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Monte Carlo simulations of the dynamical behavior of the Coulomb glass
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We study the dynamical behavior of disordered many-particle systems with long-range Coulomb interac-
tions by means of damage-spreading simulations. In this type of Monte Carlo simulation one investigates the
time evolution of the damage, i.e., the difference of the occupation numbers of two systems, subjected to the
same thermal noise. We analyze the dependence of the damage on temperature and disorder strength. For zero
disorder the spreading transition coincides with the equilibrium phase transition, whereas for finite disorder we
find evidence for a dynamical phase transition well below the transition temperature of the pure system.
@S0163-1829~97!05810-4#

I. INTRODUCTION

The combined influence of disorder and long-range inter-
actions on the properties of many-particle systems has been a
subject of great interest for some time. In electronic systems
already disorder or interactions alone can drastically change
the physical behavior. Disorder can lead, e.g., to a metal-
insulator transition due to Anderson localization. On the
other hand, a metal-insulator transition can also be induced
by correlations due to electron-electron interactions. If disor-
der and interactions are both significant then complex physi-
cal problems and phenomena arise, many of which are not
completely understood.

The behavior of strongly localized correlated electrons in
disordered insulators is especially complicated, both experi-
mentally and theoretically. Thus progress has been slow
since the first investigations.1,2 Many properties of such sys-
tems are still poorly understood. In particular there are only
few and contradicting results on thermodynamics, phase dia-
gram, phase transitions or critical behavior, and the exami-
nation of the dynamical behavior is only at its beginning.3

Two of the central questions are whether or not the disor-
dered interacting electron system shows glassy behavior and
what is the nature of the glassy ‘‘state.’’ Two different views
can be found in the literature. In the earlier work the formal
similarity between disordered localized electrons and spin
glasses had lead to speculations about a possible equilibrium
phase transition to a spin-glass-like low-temperature
phase.4,5 More recent investigations show, however, growing
experimental and theoretical evidence of the transition being
of dynamical nature.6–9

In this paper we study the dynamical behavior of disor-
dered localized electrons by means of the damage-spreading
method. In this type of Monte Carlo simulation the micro-
scopic differences of the time evolution between two sys-
tems are investigated. In particular, we address the question

of a dynamical phase transition from a dynamically active
high-temperature phase to a frozen low-temperature phase
upon changing characteristic parameters like disorder or tem-
perature. Our paper is organized as follows. In Sec. II we
introduce the Coulomb-glass model, the prototype model of
disordered localized electrons. In Sec. III we describe the
damage-spreading technique, whereas in Sec. IV we present
the results for the dynamical behavior of the model. Section
V is dedicated to some discussions and conclusions.

II. MODEL

Our investigation is based on the Coulomb-glass model
proposed by Efros and Shklovskii2 to describe compensated
doped semiconductors. Later it was also applied to simulate
granular metals10 and conducting polymers.11,12 The model
consists of a square or cubic lattice of linear sizeL with
N5Ld sites ~in d dimensions! and lattice constanta. The
sites can be occupied byKN ~0,K,1! electrons. These
electrons are interacting via an unscreened Coulomb poten-
tial. To guarantee charge neutrality every site carries a com-
pensating charge of1Ke ~2e is the charge of the electron!.
The disorder of this system is described by the random po-
tentialw i .The Hamiltonian of the Coulomb glass is given by

H5(
i

~w i2m!ni1
1

2(iÞ j
~ni2K !~nj2K !Ui j , Ui j5

e2

r i j
,

~1!

wherem is the chemical potential,ni ~with values 0 or 1! is
the occupation number of sitei and r i j denotes the distance
between sitesi and j . In the rest of the paper we set the
interaction strength between nearest-neighbor sitese2/a51
which fixes the energy scale. The random potential energies
w i are independent from each other and are chosen according
to some probability distributionW(w). We use the box dis-
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tribution with mean 0 and widthW0 . The parameterW0
measures the strength of the disorder. Specifically, we inves-
tigate a half-filled system~K5 1

2!. Then the Coulomb glass
model is particle-hole symmetric and the chemical potential
vanishes.~Note that the two quantitiesK andm are not in-
dependent of each other. We treatK as a free parameter and
calculatem from it.!

