309 research outputs found

    Accurate mass and velocity functions of dark matter halos

    Full text link
    NN-body cosmological simulations are an essential tool to understand the observed distribution of galaxies. We use the MultiDark simulation suite, run with the Planck cosmological parameters, to revisit the mass and velocity functions. At redshift z=0z=0, the simulations cover four orders of magnitude in halo mass from 1011M\sim10^{11}M_\odot with 8,783,874 distinct halos and 532,533 subhalos. The total volume used is \sim515 Gpc3^3, more than 8 times larger than in previous studies. We measure and model the halo mass function, its covariance matrix w.r.t halo mass and the large scale halo bias. With the formalism of the excursion-set mass function, we explicit the tight interconnection between the covariance matrix, bias and halo mass function. We obtain a very accurate (<2%<2\% level) model of the distinct halo mass function. We also model the subhalo mass function and its relation to the distinct halo mass function. The set of models obtained provides a complete and precise framework for the description of halos in the concordance Planck cosmology. Finally, we provide precise analytical fits of the VmaxV_{max} maximum velocity function up to redshift z<2.3z<2.3 to push for the development of halo occupation distribution using VmaxV_{max}. The data and the analysis code are made publicly available in the \textit{Skies and Universes} database.Comment: Corresponding data is available at the Skies and Universes data base: http://projects.ift.uam-csic.es/skies-universe

    Measuring galaxy [OII] emission line doublet with future ground-based wide-field spectroscopic surveys

    Get PDF
    The next generation of wide-field spectroscopic redshift surveys will map the large-scale galaxy distribution in the redshift range 0.7< z<2 to measure baryonic acoustic oscillations (BAO). The primary optical signature used in this redshift range comes from the [OII] emission line doublet, which provides a unique redshift identification that can minimize confusion with other single emission lines. To derive the required spectrograph resolution for these redshift surveys, we simulate observations of the [OII] (3727,3729) doublet for various instrument resolutions, and line velocities. We foresee two strategies about the choice of the resolution for future spectrographs for BAO surveys. For bright [OII] emitter surveys ([OII] flux ~30.10^{-17} erg /cm2/s like SDSS-IV/eBOSS), a resolution of R~3300 allows the separation of 90 percent of the doublets. The impact of the sky lines on the completeness in redshift is less than 6 percent. For faint [OII] emitter surveys ([OII] flux ~10.10^{-17} erg /cm2/s like DESi), the detection improves continuously with resolution, so we recommend the highest possible resolution, the limit being given by the number of pixels (4k by 4k) on the detector and the number of spectroscopic channels (2 or 3).Comment: 5 pages, 1 figur

    Probing AGN Inner Structure with X-ray Obscured Type 1 AGN

    Get PDF
    Using the X-ray-selected active galactic nuclei (AGN) from the XMM-XXL north survey and the SDSS Baryon Oscillation Spectroscopic Survey (BOSS) spectroscopic follow-up of them, we compare the properties of X-ray unobscured and obscured broad-line AGN (BLAGN1 and BLAGN2; NHN_\textrm{H}below and above 1021.510^{21.5} cm2^{-2}), including their X-ray luminosity LXL_X, black hole mass, Eddington ratio λEdd\lambda_{\textrm{Edd}}, optical continuum and line features. We find that BLAGN2 have systematically larger broad line widths and hence apparently higher (lower) MBHM_{\textrm{BH}} (λEdd\lambda_{\textrm{Edd}}) than BLAGN1. We also find that the X-ray obscuration in BLAGN tends to coincide with optical dust extinction, which is optically thinner than that in narrow-line AGN (NLAGN) and likely partial-covering to the broad line region. All the results can be explained in the framework of a multi-component, clumpy torus model by interpreting BLAGN2 as an intermediate type between BLAGN1 and NLAGN in terms of an intermediate inclination angle.Comment: 21 pages, 12 figures, published in MNRA

    The Mass-Concentration Relation and the Stellar-to-Halo Mass Ratio in the CFHT Stripe 82 Survey

    Full text link
    We present a new measurement of the mass-concentration relation and the stellar-to-halo mass ratio over the halo mass range 5×10125\times 10^{12} to 2×1014M2\times 10^{14}M_{\odot}. To achieve this, we use weak lensing measurements from the CFHT Stripe 82 Survey (CS82), combined with the central galaxies from the redMaPPer cluster catalogue and the LOWZ/CMASS galaxy sample of the Sloan Digital Sky Survey-III Baryon Oscillation Spectroscopic Survey Tenth Data Release. The stacked lensing signals around these samples are modelled as a sum of contributions from the central galaxy, its dark matter halo, and the neighboring halos, as well as a term for possible centering errors. We measure the mass-concentration relation: c200c(M)=A(M200cM0)Bc_{200c}(M)=A(\frac{M_{200c}}{M_0})^{B} with A=5.24±1.24,B=0.13±0.10A=5.24\pm1.24, B=-0.13\pm0.10 for 0.2<z<0.40.2<z<0.4 and A=6.61±0.75,B=0.15±0.05A=6.61\pm0.75, B=-0.15\pm0.05 for 0.4<z<0.60.4<z<0.6. These amplitudes and slopes are completely consistent with predictions from recent simulations. We also measure the stellar-to-halo mass ratio for our samples, and find results consistent with previous measurements from lensing and other techniques.Comment: 10 pages, 3 figures, 3 table

    Constraint on the time variation of the fine-structure constant with the SDSS-III/BOSS DR12 quasar sample

