of the
ROYAL ASTRONOMICAL SOCIETY S

MNRAS 461, 1131-1153 (2016) doi:10.1093/mnras/stw1352
Advance Access publication 2016 June 9

The high-mass end of the red sequence at z ~ 0.55 from SDSS-III/BOSS:
completeness, bimodality and luminosity function

Antonio D. Montero-Dorta,'* Adam S. Bolton,"? Joel R. Brownstein,'

Molly Swanson,* Kyle Dawson,' Francisco Prada,*>-° Daniel Eisenstein,’
Claudia Maraston,” Daniel Thomas,” Johan Comparat,>® Chia-Hsun Chuang,>-°
Cameron K. McBride,® Ginevra Favole,’-° Hong Guo,® Sergio Rodriguez-Torres
and Donald P. Schneider”-'°

' Department of Physics and Astronomy, The University of Utah, 115 South 1400 East, Salt Lake City, UT 84112, USA
2National Optical Astronomy Observatory, 950 N Cherry Ave, Tucson, AZ 85719, USA

3 Harvard—Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA

4Instituto de Astrofisica de Andalucia (CSIC), E-18008 Granada, Spain

5Campux of International Excellence UAM+CSIC, Cantoblanco, E-28049 Madrid, Spain

O Instituto de Fisica Tedrica, (UAM/CSIC), Universidad Autonoma de Madrid, Cantoblanco, E-28049 Madrid, Spain

7 Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth PO1 3FX, UK
8Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Shanghai 200030, China
° Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802, USA

10 1ustitute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA 16802, USA

5,6

Accepted 2016 June 2. Received 2016 June 2; in original form 2014 October 20

ABSTRACT

We have developed an analytical method based on forward-modelling techniques to charac-
terize the high-mass end of the red sequence (RS) galaxy population at redshift z ~ 0.55, from
the DR10 BOSS (Baryon Oscillation Spectroscopic Survey) CMASS spectroscopic sample,
which comprises ~600 000 galaxies. The method, which follows an unbinned maximum like-
lihood approach, allows the deconvolution of the intrinsic CMASS colour—colour-magnitude
distributions from photometric errors and selection effects. This procedure requires modelling
the covariance matrix for the i-band magnitude, g — r colour and r — i colour using Stripe
82 multi-epoch data. Our results indicate that the error-deconvolved intrinsic RS distribution
is consistent, within the photometric uncertainties, with a single point (<0.05 mag) in the
colour—colour plane at fixed magnitude, for a narrow redshift slice. We have computed the
high-mass end (*>M; < —22) of the ®>i-band RS luminosity function (RS LF) in several
redshift slices within the redshift range 0.52 < z < 0.63. In this narrow redshift range, the
evolution of the RS LF is consistent, within the uncertainties in the modelling, with a passively
evolving model with ®, = (7.248 4 0.204) x 10~* Mpc—> mag~', fading at a rate of 1.5 &
0.4 mag per unit redshift. We report RS completeness as a function of magnitude and redshift
in the CMASS sample, which will facilitate a variety of galaxy-evolution and clustering stud-
ies using BOSS. Our forward-modelling method lays the foundations for future studies using
other dark-energy surveys like the Extended Baryon Oscillation Spectroscopic Survey or the
Dark Energy Spectroscopic Instrument, which are affected by the same type of photometric
blurring/selection effects.

Key words: methods: analytical —methods: statistical — surveys —galaxies: evolution—
galaxies: luminosity function, mass function — galaxies: statistics.

1 INTRODUCTION

At low redshift, large spectroscopic surveys like the Sloan Dig-
ital Sky Survey (SDSS; York et al. 2000) or the Two Degree
* E-mail: amontero@astro.utah.edu Field Galaxy Redshift Survey (Colless et al. 2001) have allowed a
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detailed characterization of the main statistical properties of the
galaxy population, serving as a solid benchmark for galaxy-
evolution and large-scale-structure (LSS)/clustering studies. At
higher redshift, however, establishing these mean statistical prop-
erties has proven significantly challenging, as galaxy samples are
strongly affected by small-number statistics and selection effects.