For later reference we briefly mention some properties of
the Coulomb-glass model. One of the central quantities is the
single-electron density of states

g~«,T!5
1

N(
i

^d~«2« i !& ~2!

at energy« and temperatureT, where^ . . . & denotes thermal
and disorder averages.« i are the single-electron energies
given by

« i5w i2m1(
jÞ i

Ui j ~nj2K !. ~3!

The single-electron density of states of the Coulomb glass
shows a pronounced gap, called the Coulomb gap, close to
the Fermi energy«F ~see Fig. 1!. At zero temperature the
density of states actually vanishes at the Fermi energy,2 close
to the Fermi energy it can be described by a power law

g~«!}u«2«Fua, ~4!

wherea is approximately 1.2 for two-dimensional~2D! and
2.5 for 3D systems.13 At finite temperature the Coulomb gap
is filled gradually~for recent simulation results see, e.g., Ref.
14!.

The Coulomb-glass model~1! describes a system without
internal dynamics. In reality the electrons, though localized,
are coupled to additional~vibrational! degrees of freedom,
which lead to transitions between the many-electron states.
Phenomenologically this can be simulated by a Monte Carlo
method. In every Monte Carlo step we change the occupa-

tion numbers of one or several sites with a certain probabil-
ity. Within the Metropolis algorithm this probability is given
by

P5H 1, DH,0

expF2
DH

kBT
G , DH.0,

~5!

where DH is the energy difference between the many-
particle states before and after such a change, andkB is the
Boltzmann constant.N such Monte Carlo steps are called a
Monte Carlo sweep which is the natural time scale of our
calculations.

To simulate the dynamics one can use different ‘‘move
classes,’’ which determine how the occupation numbers are
changed in every Monte Carlo step to get the new configu-
ration. The simplest move class consists of exchanging a
single electron with a reservoir~i.e., the conduction band in
the case of doped semiconductors!, other classes include
hopping of single electrons between the sites, or correlated
hopping of several electrons. In this paper we present results
obtained by using only single-electron exchanges between
the system and a reservoir, but we have also checked more
complicated move classes. As long as we do not include
distance-dependent ‘‘tunneling terms’’ into the transition
probabilities~5!, applying different move classes yields data
which do not show a qualitatively different behavior. We
attribute this result to the fact that single- and multiple-
electron hops can be combined from the moves in our imple-
mentation of single-electron exchanges with an external res-
ervoir. Thus all many-electron states withKN electrons are
available in our simulation. A more detailed investigation of
this question including the effects of distance-dependent
transition probabilities on the damage-spreading simulations
is in progress.

III. DAMAGE SPREADING

The damage-spreading technique15 is a modification of
the usual Monte Carlo method. The idea is to look not at the
time evolution of a single system but to compare the time
evolutions oftwo systems which are subjected to the same
thermal noise~i.e., the same random numbers are used
within the Metropolis algorithm!. Usually, at the beginning
of the simulation the occupation numbers of both systems
differ only at a single site~or at a few sites, e.g., a single
column in a 2D lattice system!.

Since both systems are thermodynamically identical, av-
erages of equilibrium quantities will be the same for both
systems. Microscopically, however, the two systems may
evolve differently from each other. The central observable in
damage-spreading simulations is the Hamming distance
D(t), which is the portion of sites for which the occupation
numbers differ between the two systems.D(t), which mea-
sures the ‘‘damage,’’ is given by

D~ t !5
1

N(
i

uni
o~ t !2ni

c~ t !u, ~6!

whereni
o(t) andni

c(t) are the occupation numbers of sitei
of the original system and the copy at~Monte Carlo! time t.

FIG. 1. Single-electron density of states of the Coulomb glass at
T50.008 for different strengths of disorder.«M indicates the Made-
lung energy,«F the Fermi energy.
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For D(t)50 the two systems are identical,D(t)5 1
2 de-

scribes completely uncorrelated configurations, and for
D(t)51 the two systems are totally anticorrelated. In the
course of the time evolution the two systems evolve towards
a steady state, in whichD(t) fluctuates around an asymptotic
average value

D5 lim
t→`

lim
t→`

1

tEt
t1t

dt8D~ t8!. ~7!

