	Vermejo or Trinidad
SC9b	295	90	Unknown	Vermejo or Trinidad
SC9b	299	90	Unknown	Vermejo or Trinidad
SC9b	296	90	Unknown	Vermejo or Trinidad
SC9b	296	90	Unknown	Vermejo or Trinidad
SC9b	300	90 90		•
			Unknown	Vermejo or Trinidad
SC9b	296	90	Unknown	Vermejo or Trinidad
SC9b	290	90	Unknown	Vermejo or Trinidad
SC9b	300	90	Unknown	Vermejo or Trinidad
SC9b	296	90	Unknown	Vermejo or Trinidad
SC9b	297	90	Unknown	Vermejo or Trinidad
SC9b	294	90	Unknown	Vermejo or Trinidad
SC9b	295	90	Unknown	Vermejo or Trinidad
SC9b	299	90	Unknown	Vermejo or Trinidad
SC9b	289	90	Unknown	Vermejo or Trinidad
SC9b	299	90	Unknown	Vermejo or Trinidad
SC9b	299	90	Unknown	Vermejo or Trinidad
SC9b	299	90	Unknown	Vermejo or Trinidad
SC9b	299			•
		90	Unknown	Vermejo or Trinidad
SC9b	293	90	Unknown	Vermejo or Trinidad
SC9b	295	90	Unknown	Vermejo or Trinidad
SC9b	295	90	Unknown	Vermejo or Trinidad
SC9b	290	90	Unknown	Vermejo or Trinidad
SC9b	293	90	Unknown	Vermejo or Trinidad
SC9b	293	90	Unknown	Vermejo or Trinidad
SC9b	289	90	Unknown	Vermejo or Trinidad
SC9b	293	90	Unknown	Vermejo or Trinidad
SC9b	299	90	Unknown	Vermejo or Trinidad
SC9b	26	90	Unknown	Vermejo or Trinidad
SC9b	27	90	Unknown	Vermejo or Trinidad
SC9b	27	90	Unknown	Vermejo or Trinidad
SC9b	31	90	Unknown	
	30	90 90	Unknown	Vermejo or Trinidad
SC9b				Vermejo or Trinidad
SC9b	34	90	Unknown	Vermejo or Trinidad
SC9b	36	90	Unknown	Vermejo or Trinidad
SC9b	35	90	Unknown	Vermejo or Trinidad
SC9b	30	90	Unknown	Vermejo or Trinidad
SC9b	28	90	Unknown	Vermejo or Trinidad
SC9b	31	90	Unknown	Vermejo or Trinidad
SC9b	36	90	Unknown	Vermejo or Trinidad
SC9b	25	90	Unknown	Vermejo or Trinidad
SC9b	30	90	Unknown	Vermejo or Trinidad
SC9b	30	90	Unknown	Vermejo or Trinidad
SC9b	33	90	Unknown	Vermejo or Trinidad
SC9b	32	90	Unknown	Vermejo or Trinidad
SC9b	44	90	Unknown	Vermejo or Trinidad
0000		00	O INCOMIN	vonnojo or minudu

Location ID: SC10 Latitude: N 37.02858333 Longitude: W 103.9583167

Dakota pavement

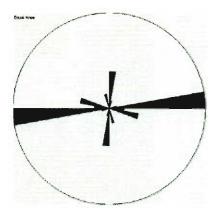

Notes:

