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Monte Carlo simulations of the dynamical behavior of the Coulomb glass
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Michael Schreiber
Institut fur Physik, Technische UniversttaD-09107 Chemnitz, Federal Republic of Germany

(Received 3 September 1996

We study the dynamical behavior of disordered many-particle systems with long-range Coulomb interac-
tions by means of damage-spreading simulations. In this type of Monte Carlo simulation one investigates the
time evolution of the damage, i.e., the difference of the occupation numbers of two systems, subjected to the
same thermal noise. We analyze the dependence of the damage on temperature and disorder strength. For zero
disorder the spreading transition coincides with the equilibrium phase transition, whereas for finite disorder we
find evidence for a dynamical phase transition well below the transition temperature of the pure system.
[S0163-18297)05810-4

[. INTRODUCTION of a dynamical phase transition from a dynamically active
high-temperature phase to a frozen low-temperature phase
The combined influence of disorder and long-range interupon changing characteristic parameters like disorder or tem-
actions on the properties of many-particle systems has beenpgrature. Our paper is organized as follows. In Sec. Il we
subject of great interest for some time. In electronic system#troduce the Coulomb-glass model, the prototype model of
already disorder or interactions alone can drastically chang@isordered localized electrons. In Sec. Ill we describe the
the physical behavior. Disorder can lead, e.g., to a metaid@mage-spreading technique, whereas in Sec. IV we present
insulator transition due to Anderson localization. On thethe results for the dynamical behavior of the model. Section
other hand, a metal-insulator transition can also be inducey IS dedicated to some discussions and conclusions.
by correlations due to electron-electron interactions. If disor-

der and interactions are both significant then complex physi- Il. MODEL
cal problems and phenomena arise, many of which are not i o
completely understood. Our investigation is based on the Coulomb-glass model

The behavior of strongly localized correlated electrons inProposed by Efros and Shkloyékto describe compensated
disordered insulators is especially complicated, both experidoPed semiconductors. Later it was also applied to simulate
mentally and theoretically. Thus progress has been slo@ranular metal® and conducting pplymer’é_L: The model
since the first investigatioris Many properties of such sys- CONSIStS. of a square or cubic lattice of linear sizewith
tems are still poorly understood. In particular there are onlyN=L" sites(in d dimensions and lattice constara. The
few and contradicting results on thermodynamics, phase dizit€s can be occupied bN (0<K<1) electrons. These
gram, phase transitions or critical behavior, and the exami€/€ctrons are interacting via an unscreened Coulomb poten-
nation of the dynamical behavior is only at its beginning. tial- To guarantee charge neutrality every site carries a com-
Two of the central questions are whether or not the disorPensating charge ofKe (—e is the charge of the electran
dered interacting electron system shows glassy behavior ang€ disorder of this system is described by the random po-
what is the nature of the glassy “state.” Two different views tential ¢; . The Hamiltonian of the Coulomb glass is given by
can be found in the literature. In the earlier work the formal .
similarity between disordered localized electrons and spin , _ _
glasses had lead to speculations about a possible equilibriuti _Z (oi=pinit ngj (M=K = KUy, Uij=1=,
phase transition to a spin-glass-like low-temperature (D)
phasé'® More recent investigations show, however, growing
experimental and theoretical evidence of the transition beingvhereu is the chemical potentiah; (with values 0 or 1is
of dynamical naturé-® the occupation number of siteandr;; denotes the distance

In this paper we study the dynamical behavior of disor-between sites andj. In the rest of the paper we set the
dered localized electrons by means of the damage-spreadifigteraction strength between nearest-neighbor sfés=1
method. In this type of Monte Carlo simulation the micro- which fixes the energy scale. The random potential energies
scopic differences of the time evolution between two sys-<p; are independent from each other and are chosen according
tems are investigated. In particular, we address the questido some probability distributiohV(¢). We use the box dis-
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16 -8, & £y tion numbers of one or several sites with a certain probabil-
) i ' ) : ) ity. Within the Metropolis algorithm this probability is given
141 h by
[}
1
121 \ 1, AH<O
i : p= AH 5
o 2k ex;{—— , AH>0, ®)
Q 08} 3 KeT
a 1.4
06 k 1 where AH is the energy difference between the many-
S5 particle states before and after such a change kand the
04} *-I“ Boltzmann constanftN such Monte Carlo steps are called a
05 RN Monte Carlo sweep which is the natural time scale of our
T IRV calculations.
0 P~ NI

