5 research outputs found
A new 3d finite element-based approach for computing cell surface tractions assuming nonlinear conditions
Advances in methods for determining the forces exerted by cells while they migrate are essential for attempting to understand important pathological processes, such as cancer or angiogenesis, among others. Precise data from three-dimensional conditions are both difficult to obtain and manipulate. For this purpose, it is critical to develop workflows in which the experiments are closely linked to the subsequent computational postprocessing. The work presented here starts from a traction force microscopy (TFM) experiment carried out on microfluidic chips, and this experiment is automatically joined to an inverse problem solver that allows us to extract the traction forces exerted by the cell from the displacements of fluorescent beads embedded in the extracellular matrix (ECM). Therefore, both the reconstruction of the cell geometry and the recovery of the ECM displacements are used to generate the inputs for the resolution of the inverse problem. The inverse problem is solved iteratively by using the finite element method under the hypothesis of finite deformations and nonlinear material formulation. Finally, after mathematical postprocessing is performed, the traction forces on the surface of the cell in the undeformed configuration are obtained. Therefore, in this work, we demonstrate the robustness of our computational-based methodology by testing it under different conditions in an extreme theoretical load problem and then by applying it to a real case based on experimental results. In summary, we have developed a new procedure that adds value to existing methodologies for solving inverse problems in 3D, mainly by allowing for large deformations and not being restricted to any particular material formulation. In addition, it automatically bridges the gap between experimental images and mechanical computations
Image-based Characterization of 3D Collagen Networks and the Effect of Embedded Cells
Collagen microstructure is closely related to the mechanical properties of tissues and affects cell migration through the extracellular matrix. To study these structures, three-dimensional (3D) in vitro collagen-based gels are often used, attempting to mimic the natural environment of cells. Some key parameters of the microstructure of these gels are fiber orientation, fiber length, or pore size, which define the mechanical properties of the network and therefore condition cell behavior. In the present study, an automated tool to reconstruct 3D collagen networks is used to extract the aforementioned parameters of gels of different collagen concentration and determine how their microstructure is affected by the presence of cells. Two different experiments are presented to test the functionality of the method: first, collagen gels are embedded within a microfluidic device and collagen fibers are imaged by using confocal fluorescence microscopy; second, collagen gels are directly polymerized in a cell culture dish and collagen fibers are imaged by confocal reflection microscopy. Finally, we investigate and compare the collagen microstructure far from and in the vicinities of MDA-MB 23 cells, finding that cell activity during migration was able to strongly modify the orientation of the collagen fibers and the porosity-related values.status: publishe
Matrix architecture plays a pivotal role in 3D osteoblast migration: The effect of interstitial fluid flow
Osteoblast migration is a crucial process in bone regeneration, which is strongly regulated by interstitial fluid flow. However, the exact role that such flow exerts on osteoblast migration is still unclear. To deepen the understanding of this phenomenon, we cultured human osteoblasts on 3D microfluidic devices under different fluid flow regimes. Our results show that a slow fluid flow rate by itself is not able to alter the 3D migratory patterns of osteoblasts in collagen-based gels but that at higher fluid flow rates (increased flow velocity) may indirectly influence cell movement by altering the collagen microstructure. In fact, we observed that high fluid flow rates (1 µl/min) are able to alter the collagen matrix architecture and to indirectly modulate the migration pattern. However, when these collagen scaffolds were crosslinked with a chemical crosslinker, specifically, transglutaminase II, we did not find significant alterations in the scaffold architecture or in osteoblast movement. Therefore, our data suggest that high interstitial fluid flow rates can regulate osteoblast migration by means of modifying the orientation of collagen fibers. Together, these results highlight the crucial role of the matrix architecture in 3D osteoblast migration. In addition, we show that interstitial fluid flow in conjunction with the matrix architecture regulates the osteoblast morphology in 3D.status: publishe