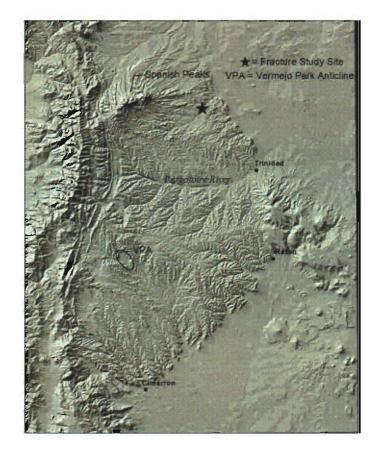

ID	Strike	Dip	Formation
SC10	350	90	Dakota
SC10	348	90	Dakota
SC10	358	90	Dakota
SC10	358	90	Dakota
SC10	356	90	Dakota
SC10	357	90	Dakota
SC10	10	90	Dakota
SC10	355	90	Dakota
SC10	354	90	Dakota
SC10	358	90	Dakota
SC10	358	90	Dakota
SC10	10	90	Dakota
SC10	354	90	Dakota
SC10	2	90	Dakota
SC10	357	90	Dakota
SC10	2	90	Dakota
SC10	348	90	Dakota
SC10	357	90	Dakota
SC10	352	90	Dakota
SC10	346	90	Dakota

SC10 SC10 SC10 SC10 SC10 SC10 SC10 SC10	$\begin{array}{c} 347\\ 347\\ 347\\ 349\\ 347\\ 345\\ 355\\ 347\\ 345\\ 357\\ 358\\ 357\\ 19\\ 355\\ 359\\ 2\\ 8\\ 6\\ 12\\ 10\\ 354\\ 355\\ 359\\ 2\\ 8\\ 6\\ 12\\ 10\\ 354\\ 355\\ 356\\ 356\\ 356\\ 356\\ 356\\ 356\\ 356$	90 90 90 90 90 90 90 90 90 90 90 90 90 9	Dakota Dakota
SC10	84	90	Dakota
SC10	75	90	Dakota
SC10 SC10	84 82	90 90	Dakota Dakota
SC10	82	90	Dakota
SC10	83	90	Dakota
SC10 SC10	84 86	90 90	Dakota Dakota

SC10	83	90	Dakota
SC10	79	90	Dakota
SC10	75	90	Dakota
SC10	80	90	Dakota
SC10	73	90	Dakota
SC10	72	90	Dakota
SC10	76	90	Dakota
SC10	70	90	Dakota
SC10	71	90	Dakota
SC10	71	90	Dakota
SC10	82	90	Dakota
SC10	81	90	Dakota
SC10	79	90	Dakota
SC10	75	90	Dakota
SC10	84	90	Dakota
SC10	84	90	Dakota
SC10	85	90	Dakota
SC10	86	90	Dakota
SC10	87	90	Dakota
SC10	82	90	Dakota
SC10	86	90	Dakota
SC10	90	90	Dakota

Location ID: SC11 Latitude: N 37.1601667 Longitude: W 104.9422

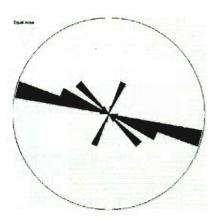


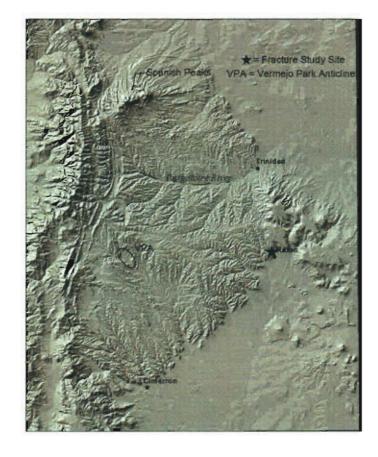

Notes:

ID	Strike	Dip	Formation
SC11	22	90	unknown
SC11	23	90	unknown
SC11	29	90	unknown
SC11	27	90	unknown
SC11	24	90	unknown
SC11	31	90	unknown
SC11	27	90	unknown
SC11	18	90	unknown
SC11	28	90	unknown
SC11	25	90	unknown
SC11	13	90	unknown
SC11	25	90	unknown
SC11	18	90	unknown
SC11	23	90	unknown
SC11	26	90	unknown
SC11	24	90	unknown
SC11	22	90	unknown