To simulate the dynamics one can use different “move
classes,” which determine how the occupation numbers are
changed in every Monte Carlo step to get the new configu-

ration. The simplest move class consists of exchanging a

FIG. 1. Single-electron density of states of the Coulomb glass a%ingle electron with a reservoii.e., the conduction band in
T=0.008 for different strengths of disordet, indicates the Made-

| the Fermi the case of doped semiconduciprsther classes include
ung energysg the =ermi energy. hopping of single electrons between the sites, or correlated

o , ) hopping of several electrons. In this paper we present results
tribution with mean 0 and widthW,. The parameteiV,

: < y obtained by using only single-electron exchanges between
measures the strength of the disorder. Specifically, we invesgpe system and a reservoir, but we have also checked more

tigate a half-filled systenk=3). Then the Coulomb glass complicated move classes. As long as we do not include

=2
model is particle-hole symmetric and the chemical pOtemiabistance-dependent “tunneling terms” into the transition

vanishes(Note that the two quantitiek and u are not in-  propapilities(s), applying different move classes yields data
dependent of each other. We tréags a free parameter and \yhich do not show a qualitatively different behavior. We

calculate from it.) _ _ _ attribute this result to the fact that single- and multiple-
For later reference we briefly mention some properties 0gjaciron hops can be combined from the moves in our imple-
the Coulomb-glass model. One of the central quantities is thg,entation of single-electron exchanges with an external res-

single-electron density of states ervoir. Thus all many-electron states witN electrons are
available in our simulation. A more detailed investigation of

= 12 s 5 this question including the effects of distance-dependent

9e. =g : (8(e=e)) @ transition probabilities on the damage-spreading simulations
is in progress.

at energye and temperatur@, where( . . .) denotes thermal

and disorder averages, are the single-electron energies

IIl. DAMAGE SPREADING
given by

The damage-spreading techniués a modification of
the usual Monte Carlo method. The idea is to look not at the
si:qpi_MJrZ Uij(nj—K). (3 time e_volution of a single system but to compare the time
1#i evolutions oftwo systems which are subjected to the same

thermal noise(i.e., the same random numbers are used
The single-electron density of states of the Coulomb glaswithin the Metropolis algorithm Usually, at the beginning

shows a pronounced gap, called the Coulomb gap, close f the simulation the occupation numbers of both systems
the Fermi energyg (see Fig. L At zero temperature the differ only at a single sitdor at a few sites, e.g., a single
density of states actually vanishes at the Fermi engéogyse ~ column in a 2D lattice system

to the Fermi energy it can be described by a power law Since both systems are thermodynamically identical, av-

erages of equilibrium quantities will be the same for both
g(e)x|e—eg|?, (4)  systems. Microscopically, however, the two systems may
evolve differently from each other. The central observable in
wherea is approximately 1.2 for two-dimensioné2D) and ~ damage-spreading simulations is the Hamming distance
2.5 for 3D system&? At finite temperature the Coulomb gap D(t), which is the portion of sites for which the occupation
is filled gradually(for recent simulation results see, e.g., Ref.numbers differ between the two systerqt), which mea-
14). sures the “damage,” is given by
The Coulomb-glass modé€l) describes a system without 1
internal dynamics. In reality the electrons, though localized, _ 0 ¢
are coupled to additionalvibrationa) degrees of freedom, D(t)= NEi () —ni(D)], ®)
which lead to transitions between the many-electron states.
Phenomenologically this can be simulated by a Monte Carlavheren?(t) andn{(t) are the occupation numbers of site
method. In every Monte Carlo step we change the occupanf the original system and the copy @fonte Carlg time t.
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For D(t)=0 the two systems are identicaD(t)= 3 de- 06
scribes completely uncorrelated configurations, and for
D(t)=1 the two systems are totally anticorrelated. In the 05
course of the time evolution the two systems evolve towards o
a steady state, in whidd(t) fluctuates around an asymptotic § 0.4
average value g
T 03
£ i
. 1f”f E o2 Y
D= lim lim— dt’'D(t"). (7) £ A
root—ow T Jt g T=0.50 —
o1 12008 -
Depending on the values of the external parameters tem- 0