Depending on the values of the external parameters tem-
perature and disorder different regimes can be observed, in
principle, if the initial damageD~0! is small: The damage
may heal out during the time evolution~D50!, the systems
may stay partially correlated for infinite time (D, 1

2 ), or the
systems may become completely uncorrelated so thatD

5 1
2 . In contrast to the thermodynamics the detailed behav-

ior of D(t) depends on the choice of the dynamical algo-
rithm. Whereas Metropolis, Glauber, and heat-bath dynamics
give the same results for equilibrium quantities of a single
system, the damage-spreading results differ. For the Me-
tropolis dynamics which we use~as well as for the Glauber
dynamics! the damage tends to heal at low temperatures and
tends to spread at high temperatures.15 In contrast the heat-
bath dynamics yields healing at high temperature and frozen
configurations at low temperatures.16 ~Note that sinceD is
not a thermodynamic quantity but measures the microscopic
differences between two systems, there is no reason to expect
that different dynamical algorithms give the same results.!

We apply the damage-spreading technique to the 2D

Coulomb-glass model at half fillingK5 1
2 and linear system

sizesL520, . . . ,80. The simulation proceeds as follows:
~i! We create the initial system by choosing random potential
values according to the probability distributionW(w) and
occupy the sites at random withKN electrons.~ii ! We equili-
brate this system at temperatureT by performing several~at
least 300! Monte Carlo sweeps according to the Metropolis
algorithm.~iii ! A copy of the system is created and modified
at a single site~or several sites!. This difference in the occu-
pation numbers constitutes the initial damage.~iv! We study
the time evolution of the original and the copy using the
same random numbers in the Metropolis algorithm for both
systems. The damageD(t) is recorded and its asymptotic
valueD is determined.

Note that there is a modification of the damage-spreading
method that can be used to determineequilibriumquantities
instead of purely dynamic ones.19,20 In that kind of simula-
tion the occupation number of a single site in one of the
systems is fixed whereas it is allowed to fluctuate in the other
system. Consequently, the two systems are thermodynami-
cally differentand the damage can be related to equilibrium
correlation functions. Since in this paper we are interested in
the properties of the dynamics rather than in equilibrium
quantities our data is gained by means of the original
damage-spreading method, where the occupation numbers of
both systems are allowed to fluctuate.

IV. RESULTS

A. Time evolution

In this subsection we present data on the time evolution of
the damageD(t) starting with an initial damage consisting
of a single site. In analogy to the well studied 2D Ising
model15,17,18we find that for temperatures below a certain
temperatureTs , called the spreading temperature, the dam-
ageD(t) remains small and eventually heals, giving an as-
ymptotic value ofD50. For temperatures larger thanTs the
damage increases with time until a steady state is reached
whereD(t) fluctuates around a finite value. Consequently,
the asymptotic damageD is finite in this regime. In Fig. 2
the time evolution ofD(t) is shown for the Coulomb glass
with zero disorderW050. The three curves presented corre-
spond to the three regimes discussed in the last section. At
T50.5 the damage increases quickly and then fluctuates
aroundD5 1

2 . This means the two systems become com-
pletely uncorrelated very fast. Consequently we are above
the spreading temperatureTs . At T50.1 the evolution of
D(t) is much slower and the asymptotic damage is smaller
than 1

2. This behavior occurs because the system is in the
vicinity of the spreading transition atTs . It corresponds to
the critical slowing down in ordinary critical phenomena. At
T50.06 the damage remains small and eventually heals, thus
the system is below the spreading temperatureTs . In the
case of finite disorderW0 the time evolution of the damage is
similar ~see Fig. 3!. The asymptotic damageD is, however,
different from 0 or12 even far away from the spreading tran-
sition. The dependence of the damage on the external param-
eters temperature and disorder is investigated in more detail
in Sec. IV C.