SC11	24	90	unknown
SC11	20	90	unknown
SC11	25	90	unknown
SC11	25	90	unknown
SC11	290	90	unknown
SC11	311	90	unknown
SC11	296	90	unknown
SC11	311	90	unknown
SC11	295	90	unknown
SC11	278	90	unknown
SC11	278	90	unknown
SC11	277	90	unknown
SC11	282	90	unknown
SC11	285	90	unknown
SC11	279	90	unknown
SC11	289	90	unknown
SC11	289	90	unknown
SC11	289	90	unknown
SC11	279	90	unknown
SC11	279	90	unknown
SC11	280	90	unknown
SC11	286	90	unknown
SC11	281	90	unknown

Location ID: SC12 Latitude: N 37.3586333 Longitude: W 104.7036167

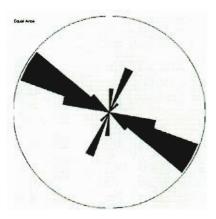

Notes:

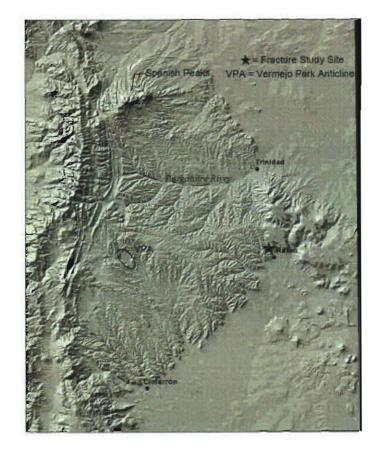

ID	strike	dip	Formation	Comment 1	Comment 2
SC12	348	90	unknown	ss capped by quaternary alluvium	Raton Fm.?
SC12	8	90	unknown	ss capped by quaternary alluvium	Raton Fm.?
SC12	2	90	unknown	ss capped by quaternary alluvium	Raton Fm.?
SC12	346	90	unknown	ss capped by quaternary alluvium	Raton Fm.?
SC12	12	90	unknown	ss capped by quaternary alluvium	Raton Fm.?
SC12	4	90	unknown	ss capped by quaternary alluvium	Raton Fm.?
SC12	6	90	unknown	ss capped by quaternary alluvium	Raton Fm.?
SC12	2	90	unknown	ss capped by quaternary alluvium	Raton Fm.?
SC12	86	90	unknown	ss capped by quaternary alluvium	Raton Fm.?
SC12	89	90	unknown	ss capped by quaternary alluvium	Raton Fm.?
SC12	281	90	unknown	ss capped by quaternary alluvium	Raton Fm.?
SC12	87	90	unknown	ss capped by quaternary alluvium	Raton Fm.?
SC12	89	90	unknown	ss capped by quaternary alluvium	Raton Fm.?
SC12	90	90	unknown	ss capped by quaternary alluvium	Raton Fm.?
SC12	281	90	unknown	ss capped by quaternary alluvium	Raton Fm.?
SC12	281	90	unknown	ss capped by quaternary alluvium	Raton Fm.?
SC12	280	90	unknown	ss capped by quaternary alluvium	Raton Fm.?

SC12	84	90	unknown	ss capped by quaternary alluvium	Raton Fm.?
SC12	276	90	unknown	ss capped by quaternary alluvium	Raton Fm.?
SC12	84	90	unknown	ss capped by quaternary alluvium	Raton Fm.?
SC12	89	90	unknown	ss capped by quaternary alluvium	Raton Fm.?
SC12	88	90	unknown	ss capped by quaternary alluvium	Raton Fm.?
SC12	87	90	unknown	ss capped by quaternary alluvium	Raton Fm.?
SC12	88	90	unknown	ss capped by quaternary alluvium	Raton Fm.?
SC12	70	90	unknown	ss capped by quaternary alluvium	Raton Fm.?
SC12	89	90	unknown	ss capped by quaternary alluvium	Raton Fm.?
SC12	87	90	unknown	ss capped by quaternary alluvium	Raton Fm.?
SC12	84	90	unknown	ss capped by quaternary alluvium	Raton Fm.?