0 50 100 150 200 250 300

perature and disorder different regimes can be observed, in Monte-Carlo sweeps

principle, if the initial damageD (0) is small: The damage
may heal out during the time evolutid® =0), the systems
may stay partially correlated for infinite timé®& 3), or the

systems may become completely uncorrelated so Ehat

= 3. In contrast to the thermodynamics the detailed behav- IV. RESULTS
ior of D(t) depends on the choice of the dynamical algo-
rithm. Whereas Metropolis, Glauber, and heat-bath dynamics
give the same results for equilibrium quantities of a single In this subsection we present data on the time evolution of
system, the damage-spreading results differ. For the Methe damageD(t) starting with an initial damage consisting
tropolis dynamics which we us@s well as for the Glauber of a single site. In analogy to the well studied 2D Ising
dynamic$ the damage tends to heal at low temperatures anthodet>*"*8we find that for temperatures below a certain
tends to spread at high temperatulef contrast the heat- temperatureT, called the spreading temperature, the dam-
bath dynamics yields healing at high temperature and frozeageD(t) remains small and eventually heals, giving an as-
configurations at low temperaturtfs(Note that sinceD is  ymptotic value ofD =0. For temperatures larger thadyg the
not a thermodynamic quantity but measures the microscopi€@mage increases with time until a steady state is reached
differences between two systems, there is no reason to expethere D(t) fluctuates around a finite value. Consequently,
that different dynamical algorithms give the same results. the asymptotic damag is finite in this regime. In Fig. 2

We apply the damage-spreading technique to the ophe time evolution ofD(t) is shown for the Coulomb glass

Coulomb-glass model at half filling = ¢ and linear system with zero disordeiV,=0. The three curves presented corre-
9 2 y spond to the three regimes discussed in the last section. At

sizesL=20, ... ,80. The simulation proceeds as follows:t—q 5 the damage increases quickly and then fluctuates
(i) We create the initial system by _chogsmg rqndom pOtem'aéroundDzé . This means the two systems become com-
values according to the probability distributioN(¢) and  pletely uncorrelated very fast. Consequently we are above
occupy the sites at random wiktN electrons(ii) We equili-  the spreading temperatuf®. At T=0.1 the evolution of
brate this system at temperatufepy performing severalat  D(t) is much slower and the asymptotic damage is smaller
least 300 Monte Carlo sweeps according to the Metropolisthan 1. This behavior occurs because the system is in the
algorithm. (iii ) A copy of the system is created and modified vicinity of the spreading transition &t. It corresponds to
at a single sitéor several sites This difference in the occu- the critical slowing down in ordinary critical phenomena. At
pation numbers constitutes the initial dama@e) We study  T=0.06 the damage remains small and eventually heals, thus
the time evolution of the original and the copy using thethe system is below the spreading temperaflige In the
same random numbers in the Metropolis algorithm for bothcase of finite disordew, the time evolution of the damage is
systems. The damage(t) is recorded and its asymptotic similar (see Fig. 3. The asymptotic damagde is, however,
valueD is determined. different from 0 or3 even far away from the spreading tran-
Note that there is a modification of the damage-spreadingition. The dependence of the damage on the external param-
method that can be used to determawiilibrium quantities  eters temperature and disorder is investigated in more detail
instead of purely dynamic oné%?° In that kind of simula- in Sec. IV C.
tion the occupation number of a single site in one of the
systems is fixed whereas it is allowed to fluctuate in the other
system. Consequently, the two systems are thermodynami-
cally differentand the damage can be related to equiliborium The character of the interaction has a large influence on
correlation functions. Since in this paper we are interested ithe time evolution of the damage. In systems with nearest-
the properties of the dynamics rather than in equilibriumneighbor interactions, e.g., the Ising model, the damage can
quantities our data is gained by means of the originabnly spread within a single Monte Carlo step from one site of
damage-spreading method, where the occupation numbers tiife system to its neighbor. Therefore the clouds of damaged
both systems are allowed to fluctuate. sites can grow only slowly in space and tend to be more

FIG. 2. Time dependence of the Hamming distance of the 2D
Coulomb glass for different temperatures aNg=0.