In recent years, a new type of survey has emerged, increasing
the number of galaxies accessible for population studies at higher
redshifts. The so-called dark-energy (DE) surveys collect data for
millions of galaxies with the specific goal of understanding the
nature of the DE that drives the present-day accelerated expansion
of the Universe. The largest of these DE experiments to date is
the Baryon Oscillation Spectroscopic Survey (BOSS; Dawson et al.
2013) of the SDSS-III (Eisenstein et al. 2011). BOSS uses a sample
of over 1.5 million luminous red galaxies (LRGs) to measure the
baryon acoustic oscillation (BAO; Eisenstein et al. 2001) at z ~
0.55. The BAO is an overdensity of baryonic matter that can be used
as a standard ruler for measuring the acceleration of the Universe
and, consequently, exploring the nature of DE (e.g. Eisenstein et al.
2001, 2005; Drinkwater et al. 2010; Blake et al. 2011).

The unprecedented statistics offered by BOSS, and other future
DE surveys, have also great potential to clarify the massive galaxy-
evolution picture at z < 1. Realizing such potential presents, how-
ever, significant challenges. While the current state of the art of
precision cosmology dictates the use of huge volumes and large
densities, in terms of redshift estimation, low signal-to-noise (S/N)
spectra are generally sufficient. In addition, the effect of photo-
metric uncertainties becomes progressively more severe, as we ex-
plore higher and higher redshift ranges. This paper is aimed at
developing the adequate statistical tools to maximize the amount
of galaxy-population information that we can extract from BOSS,
in order to shed light into the massive end (M, 2 10'' M) of the
red sequence (RS) at z ~ 0.55, and to increase the accuracy of
cosmological analyses that use these galaxies as tracers of the LSS.

The evolution of L, galaxies from z ~ 1 has been thoroughly
studied using a variety of galaxy samples (often combining dif-
ferent redshift surveys). It appears well established that the num-
ber density for blue L, galaxies remains fairly constant at z < 1,
whereas the number density of red L, galaxies experiences a sig-
nificant increase over the same period of time (P, increases at least
by a factor of 2, according to Faber et al. 2007). The very massive
end of the RS population, the main focus of this work, has been
hard to probe, however, mostly due to footprint limitations. There
are, nevertheless, clear indications of differential evolution between
red L, galaxies and their very massive counterparts, whose evolu-
tion seems to much more closely approximate that of a passively
evolving galaxy population.' Note that, strictly speaking, a purely
passively evolving galaxy population does not exist. As an example,
mergers have been observed for individual massive elliptical galax-
ies (e.g. the Perseus A system). An important question, however,
is whether these processes are common enough to be significant
in the average evolution of the galaxy population. One of the ulti-
mate goals in galaxy evolution is to quantify the incidence of these
processes.

Cool et al. (2008), by computing the luminosity function (LF),
found results consistent with passive evolution for the massive (L >
3L,) RS population at z < 1. This conclusion was drawn from a
combined sample of ~60000 LRGs at 0.1 < z < 0.4 and 300

! For the purposes of this work, ‘passive evolution’ refers to the evolution
of a galaxy in the absence of either mergers or ongoing star formation.
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LRGs at 0.6 < z < 1. The small size of the high-redshift sample
hinders, however, the interpretation of their results. Similar results
for the very massive early-type population are found by Wake et al.
(2006), using both an LRG sample selected from SDSS data and
the 2dF-SDSS LRG and QSO survey. This idea is reinforced by
subsequent work from Maraston et al. (2013), who adopted a refined
version of the LRG passive template used in Cool et al. (2008) —
described in Maraston et al. (2009), to perform broad-band Spectral
Energy Distribution (SED) fitting on red galaxies from the BOSS
DRO data set. Maraston et al. (2013) conclude that this template
provides a good fit to BOSS galaxies redder than g — i = 2.35
at 0.4 < z < 0.7, although there is only so much resolution that
can be attained using broad-band SED fitting. The evolution in the
clustering properties of LRGs from the BOSS samples also appears
to support the idea of mergers having little effect in the evolution
of these systems (see Guo et al. 2013, 2014). Although passive
evolution is just a simplified description, these results would indicate
that this assumption is well justified, within the uncertainties in the
measurements.

Some other authors have reported results that suggest that merg-
ers might still play a significant role, albeit small. Tojeiro et al.
(2012) present a method for identifying the progenitors of SDSS-
I/IT LRGs within the BOSS sample. They conclude that the LRG
population evolves slowly at late times, i.e. less than 2 per cent by
merging from redshift z ~ 0.55 to z ~ 0.1, when the two sam-
ples are properly matched and weighted. Brown et al. (2007), us-
ing data from the National Optical Astronomy Observatory Deep
Wide-Field (NDWF) and Spitzer Infrared Array Camera (IRAC)
Shallow surveys in the Bootes field, find that the evolution of
4L, galaxies differs (although only slightly) from a model with
negligible z < 1 star formation and no galaxy mergers. From
cross-correlation function measurements using 25000 LRGs at
0.16 < z < 0.36 from the SDSS LRG sample, Masjedi et al.
(2006) infer a low LRG-LRG merger rate, of <0.6 x 10* Gyr™!
Gpc*3. Lidman et al. (2013) also found a major merger rate of
0.38 £ 0.14 mergers per Gyr at z ~ 1, for brightest cluster galaxies
(BCGs) using a sample of 18 distant galaxy clusters with over 600
spectroscopically confirmed cluster members between them (note
that although many LRGs are BCGs, many LRGs are also field or
group-member galaxies, so merger rates between LRG and BCG
populations are not strictly comparable).