B. Influence of the long-range interaction

The character of the interaction has a large influence on
the time evolution of the damage. In systems with nearest-
neighbor interactions, e.g., the Ising model, the damage can
only spread within a single Monte Carlo step from one site of
the system to its neighbor. Therefore the clouds of damaged
sites can grow only slowly in space and tend to be more

FIG. 2. Time dependence of the Hamming distance of the 2D
Coulomb glass for different temperatures andW050.
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compact~but not necessarily connected!. In contrast, in sys-
tems with long-range interactions the occupation number of
any site effectsall other sites. The damage can spread from
one site of the system to any other site within a single Monte
Carlo step. Therefore the damage spreads much faster as in
systems with short-range interaction and the damage clouds
are usually not compact. A comparison of the two cases is
presented in Fig. 4.

Note, that since the damage can spread from one site to
any other site in the case of long-range interactions, some of
the methods developed to analyze the damage-spreading
simulations15,17 cannot be used for systems with long-range
interactions. This applies to all methods that measure the
spatial extension of the damage and its evolution, because
the spatial extent of the damage cloud is not a well defined
quantity for systems with long-range interactions.

C. Temperature and disorder dependence
of the asymptotic damage

We now turn to the main results of this paper. Figure 5
shows an overview of the temperature and disorder depen-
dence of the asymptotic Hamming distanceD. For disorder
strengthW050 there is a pronounced transition at a spread-

ing temperature of approximatelyTs50.1 between a low-
temperature regime withD50 and a high-temperature re-

gime with D5 1
2 . Within our numerical accuracy the

spreading temperatureTs coincides with the equilibrium
critical point Tc of the model without disorder which we
determined from the peak in the specific heatCv of the
Coulomb-glass model as a function of temperature~see Fig.
6!. For very high temperaturesT→` the spreading of the
damage is drastically slowed down due to the fact that the
probabilityP in the Metropolis algorithm, Eq.~5!, becomes
independent of the actual configuration of the two systems
~original and copy! and reachesP51. This means that in
both systems nearly every exchange of electrons is per-
formed and differences in the occupation numbers occur
only rarely. Our investigations of the spreading behavior for
very high temperatures show that the Hamming distanceD
still reaches a plateau if plotted versus time as in Figs. 2 and
3, but the relaxation time diverges as is predicted in a recent
mean-field theory.21 The damage-spreading transition in the

FIG. 3. Time dependence of the Hamming distance of the 2D
Coulomb glass for different temperatures andW050.5.

FIG. 4. Snapshot of the damage for 2D systems with short-range
interactions~left! and long-range interactions~right! for T50.5 and
W050.5 at a time of 5 Monte-Carlo sweeps after the introduction
of a single damaged site. A filled circle indicates a damaged site
where the occupation numbers of the two systems differ, an empty
circle indicates that the occupation numbers of that site are identical
in both systems.

FIG. 5. Overview of the temperature dependence of the Ham-
ming distance for various strength of disorder of a 2D system with
N5202 sites.

FIG. 6. Specific heat of the 2D Coulomb glass atW050 calcu-
lated via the derivative of the internal energy of the system.
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Coulomb-glass model without disorder occurs thus in com-
plete analogy to that in the Ising model.15

For finite disorder strengthW0 , however, this behavior
changes in several aspects. First, the values of the asymptotic
Hamming distances in the high-temperature regime are

smaller thanD5 1
2 . This means the two systems remain

partially correlated even for high temperatures. The reason
for that is easy to understand: In the presence of a random
potential the electrons are trapped~repulsed! at sites with
small ~high! potential valuesw i . These sites are identical in
the original system and its copy. Therefore the presence of a
random potential tends to reduce the damage. With increas-
ing strength of disorder this trapping effect becomes larger,
so that the maximum value of the damage is more and more
reduced. On the other hand, increasing temperature makes it
easier to overcome the potential differences so that the de-
scribed reduction of the damage becomes less effective.

The second effect of the disorder concerns the behavior of
D at low temperatures and close to the spreading point. This
region is shown in more detail in Fig. 7. In the case of finite
disorder the asymptotic damage remains finite even at tem-
peratures below the spreading temperature of the model
without disorder. This somewhat counterintuitive result, viz.
an acceleration of the dynamics by disorder, can be under-
stood by looking at the single-electron density of states of
the Coulomb-glass model~see Fig. 1!. ForW050 the single-
electron density of states at low temperatures has a hard gap
around the Fermi energy«F 50 and two peaks at the Made-
lung energies6«M . Therefore there are only exponentially
few sites that can be excited at low temperatures and thus the
Hamming distance vanishes. In contrast, for finite disorder
W0 , the gap in the density of states is not exponential but the
power-law Coulomb gap~4!. Therefore more sites can be
excited at low temperature and the dynamics does not freeze
completely, i.e., the Hamming distance remains finite.