Location ID: SC13 Latitude: N 36.91998333 Longitude: W 104.4485833

Raton on-ramp to I-25

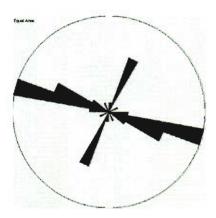

Notes:

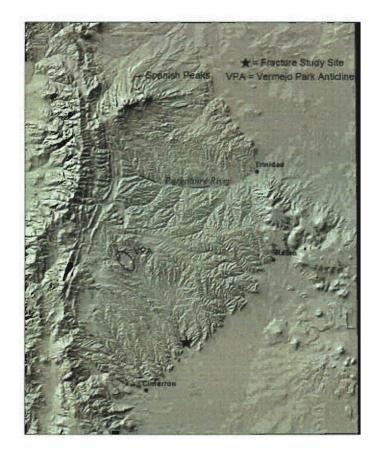

ID	Strike	dip	Formation	Comment 1
SC13	290	90	Trinidad	
SC13	286	90	Trinidad	
SC13	292	90	Trinidad	
SC13	289	90	Trinidad	
SC13	292	90	Trinidad	
SC13	289	90	Trinidad	
SC13	284	90	Trinidad	
SC13	286	90	Trinidad	
SC13	297	90	Trinidad	
SC13	284	90	Trinidad	
SC13	27	90	Trinidad	
SC13	19	90	Trinidad	
SC13	20	90	Trinidad	
SC13	21	90	Trinidad	
SC13	314	90	Trinidad	
SC13	289	90	Trinidad	thick ss unit above
SC13	287	90	Trinidad	thick ss unit above

SC13	287	90	Trinidad	thick ss unit above
SC13	287	90	Trinidad	thick ss unit above
SC13	279	90	Trinidad	thick ss unit above
SC13	293	90	Trinidad	thick ss unit above
SC13	284	90	Trinidad	thick ss unit above
SC13	293	90	Trinidad	thick ss unit above
SC13	312	90	Trinidad	thick ss unit above
SC13	326	90	Trinidad	thick ss unit above
SC13	310	90	Trinidad	thick ss unit above
SC13	21	90	Trinidad	thick ss unit above
SC13	303	90	Trinidad	thick ss unit above
SC13	314	90	Trinidad	thick ss unit above
SC13	314	90	Trinidad	thick ss unit above

Location ID: SC14 Latitude: N 36.9316333 Longitude: W 104.4583167

I-25 roadcut, just before mp 456

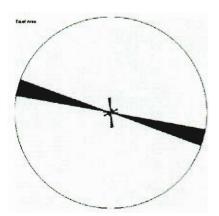

Notes:


ID	Strike	Dip	Formation	Comment 1
SC14	289	90	unknown	vermejo or raton?
SC14	290	90	unknown	vermejo or raton?
SC14	42	90	unknown	vermejo or raton?
SC14	288	90	unknown	vermejo or raton?
SC14	308	90	unknown	vermejo or raton?
SC14	285	90	unknown	vermejo or raton?
SC14	29	90	unknown	vermejo or raton?
SC14	302	90	unknown	vermejo or raton?
SC14	298	90	unknown	vermejo or raton?
SC14	294	90	unknown	vermejo or raton?
SC14	303	90	unknown	vermejo or raton?
SC14	1	90	unknown	vermejo or raton?
SC14	307	90	unknown	vermejo or raton?
SC14	295	90	unknown	vermejo or raton?
SC14	295	90	unknown	vermejo or raton?
SC14	314	90	unknown	vermejo or raton?
SC14	296	90	unknown	vermejo or raton?

SC14	291	90	unknown	vermejo or raton?
SC14	304	90	unknown	vermejo or raton?
SC14	310	90	unknown	vermejo or raton?
SC14	303	90	unknown	vermejo or raton?
SC14	22	90	unknown	vermejo or raton?
SC14	308	90	unknown	vermejo or raton?
SC14	1	90	unknown	vermejo or raton?
SC14	289	90	unknown	vermejo or raton?
SC14	22	90	unknown	vermejo or raton?
SC14	307	90	unknown	vermejo or raton?
SC14	24	90	unknown	vermejo or raton?
SC14	291	90	unknown	vermejo or raton?

