45 research outputs found

    Monte-Carlo Simulations of the Dynamical Behavior of the Coulomb Glass

    Get PDF
    We study the dynamical behavior of disordered many-particle systems with long-range Coulomb interactions by means of damage-spreading simulations. In this type of Monte-Carlo simulations one investigates the time evolution of the damage, i.e. the difference of the occupation numbers of two systems, subjected to the same thermal noise. We analyze the dependence of the damage on temperature and disorder strength. For zero disorder the spreading transition coincides with the equilibrium phase transition, whereas for finite disorder, we find evidence for a dynamical phase transition well below the transition temperature of the pure system.Comment: 10 pages RevTeX, 8 Postscript figure

    The 2015 Plains Elevated Convection at Night Field Project

    Get PDF
    The central Great Plains region in North America has a nocturnal maximum in warm-season precipitation. Much of this precipitation comes from organized mesoscale convective systems (MCSs). This nocturnal maximum is counterintuitive in the sense that convective activity over the Great Plains is out of phase with the local generation of CAPE by solar heating of the surface. The lower troposphere in this nocturnal environment is typically characterized by a low-level jet (LLJ) just above a stable boundary layer (SBL), and convective available potential energy (CAPE) values that peak above the SBL, resulting in convection that may be elevated, with source air decoupled from the surface. Nocturnal MCS-induced cold pools often trigger undular bores and solitary waves within the SBL. A full understanding of the nocturnal precipitation maximum remains elusive, although it appears that bore-induced lifting and the LLJ may be instrumental to convection initiation and the maintenance of MCSs at night. To gain insight into nocturnal MCSs, their essential ingredients, and paths toward improving the relatively poor predictive skill of nocturnal convection in weather and climate models, a large, multiagency field campaign called Plains Elevated Convection At Night (PECAN) was conducted in 2015. PECAN employed three research aircraft, an unprecedented coordinated array of nine mobile scanning radars, a fixed S-band radar, a unique mesoscale network of lower-tropospheric profiling systems called the PECAN Integrated Sounding Array (PISA), and numerous mobile-mesonet surface weather stations. The rich PECAN dataset is expected to improve our understanding and prediction of continental nocturnal warm-season precipitation. This article provides a summary of the PECAN field experiment and preliminary findings

    Postoperative pain management in non-traumatic emergency general surgery: WSES-GAIS-SIAARTI-AAST guidelines

    Get PDF
    Background Non-traumatic emergency general surgery involves a heterogeneous population that may present with several underlying diseases. Timeous emergency surgical treatment should be supplemented with high-quality perioperative care, ideally performed by multidisciplinary teams trained to identify and handle complex postoperative courses. Uncontrolled or poorly controlled acute postoperative pain may result in significant complications. While pain management after elective surgery has been standardized in perioperative pathways, the traditional perioperative treatment of patients undergoing emergency surgery is often a haphazard practice. The present recommended pain management guidelines are for pain management after non-traumatic emergency surgical intervention. It is meant to provide clinicians a list of indications to prescribe the optimal analgesics even in the absence of a multidisciplinary pain team. Material and methods An international expert panel discussed the different issues in subsequent rounds. Four international recognized scientific societies: World Society of Emergency Surgery (WSES), Global Alliance for Infection in Surgery (GAIS), Italian Society of Anesthesia, Analgesia Intensive Care (SIAARTI), and American Association for the Surgery of Trauma (AAST), endorsed the project and approved the final manuscript. Conclusion Dealing with acute postoperative pain in the emergency abdominal surgery setting is complex, requires special attention, and should be multidisciplinary. Several tools are available, and their combination is mandatory whenever is possible. Analgesic approach to the various situations and conditions should be patient based and tailored according to procedure, pathology, age, response, and available expertise. A better understanding of the patho-mechanisms of postoperative pain for short- and long-term outcomes is necessary to improve prophylactic and treatment strategies

    Postoperative pain management in non-traumatic emergency general surgery : WSES-GAIS-SIAARTI-AAST guidelines

    Get PDF
    Background Non-traumatic emergency general surgery involves a heterogeneous population that may present with several underlying diseases. Timeous emergency surgical treatment should be supplemented with high-quality perioperative care, ideally performed by multidisciplinary teams trained to identify and handle complex postoperative courses. Uncontrolled or poorly controlled acute postoperative pain may result in significant complications. While pain management after elective surgery has been standardized in perioperative pathways, the traditional perioperative treatment of patients undergoing emergency surgery is often a haphazard practice. The present recommended pain management guidelines are for pain management after non-traumatic emergency surgical intervention. It is meant to provide clinicians a list of indications to prescribe the optimal analgesics even in the absence of a multidisciplinary pain team. Material and methods An international expert panel discussed the different issues in subsequent rounds. Four international recognized scientific societies: World Society of Emergency Surgery (WSES), Global Alliance for Infection in Surgery (GAIS), Italian Society of Anesthesia, Analgesia Intensive Care (SIAARTI), and American Association for the Surgery of Trauma (AAST), endorsed the project and approved the final manuscript. Conclusion Dealing with acute postoperative pain in the emergency abdominal surgery setting is complex, requires special attention, and should be multidisciplinary. Several tools are available, and their combination is mandatory whenever is possible. Analgesic approach to the various situations and conditions should be patient based and tailored according to procedure, pathology, age, response, and available expertise. A better understanding of the patho-mechanisms of postoperative pain for short- and long-term outcomes is necessary to improve prophylactic and treatment strategies.Peer reviewe