    Full text link
    From the Sloan Digital Sky Survey (SDSS) Data Release 12, which covers the full Baryonic Oscillation Spectroscopic Survey (BOSS) footprint, we investigate the possible variation of the fine-structure constant over cosmological time-scales. We analyse the largest quasar sample considered so far in the literature, which contains 13175 spectra (10363 from SDSS-III/BOSS DR12 + 2812 from SDSS-II DR7) with redshift z<z<\,1. We apply the emission-line method on the [O III] doublet (4960, 5008 A) and obtain Δα/α=(0.9±1.8)×105\Delta\alpha/\alpha= \left(0.9 \pm 1.8\right)\times10^{-5} for the relative variation of the fine-structure constant. We also investigate the possible sources of systematics: misidentification of the lines, sky OH lines, Hβ\,\beta and broad line contamination, Gaussian and Voigt fitting profiles, optimal wavelength range for the Gaussian fits, chosen polynomial order for the continuum spectrum, signal-to-noise ratio and good quality of the fits. The uncertainty of the measurement is dominated by the sky subtraction. The results presented in this work, being systematics limited, have sufficient statistics to constrain robustly the variation of the fine-structure constant in redshift bins (Δz\Delta z\approx 0.06) over the last 7.9 Gyr. In addition, we study the [Ne III] doublet (3870, 3969 A) present in 462 quasar spectra and discuss the systematic effects on using these emission lines to constrain the fine-structure constant variation. Better constraints on Δα/α \Delta\alpha/\alpha\ (<<106^{-6}) using the emission-line method would be possible with high-resolution spectroscopy and large galaxy/qso surveys.Comment: 16 pages, 16 figures. Version published in MNRAS. Analysis enlarged, public catalogue now availabl

    Stochastic bias of colour-selected BAO tracers by joint clustering-weak lensing analysis

    Full text link
    The baryon acoustic oscillation (BAO) feature in the two-point correlation function of galaxies supplies a standard ruler to probe the expansion history of the Universe. We study here several galaxy selection schemes, aiming at building an emission-line galaxy (ELG) sample in the redshift range 0.6<z<1.70.6<z<1.7, that would be suitable for future BAO studies, providing a highly biased galaxy sample. We analyse the angular galaxy clustering of galaxy selections at the redshifts 0.5, 0.7, 0.8, 1 and 1.2 and we combine this analysis with a halo occupation distribution (HOD) model to derive the properties of the haloes these galaxies inhabit, in particular the galaxy bias on large scales. We also perform a weak lensing analysis (aperture statistics) to extract the galaxy bias and the cross-correlation coefficient and compare to the HOD prediction. We apply this analysis on a data set composed of the photometry of the deep co-addition on Sloan Digital Sky Survey (SDSS) Stripe 82 (225 deg2^2), of Canda-France-Hawai Telescope/Stripe 82 deep \emph{i}-band weak lensing survey and of the {\it Wide-Field Infrared Survey Explorer}infrared photometric band W1. The analysis on the SDSS-III/constant mass galaxies selection at z=0.5z=0.5 is in agreement with previous studies on the tracer, moreover we measure its cross-correlation coefficient r=1.16±0.35r=1.16\pm0.35. For the higher redshift bins, we confirm the trends that the brightest galaxy populations selected are strongly biased (b>1.5b>1.5), but we are limited by current data sets depth to derive precise values of the galaxy bias. A survey using such tracers of the mass field will guarantee a high significance detection of the BAO.Comment: 17 pages, 15 figures, submitted to MNRA

    The High-Mass End of the Red Sequence at z~0.55 from SDSS-III/BOSS: completeness, bimodality and luminosity function

    Get PDF
    We have developed an analytical method based on forward-modeling techniques to characterize the high-mass end of the red sequence (RS) galaxy population at redshift z0.55z\sim0.55, from the DR10 BOSS CMASS spectroscopic sample, which comprises 600,000\sim600,000 galaxies. The method, which follows an unbinned maximum likelihood approach, allows the deconvolution of the intrinsic CMASS colour-colour-magnitude distributions from photometric errors and selection effects. This procedure requires modeling the covariance matrix for the i-band magnitude, g-r colour and r-i colour using Stripe 82 multi-epoch data. Our results indicate that the error-deconvolved intrinsic RS distribution is consistent, within the photometric uncertainties, with a single point (<0.05 mag<0.05~{\rm{mag}}) in the colour-colour plane at fixed magnitude, for a narrow redshift slice. We have computed the high-mass end (0.55Mi22^{0.55}M_i \lesssim -22) of the 0.55i^{0.55}i-band RS Luminosity Function (RS LF) in several redshift slices within the redshift range 0.52<z<0.630.52<z<0.63. In this narrow redshift range, the evolution of the RS LF is consistent, within the uncertainties in the modeling, with a passively-evolving model with Φ=(7.248±0.204)×104\Phi_* = (7.248 \pm 0.204) \times10^{-4} Mpc3^{-3} mag1^{-1}, fading at a rate of 1.5±0.41.5\pm0.4 mag per unit redshift. We report RS completeness as a function of magnitude and redshift in the CMASS sample, which will facilitate a variety of galaxy-evolution and clustering studies using BOSS. Our forward-modeling method lays the foundations for future studies using other dark-energy surveys like eBOSS or DESI, which are affected by the same type of photometric blurring/selection effects.Comment: 27 pages, 20 figures, accepted for publication in MNRA
    corecore