Location ID: SC15 Latitude: N 36.6563 Longitude: W 104.76545

Dawson cemetery


Notes:

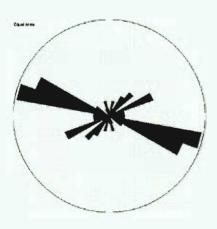
ID	Strike	Dip		Formation
SC15	292	•	90	Trinidad
SC15	308		90	Trinidad
SC15	309		90	Trinidad
SC15	283		90	Trinidad
SC15	285		90	Trinidad
SC15	288		90	Trinidad
SC15	281		90	Trinidad
SC15	291		90	⊤rinidad
SC15	288		90	Trinidad
SC15	275		90	Trinidad
SC15	292		90	Trinidad
SC15	289		90	Trinidad
SC15	284		90	Trinidad
SC15	332		90	Trinidad
SC15	290		90	Trinidad
SC15	288		90	Trinidad
SC15	295		90	Trinidad

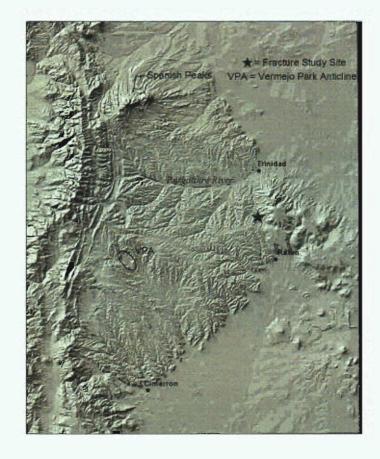
288	90	Trinidad
291	90	Trinidad
288	90	Trinidad
277	90	Trinidad
20	90	Trinidad
24	90	Trinidad
24	90	Trinidad
16	90	Trinidad
24	90	Trinidad
20	90	Trinidad
27	90	Trinidad
3	90	Trinidad
63	90	Trinidad
	291 288 277 20 24 24 24 16 24 20 27 3	291 90 288 90 277 90 20 90 24 90 24 90 16 90 24 90 25 90 26 90 27 90 3 90

Location ID: SC16 Latitude: N 37.04026667 Longitude: W 104.5124667

I-25 S, 2 miles before exit 2

Notes:

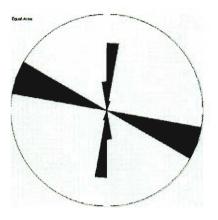

- Lower Raton, interbedded ss and mudstone
- 40-50 meters of railroad cut
- fine grained, well cemented
- numerous plumes
- 280 fracture set oldest

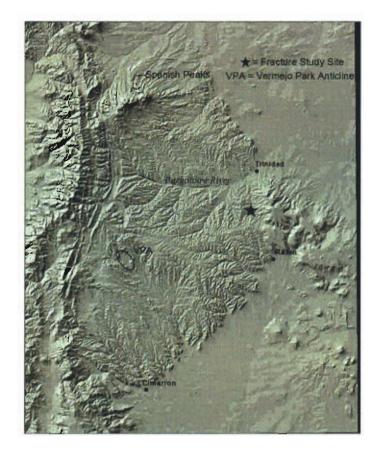

ID	Strike	Dip		Formation
SC16	288	•	90	Raton
SC16	286		90	Raton
SC16	289		90	Raton
SC16	356		90	Raton
SC16	2		90	Raton
SC16	289		90	Raton
SC16	282		90	Raton
SC16	60		90	Raton
SC16	282		90	Raton
SC16	51		90	Raton
SC16	278		90	Raton
SC16	65		90	Raton
SC16	285		90	Raton