Interestingly, Bernardi et al. (2016) have recently reported some
tension between LF/stellar mass function (SMF) results and clus-
tering results, although the authors also acknowledge that, again,
a proper completeness correction for BOSS might alleviate this
tension. Bernardi et al. (2016) claim that, while the evolution of
the LF/SMF from BOSS to the SDSS is consistent with a passive-
evolution scenario, this appears not to be the case for the evolution
of clustering. SDSS galaxies appear to be less strongly clustered
than their BOSS counterparts, a result that seems to rule out the
passive-evolution scenario, and, in fact, any minor merger scenar-
ios where the rank ordering in stellar mass of the massive galaxy
population is preserved.

Constraining the effect of mergers in the evolution of massive RS
galaxies is still, therefore, an open question, which has ramifications
in other related fields. As an example, another piece of the puzzle
has come from the study of the stellar populations of individual
early-type galaxies, since the seminal work of Tinsley (1968). It
appears well established that the stars in the majority of the low-z,
early-type galaxies were formed at z 2 2, with little indications
of star formation occurring since that time (Bower, Lucey & Ellis
1992; Ellis et al. 1997; Kodama et al. 1998; de Propris et al. 1999;
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Brough et al. 2002; Glazebrook et al. 2004; McCarthy et al. 2004;
Holden et al. 2005; Thomas et al. 2005; Wake et al. 2005; Bernardi
et al. 2006; Jimenez et al. 2007). However, there appears to be a
fraction that exhibit clear signs of recent star formation (e.g. Trager
et al. 2000; Balogh et al. 2005; Schawinski et al. 2007; Clemens
et al. 2009). In this sense, indications of star formation are consid-
erably more common among intermediate- to low-mass early-type
galaxies and among early-type galaxies residing in lower density
environments (see, e.g., Clemens et al. 2006; Thomas et al. 2010).

The first goal of this paper is to provide an adequate forward-
modelling framework for galaxy-evolution and clustering studies
using BOSS. This framework is intended to characterize the high-
mass end of the RS population at z ~ 0.55 (intrinsic distributions of
galaxy properties, colour bimodality, LF) and to lay the foundations
for a framework that can be extended to other DE surveys at other
redshifts. We will concentrate on the photometric properties of the
RS population; the inclusion of spectroscopic information is ad-
dressed in the complementary analysis presented in Montero-Dorta
et al. (2016), in the context of the study of the L—o relation from
BOSS.

The paper is organized as follows. Section 2 presents an overview
of methods and motivations for this analysis. In Section 3, we de-
scribe the target selection for the BOSS CMASS sample and we
discuss the observed CMASS distributions in the colour—colour—
magnitude space. Section 4 is devoted to briefly describing the
procedure for modelling the covariance matrix for colours and mag-
nitudes using Stripe 82 multi-epoch data. A detailed description of
this aspect can be found in Appendix A. In Section 5, we discuss
the expected shape for the massive end of the intrinsic distribu-
tion as predicted by stellar population synthesis (SPS) models and
provide some preliminary indications obtained from a simple his-
togram deconvolution method. In Section 6, we describe in detail
our analytical method for deconvolving the observed CMASS dis-
tribution. In Section 7, we present the main results of this paper.
Finally, in Section 8 we discuss the significance and implications
our results, in Section 9 we discuss future applications of our re-
sults and in Section 10 we briefly summarize the main conclusions
of this study. Throughout this paper, we adopt a cosmology with
Qum = 0.274, Q5 = 0.726 and Hy = 1004 km s~ Mpc*' with A
= 0.70 (Wilkinson Microwave Anisotropy Probe 7; Komatsu et al.
2011), and use AB magnitudes (Oke & Gunn 1983).