A. Time evolution

B. Influence of the long-range interaction
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FIG. 3. Time dependence of the Hamming distance of the 2D FIG. 5. Overview of the temperature dependence of the Ham-
Coulomb glass for different temperatures ang=0.5. ming distance for various strength of disorder of a 2D system with
N= 20 sites.

compact(but not necessarily connecdedin contrast, in sys-
tems with long-range interactions the occupation number ofng temperature of approximateljs=0.1 between a low-
any site effectsll other sites. The damage can spread fromemperature regime witb =0 and a high-temperature re-
one site of the system to any other site within a single Mont ime with D=1. Within our numerical accuracy the
Carlo step. Therefore the damage spreads much faster as D eading temperaturd. coincides with the equilibrium
systems with short-range interaction and the damage clou > tical gint T pof the ?nodel without disorderqwhich we
are usually not compact. A comparison of the two cases i& P N i o

determined from the peak in the specific h&jf of the

presented in Fig. 4. lomb-dl del funci f 1 Fi
Note, that since the damage can spread from one site oulomb-giass model as a tunction ot temperatsee =1g.
. For very high temperatureB—« the spreading of the

any other site in the case of long-range interactions, some ) .
_ .damage is drastically slowed down due to the fact that the
the methods developed to analyze the damage spreadlp obability P in the Metropolis algorithm, Eq5), becomes

simulation$®>’ cannot be used for systems with long-range d dert of the actual corfiauration. of the ¢ )
interactions. This applies to all methods that measure th ependent ot the actual configuration Of the two systems
riginal and copy and reache$?=1. This means that in

spatial extension of the damage and its evolution, becau h N | h ¢ elect )
the spatial extent of the damage cloud is not a well define}0 systems nearly every exchange ol electrons Is per-
ormed and differences in the occupation numbers occur

quantity for systems with long-range interactions. only rarely. Our investigations of the spreading behavior for
very high temperatures show that the Hamming distdbce
C. Temperature and disorder dependence still reaches a plateau if plotted versus time as in Figs. 2 and
of the asymptotic damage 3, but the relaxation time diverges as is predicted in a recent
We now turn to the main results of this paper. Figure 5mean-field theory! The damage-spreading transition in the
shows an overview of the temperature and disorder depen-
dence of the asymptotic Hamming distarigde For disorder
strengthWy=0 there is a pronounced transition at a spread- 1 L A

eee. ! ‘s o8
<>~
Catat o b
4.9'0.0.034.080
Lo B P o < B> o.& +
R ol W o >
.0 < 4.0 4 0.
000000

()
I ol
.0 9.0 + 0.0 *

()

()
o
o

Specific Heat
o
~

02

FIG. 4. Snapshot of the damage for 2D systems with short-range
interactiong(left) and long-range interactiorfsght) for T=0.5 and 0 . . . . . .
W,=0.5 at a time of 5 Monte-Carlo sweeps after the introduction 0.2 0.4 0.6 08 1
of a single damaged site. A filled circle indicates a damaged site Temperature T
where the occupation numbers of the two systems differ, an empty
circle indicates that the occupation numbers of that site are identical FIG. 6. Specific heat of the 2D Coulomb glass/é=0 calcu-
in both systems. lated via the derivative of the internal energy of the system.
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FIG. 7. Hamming distance versus temperature for various FIG. 8. Hamming distance versus temperature for various sys-
strengths of disorder of a 2D system wih=2(? sites. tem sizes aiW,=0.

ing transition in the case of finite disorder is a purely dy-
namical phenomenon, since the system does not undergo an
equilibrium phase transition.

Coulomb-glass model without disorder occurs thus in com
plete analogy to that in the Ising mod&l.
For finite disorder strengthVy, however, this behavior

changes in several aspects. First, the values of the asymptotic In o.rder to Q¢term|ne more detfauled 'p.rope'rtles of th_e
Hamming distances in the high-temperature regime arépreadlng transition a careful analysis of finite-size effects is
) necessary. In Fig. 8 we show the dependence of the Ham-

smaller thanD= ;. This means the two systems remain ming gistanceD on the system size. As expected from the
partially correlated even for high temperatures. The reasognajogy with usual critical phenomena, the spreading transi-
for that is easy to understand: In the presence_of a r_andortribn becomes sharper with increasing system size. Figure 8
potential the electrons are trappeepulsed at sites with 550 shows that a system sizelo# 20 already gives reason-
small (high) potential valuesp; . These sites are identical in gpje results for the determination of the spreading tempera-

the original system and its copy. Therefore the presence of gyre of the Coulomb-glass model, provided the disorder
random potential tends to reduce the damage. With increagyrength is comparatively small.