SC16	276	90	Raton
SC16	280	90	Raton
SC16	288	90	Raton
SC16	48	90	Raton
SC16	282	90	Raton
SC16	250	90	Raton
SC16	282	90	Raton
SC16	289	90	Raton
SC16	283	90	Raton
SC16	19	90	Raton
SC16	284	90	Raton
SC16	289	90	Raton .
SC16	291	90	Raton
SC16	26	90	Raton
SC16	287	90	Raton
SC16	357	90	Raton
SC16	286	90	Raton
SC16	359	90	Raton
SC16	285	90	Raton
SC16	289	90	Raton
SC16	351	90	Raton
SC16	288	90	Raton
SC16	287	90	Raton
SC16	284	90	Raton
SC16	283	90	Raton
SC16	287	90	Raton
SC16	286	90	Raton
SC16	282	90	Raton

Location ID: SC17 Latitude: N 37.033033 Longitude: W 104.50445

RR Road, east of Morley ruins


Notes:

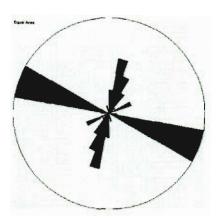

- Ophiomorpha present, less numerous than Dawson
- Moderately well cemented

ID	Strike	Dip		Formation	
SC17	35		90	Trinidad	
SC17	71		90	Trinidad	
SC17	285		90	Trinidad	
SC17	34		90	Trinidad	
SC17	36		90	Trinidad	
SC17	292		90	Trinidad	
SC17	62		90	Trinidad	
SC17	41		90	Trinidad	
SC17	295		90	Trinidad	
SC17	288		90	Trinidad	
SC17	58		90	Trinidad	
SC17	288		90	Trinidad	
SC17	15		90	Trinidad	
SC17	75		90	Trinidad	
SC17	296		90	Trinidad	
SC17	294		90	Trinidad	

SC17	288	90	Trinidad
SC17	29	90	Trinidad
SC17	292	90	Trinidad
SC17	342	90	Trinidad
SC17	284	90	Trinidad
SC17	303	90	Trinidad
SC17	290	90	Trinidad
SC17	276	90	Trinidad
SC17	292	90	Trinidad
SC17	288	90	Trinidad
SC17	263	90	Trinidad
SC17	297	90	Trinidad
SC17	44	90	Trinidad
SC17	284	90	Trinidad
SC17	287	90	Trinidad
SC17	165	90	Trinidad
SC17	282	90	Trinidad
SC17	224	90	Trinidad
SC17	287	90	Trinidad
SC17	11	90	Trinidad
SC17	249	90	Trinidad
SC17	335	90	Trinidad
SC17	299	90	Trinidad
SC17	269	90	Trinidad
SC17	305	90	Trinidad
SC17	243	90	Trinidad
SC17	282	90	Trinidad
SC17	249	90	Trinidad
SC17	240	90	Trinidad
SC17	350	90	Trinidad
SC17	40	90	Trinidad
SC17	292	90	Trinidad
SC17	285	90	Trinidad
SC17	278	90	Trinidad
SC17	243	90	Trinidad

Location ID: SC18 Latitude: N 37.0515 Longitude: W 104.5226167

Notes:


- Syn-depositional thrust fault
- Basal Raton unit, some interbedding
- Carbonaceous shale under ss

ID	Strike	Dip		Formation
SC18	292		90	Raton
SC18	292		90	Raton
SC18	17		90	Raton
SC18	291		90	Raton
SC18	6		90	Raton
SC18	299		90	Raton
SC18	287		90	Raton
SC18	2		90	Raton
SC18	290		90	Raton
SC18	7		90	Raton
SC18	292		90	Raton
SC18	286		90	Raton
SC18	294		90	Raton
SC18	4		90	Raton
SC18	294		90	Raton

SC18	359	90	Raton
SC18	288	90	Raton
SC18	287	90	Raton
SC18	284	90	Raton
SC18	358	90	Raton
SC18	290	90	Raton
SC18	5	90	Raton
SC18	287	90	Raton
SC18	294	90	Raton
SC18	7	90	Raton
SC18	287	90	Raton
SC18	359	90	Raton
SC18	286	90	Raton
SC18	1	90	Raton
SC18	288	90	Raton
SC18	282	90	Raton