As can be seen in Fig. 7, even for finite disorder strength
W0 there is, however, a spreading temperatureTs(W0), be-
low which the asymptotic damage vanishes.Ts(W0) de-
creases with increasingW0 , but seems to tend to a finite
limiting value for largeW0 which we approximately deter-
mined toTs(`)'0.03. Note that the existence of a spread-

ing transition in the case of finite disorder is a purely dy-
namical phenomenon, since the system does not undergo an
equilibrium phase transition.

In order to determine more detailed properties of the
spreading transition a careful analysis of finite-size effects is
necessary. In Fig. 8 we show the dependence of the Ham-
ming distanceD on the system size. As expected from the
analogy with usual critical phenomena, the spreading transi-
tion becomes sharper with increasing system size. Figure 8
also shows that a system size ofL520 already gives reason-
able results for the determination of the spreading tempera-
ture of the Coulomb-glass model, provided the disorder
strength is comparatively small.

V. CONCLUSIONS AND OUTLOOK

We have used the damage-spreading technique to exam-
ine the low-temperature dynamics of disordered electronic
systems with localized states based on the Coulomb-glass
model. We have found that the dynamics of the system
freezes below a spreading temperatureTs . For zero disorder
this damage spreading transition coincides with the equilib-
rium phase transition within our accuracy. At finite disorder
strength, when there is no equilibrium phase transition, the
spreading pointTs is shifted to lower temperatures. How-
ever, Ts remains finite even for larger disorder strengths.
Consequently, there is a low-temperature ‘‘phase’’ of the
Coulomb glass with frozen dynamics and a high-temperature
phase where the damage spreads through the system. In the
case of finite disorderW0 the spreading transition is a purely
dynamical transition which does not possess an equilibrium
counterpart. A more detailed investigation of this transition
is in progress. It is, however, hampered by finite-size effects
since the long-range interaction severely restricts the pos-
sible system sizes in our simulations. These limited system
sizes are also the reason why the spreading pointTs for high
values of disorder could not yet be determined exactly.

For small disorder strengths the spreading pointTs is still
close to the~second-order! equilibrium phase transition tem-
peratureTc of the system without disorder. If both transitions
coincide for zero disorder we expect the Hamming distance
D to obey the homogeneity relation~since physical quanti-

FIG. 7. Hamming distance versus temperature for various
strengths of disorder of a 2D system withN5202 sites.

FIG. 8. Hamming distance versus temperature for various sys-
tem sizes atW050.
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ties in the vicinity of a critical point can usually be described
by scaling laws!

D~W0 ,T!5tb f SW0

tw D , t5uT2Tcu ~8!

with the critical exponentsw andb. However, the damage-
spreading transition in models with Glauber or Metropolis
dynamics does not generically coincide with the equilibrium
transition.21,22Therefore the confirmation of this scaling law
and the determination of the exponents remain a task for the
future.

In order to compare our results to experiments on glassy
behavior in disordered insulators a direct relation between
the Hamming distance and measurable quantities would be
desirable. To this end a relation between the Hamming dis-
tance and characteristics~probably more complex! of a
single system should be found. Similar relations are known
in the theory of chaos where characteristics of chaotic behav-
ior show up in a single system as well as in the time evolu-

tion of the phase space distance between two copies. How-
ever, such relations have not been found for damage
spreading in cooperative systems up to now.

One might also ask, how the results change if more so-
phisticated dynamical algorithms are used, which represent
the physical processes in disordered insulators better than the
simple Metropolis algorithm with single-particle exchange
with a reservoir. The question is of particular importance,
since the properties of damage spreading depend on the type
of dynamics used in the simulation more strongly than the
thermodynamic quantities. We have begun to study the
Coulomb-glass model with distance-dependent tunneling
probabilities between the sites. Results of this numerically
much more involved investigation will be published else-
where.
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