ing strength of disorder this trapping effect becomes larger,
so that the maximum value of the damage is more and more
reduced. On the other hand, increasing temperature makes it
easier to overcome the potential differences so that the de- We have used the damage-spreading technique to exam-
scribed reduction of the damage becomes less effective. ine the low-temperature dynamics of disordered electronic
The second effect of the disorder concerns the behavior afystems with localized states based on the Coulomb-glass
D at low temperatures and close to the spreading point. Thimodel. We have found that the dynamics of the system
region is shown in more detail in Fig. 7. In the case of finitefreezes below a spreading temperatiize For zero disorder
disorder the asymptotic damage remains finite even at tenthis damage spreading transition coincides with the equilib-
peratures below the spreading temperature of the modelum phase transition within our accuracy. At finite disorder
without disorder. This somewhat counterintuitive result, viz.strength, when there is no equilibrium phase transition, the
an acceleration of the dynamics by disorder, can be undespreading poinfl, is shifted to lower temperatures. How-
stood by looking at the single-electron density of states okver, T, remains finite even for larger disorder strengths.
the Coulomb-glass modéee Fig. 1 ForW,=0 the single- Consequently, there is a low-temperature “phase” of the
electron density of states at low temperatures has a hard g&oulomb glass with frozen dynamics and a high-temperature
around the Fermi energy: =0 and two peaks at the Made- phase where the damage spreads through the system. In the
lung energiest ¢y, . Therefore there are only exponentially case of finite disordeWw, the spreading transition is a purely
few sites that can be excited at low temperatures and thus thdyynamical transition which does not possess an equilibrium
Hamming distance vanishes. In contrast, for finite disordecounterpart. A more detailed investigation of this transition
W,, the gap in the density of states is not exponential but thés in progress. It is, however, hampered by finite-size effects
power-law Coulomb gap4). Therefore more sites can be since the long-range interaction severely restricts the pos-
excited at low temperature and the dynamics does not freezble system sizes in our simulations. These limited system

V. CONCLUSIONS AND OUTLOOK

completely, i.e., the Hamming distance remains finite. sizes are also the reason why the spreading gaifior high
As can be seen in Fig. 7, even for finite disorder strengttvalues of disorder could not yet be determined exactly.
W, there is, however, a spreading temperaflig/\,), be- For small disorder strengths the spreading pdinis still

low which the asymptotic damage vanishs(W,) de- close to the(second-ordgrequilibrium phase transition tem-
creases with increasing/y, but seems to tend to a finite peraturerl, of the system without disorder. If both transitions
limiting value for largeW, which we approximately deter- coincide for zero disorder we expect the Hamming distance
mined toT4()~0.03. Note that the existence of a spread-D to obey the homogeneity relatidsince physical quanti-
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ties in the vicinity of a critical point can usually be describedtion of the phase space distance between two copies. How-
by scaling laws ever, such relations have not been found for damage
spreading in cooperative systems up to now.

One might also ask, how the results change if more so-
phisticated dynamical algorithms are used, which represent
. N the physical processes in disordered insulators better than the
with the critical exponentg and 8. However, the damage- simple Metropolis algorithm with single-particle exchange
spreading transition in models with Glauber or Metropoliswith a reservoir. The question is of particular importance,
dynamics does not generically coincide with the equilibriumsince the properties of damage spreading depend on the type
transition"#? Therefore the confirmation of this scaling law of dynamics used in the simulation more strongly than the
and the determination of the exponents remain a task for ththermodynamic quantities. We have begun to study the

D(WO,T)=tﬁf<%>, t=|T-T (8

future.

Coulomb-glass model with distance-dependent tunneling

In order to compare our results to experiments on glassprobabilities between the sites. Results of this numerically
behavior in disordered insulators a direct relation betweemmuch more involved investigation will be published else-
the Hamming distance and measurable quantities would b&here.
desirable. To this end a relation between the Hamming dis-

tance and characteristicgprobably more complexof a
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