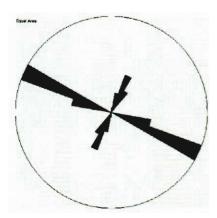
Location ID: SC19 Latitude: N 37.03231667 Longitude: W 104.5018833

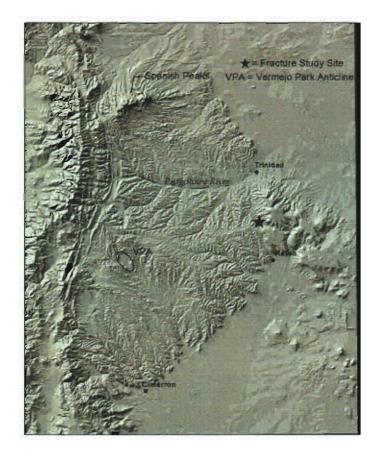
I-25 N, south of chart 18, dike

Notes:

- Vermejo ss, measured below 4-5 m coal bed
- Dike strikes 287; mm-scale crystals

Fracture Data:


ID	Strike	Dip	Formation	Comment
SC19	104	90	Vermejo	
SC19	185	90	Vermejo	
SC19	94	90	Vermejo	
SC19	4	90	Vermejo	
SC19	21	90	Vermejo	
SC19	280	90	Vermejo	
SC19	287	90	Vermejo	
SC19	40	90	Vermejo	
SC19	290	90	Vermejo	
SC19	287	90	Vermejo	
SC19	287	90	Vermejo	
SC19	218	90	Vermejo	
SC19	347	90	Vermejo	
SC19	10	90	Vermejo	
SC19	5	90	Vermejo	
SC19	287	90	Vermejo	


1

SC19	283	90	Vermejo	
SC19	287	90	Vermejo	
SC19	16	90	Vermejo	
SC19	292	90	Vermejo	
SC19	17	90	Vermejo	
SC19	290	90	Vermejo	
SC19	15	90	Vermejo	
SC19	290	90	Vermejo	
SC19	288	90	Vermejo	
SC19	20	90	Vermejo	
SC19	290	90	Vermejo	
SC19	12	90	Vermejo	
SC19	293	90	Vermejo	
SC19	296	90	Vermejo	
SC19	33	90	Vermejo	coal above ss
SC19	109	90	Vermejo	coal above ss
SC19	30	90	Vermejo	coal above ss
SC19	27	90	Vermejo	coal above ss
SC19	116	90	Vermejo	coal above ss
SC19	114	90	Vermejo	coal above ss
SC19	20	90	Vermejo	coal above ss
SC19	22	90	Vermejo	coal above ss
SC19	293	90	Vermejo	coal above ss
SC19	291	90	Vermejo	
SC19	15	90	Vermejo	
SC19	298	90	Vermejo	
SC19	62	90	Vermejo	lower ss unit
SC19	60	90	Vermejo	lower ss unit
SC19	11	90	Vermejo	lower ss unit
SC19	285	90	Vermejo	lower ss unit
SC19	60	90	Vermejo	lower ss unit
SC19	283	90	Vermejo	lower ss unit
			-	

Location ID: SC20 Latitude: N 37.02145 Longitude: W 104.49175

I-25 N exit 2

Notes:

- ~ 1 m thick bed of basal Raton
- well cemented
- iron oxide and calcite cement mineralization
- extension fractures, plumes
- 20 degree fracture set is younger than 290 set

ID	Strike	Dip	Formation	Comment 1
SC20	299	90	Raton	Basal raton sand?
SC20	293	90	Raton	Basal raton sand?
SC20	290	90	Raton	Basal raton sand?
SC20	31	90	Raton	Basal raton sand?
SC20	287	90	Raton	Basal raton sand?
SC20	18	90	Raton	Basal raton sand?
SC20	287	90	Raton	Basal raton sand?
SC20	21	90	Raton	Basal raton sand?
SC20	29	90	Raton	Basal raton sand?
SC20	293	90	Raton	Basal raton sand?
SC20	25	90	Raton	Basal raton sand?
SC20	20	90	Raton	Basal raton sand?