    Comparative Analysis of mRNA Targets for Human PUF-Family Proteins Suggests Extensive Interaction with the miRNA Regulatory System

    Get PDF
    Genome-wide identification of mRNAs regulated by RNA-binding proteins is crucial to uncover post-transcriptional gene regulatory systems. The conserved PUF family RNA-binding proteins repress gene expression post-transcriptionally by binding to sequence elements in 3′-UTRs of mRNAs. Despite their well-studied implications for development and neurogenesis in metazoa, the mammalian PUF family members are only poorly characterized and mRNA targets are largely unknown. We have systematically identified the mRNAs associated with the two human PUF proteins, PUM1 and PUM2, by the recovery of endogenously formed ribonucleoprotein complexes and the analysis of associated RNAs with DNA microarrays. A largely overlapping set comprised of hundreds of mRNAs were reproducibly associated with the paralogous PUM proteins, many of them encoding functionally related proteins. A characteristic PUF-binding motif was highly enriched among PUM bound messages and validated with RNA pull-down experiments. Moreover, PUF motifs as well as surrounding sequences exhibit higher conservation in PUM bound messages as opposed to transcripts that were not found to be associated, suggesting that PUM function may be modulated by other factors that bind conserved elements. Strikingly, we found that PUF motifs are enriched around predicted miRNA binding sites and that high-confidence miRNA binding sites are significantly enriched in the 3′-UTRs of experimentally determined PUM1 and PUM2 targets, strongly suggesting an interaction of human PUM proteins with the miRNA regulatory system. Our work suggests extensive connections between the RBP and miRNA post-transcriptional regulatory systems and provides a framework for deciphering the molecular mechanism by which PUF proteins regulate their target mRNAs

    Surface Characteristics of Observed Cold Pools

    No full text
    Cold pools are a key element in the organization of precipitating convective systems, yet knowledge of their typical surface characteristics is largely anecdotal. To help to alleviate this situation, cold pools from 39 mesoscale convective system (MCS) events are sampled using Oklahoma Mesonet surface observations. In total, 1389 time series of surface observations are used to determine typical rises in surface pressure and decreases in temperature, potential temperature, and equivalent potential temperature associated with the cold pool, and the maximum wind speeds in the cold pool. The data are separated into one of four convective system life cycle stages: first storms, MCS initiation, mature MCS, and MCS dissipation. Results indicate that the mean surface pressure rises associated with cold pools increase from 3.2 hPa for the first storms' life cycle stage to 4.5 hPa for the mature MCS stage before dropping to 3.3 hPa for the dissipation stage. In contrast, the mean temperature (potential temperature) deficits associated with cold pools decrease from 9.5 (9.8) to 5.4 K (5.6 K) from the first storms to the dissipation stage, with a decrease of approximately 1 K associated with each advance in the life cycle stage. However, the daytime and early evening observations show mean temperature deficits over 11 K. A comparison of these observed cold pool characteristics with results from idealized numerical simulations of MCSs suggests that observed cold pools likely are stronger than those found in model simulations, particularly when ice processes are neglected in the microphysics parameterization. The mean deficits in equivalent potential temperature also decrease with the MCS life cycle stage, starting at 21.6 K for first storms and dropping to 13.9 K for dissipation. Mean wind gusts are above 15 m sa1 for all life cycle stages. These results should help numerical modelers to determine whether the cold pools in high-resolution models are in reasonable agreement with the observed characteristics found herein. Thunderstorm simulations and forecasts with thin model layers near the surface are also needed to obtain better representations of cold pool surface characteristics that can be compared with observations. ďż˝ 2008 American Meteorological Society

    Defining a Critical Weld Dilution to Avoid Solidification Cracking in Aluminum

    No full text
    Al-Mg-Si alloys are known to be highly susceptible to solidification cracking except when using an appropriate filler metal (e.g., 4043 or 5356), although the amount of dilution required to avoid cracking has never been a well-defined quantity. The aim of the present study is to determine a relationship between filler metal dilution, local strain rate conditions, and cracking susceptibility. Making use of the controlled tensile weldability (CTW) test and local strain extensometer measurements, a boundary has been established between crack and no-crack conditions for different local strain rates and dilution amounts, holding all other welding parameters constant. This boundary, presented in the form of a critical strain rate-dilution map, defines the critical amount of 4043 filler metal required to avoid solidification cracking when arc welding 6060 aluminum, depending upon local strain rate.Coniglio, N.; Cross, C. E.; Michael, T. and Lammers, M.http://cat.inist.fr/?aModele=afficheN&cpsidt=2064200
    corecore