SC20	291	90	Raton	Basal raton sand?
SC20	293	90	Raton	Basal raton sand?
SC20	296	90	Raton	Basal raton sand?
SC20	31	90	Raton	Basal raton sand?
SC20	293	90	Raton	Basal raton sand?
SC20	290	90	Raton	Basal raton sand?
SC20	22	90	Raton	Basal raton sand?
SC20	298	90	Raton	Basal raton sand?
SC20	39	90	Raton	Basal raton sand?
SC20	28	90	Raton	Basal raton sand?
SC20	295	90	Raton	Basal raton sand?
SC20	37	90	Raton	Basal raton sand?
SC20	298	90	Raton	Basal raton sand?
SC20	13	90	Raton	Basal raton sand?
SC20	297	90	Raton	Basal raton sand?
SC20	288	90	Raton	coals above
SC20	289	90	Raton	coals above
SC20	287	90	Raton	coals above
SC20	289	90	Raton	coals above
SC20	292	90	Raton	coals above
SC20	290	90	Raton	coals above
SC20	296	90	Raton	coals above
SC20	290	90	Raton	coals above
SC20	292	90	Raton	coals above
SC20	289	90	Raton	coals above
SC20	288	90	Raton	coals above
SC20	290	90	Raton	coals above
SC20	17	90	Raton	coals above
SC20	32	90	Raton	coals above
SC20	9	90	Raton	coals above
SC20	13	90	Raton	coals above
SC20	21	90	Raton	coals above
SC20	23	90	Raton	coals above

DISTRIBUTION

61	Sandia Nation MS 0373 0706 0750 0751 0778 9018	hal Labs John Holland 09127 (2) Chris Rautman 06113 (2) Scott Cooper 06116 (20) John Lorenz (20) James Herrin (2) Greg Elbring (1) Bill Olsson 06117 (2) Bill Arnold 06851 (2) Central Technical Files 8945-1 (3)		
2	M3669	Los Alamos National Laboratory		
		Attn: J.C. Stevenson, WDP-WD M. George, M4 P.O. Box 1663 Los Alamos, NM 87545		
3	M0830	Lawrence Livermore National Laboratory Attn: R.F. Chatham, L125 (2) A.B. Palmen, L394 P.O. Box 808 Livermore, CA 94550		
6	M0701	US Department of Energy Attn: Maj. Gen. W.W. Hoover Washington, DC 20545		
1	M0800	J.S. Kendall, 8417		
1	M0800	P.R. Walker, 8417		
1	M0800	Central Technical Files, 8945-1		
5	MS 0314	L.G. Grant, 9811 0574 D.R. Jones, 5941		
8	0827	0574 D.R. Jones, 5941 J.R. Dallas, 1502 Attn: R. Collier		
1	0832	A.T. Walker, 6503		
1	0841	E.R. Farmer, 3340 Attn: D.G. Anderson, 3341		
2	0899	Technical Library, 9616		
1	0161	Patent and Licensing Office, 11500		

- 4 Vermejo Park Ranch Attn: Rich Larsen (2) Gus Holm (2) P.O. Drawer E Raton, NM 87740
- 5 El Paso Production Company Attn: Kenneth Whetstone Nine Greenway Plaza Houston, Tx 77046
- New Mexico Bureau of Geology and Mineral Resources
 Attn: Ron Broadhead
 Tom Engler, Chair, Petroleum and Natural Gas Engineering Department
 801 Leroy Place
 Socorro, NM 87801
- Devon Energy Corporation Attn: Curt McKinney
 20 North Broadway
 Oklahoma City, OK 73102-8260
- 1 Connie Knight 1800 Washington Ave Golden, CO 80401

LIBRARY DOCUMENT DO NOT DESTROY RETURN TO LIBRARY VAULT