2 OVERVIEW OF CHALLENGES, METHODS
AND MOTIVATIONS

Despite its unprecedented statistical power, BOSS presents signifi-
cant challenges, some of which are common to many future DE sur-
veys (e.g. the Extended Baryon Oscillation Spectroscopic Survey,
eBOSS; the Dark Energy Spectroscopic Instrument, DESI). Mea-
suring well-defined cosmological features, such as the BAO, results
in survey requirements that are aimed at maximizing the global, sta-
tistical efficiency of the survey, at the cost of marginalizing the qual-
ity of individual-object measurements. BOSS presents a combina-
tion of a complex target selection, large photometric errors and low-
S/N spectra (the last two issues being obviously related). In addi-
tion, model magnitudes, from which the colours used in the CMASS
selection are built, are known to exhibit correlations between dif-
ferent bands, as the best-fitting profile from the r band, convolved
with the point spread function in each band, is used as a matched
aperture for all bands (Strateva et al. 2001; Stoughton et al. 2002).

The above effects distort the observed colour/magnitude distri-
butions and hinder our ability to identify the latent intrinsic red/blue

The high-mass RS from BOSS 1133

populations from BOSS data. This paper is the first attempt to lay
down an optimal framework for characterizing the galaxy popu-
lation from BOSS and other future DE surveys. Our philosophy
follows a forward-modelling approach based on the idea that the
strategy followed by DE surveys should be reflected in the way we
analyse the data: instead of individual galaxy properties our goal
is to constrain distributions of galaxy properties. The main steps of
our analysis are as follows.

(i) Present a method for the photometric deconvolution of the
intrinsic colour—colour—-magnitude distributions from the observed
BOSS CMASS distributions. We will proceed on the basis that the
shape of the intrinsic distributions can be obtained directly from the
data, without the need for making any strong assumptions based on
SPS models. The computed intrinsic distributions purely reflect the
phenomenology of the colour—colour-magnitude diagrams.

(ii) Computation of completeness as a function of colours, mag-
nitude and redshift in the BOSS CMASS sample. This is a key result
for future galaxy-evolution and galaxy-clustering studies.

(iii) Computation of the high-mass end of the RS LF within a
redshift range around z = 0.55.

(iv) Computation of the best-fitting passive-evolution model for
the average evolution of the high-mass end of the RS LF.

(v) Evaluation and quantification of deviations from the best-
fitting passive-evolution model and possible systematics that affect
this measurement.

(vi) Quantification of the colour evolution of the high-mass end
of the RS.

The methodology and results presented in this paper constitute the
basis for the scaling-relation analysis presented in Montero-Dorta
et al. (2016). In Montero-Dorta et al. (2016), we use the intrinsic
colour—-magnitude distributions/completeness obtained from BOSS,
in combination with velocity-dispersion likelihood functions to de-
rive the high-mass end of the L—o relation at z ~ 0.55. As part of the
analysis, we present a method for the photometric deconvolution of
spectroscopic observable (named PDSO).

In addition to the galaxy-evolution implications, understanding
the BOSS data at the level of detail intended here has also impor-
tant applications in other fields. In particular, this characterization
of completeness and of the main statistical properties of the RS
population will be used, in follow-up papers, in combination with
N-body numerical simulations, to shed light into the halo—galaxy
connection and the clustering properties of these systems in a fully
consistent way.

3 DATA: THE BOSS CMASS SAMPLE

In this paper, we make use of spectroscopic and photometric data
from the 10th Data Release (DR10) of the SDSS (Ahn et al. 2014).
The SDSS DR10 is the third release within the SDSS-III, and the
second release where BOSS data are included. The spectroscopic
DR10 BOSS sample comprises a total of 927 844 galaxy spectra
and 535995 quasar spectra (an increase of almost a factor of 2
as compared to the SDSS DR9; Ahn et al. 2012). The baseline
imaging sample for the BOSS spectroscopic survey is the final SDSS
imaging data set, which was released as part of the DR8 (Aihara
et al. 2011), and contains imaging data from SDSS-I, -II and -III.
These imaging programmes provide five-band ugriz imaging over
7600 sq. deg. in the northern Galactic hemisphere and ~3100 sq.
deg. in the southern Galactic hemisphere, with a typical 50 per cent
completeness limit for detection of point sources at r = 22.5. Refer
to the following references for technical information about the SDSS
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survey: Fukugita et al. (1996) for a description of the SDSS ugriz
photometric system; Gunn et al. (1998, 2006) for technical aspects
of the SDSS camera and the SDSS telescope, respectively; Smee
et al. (2013) for information about the SDSS/BOSS spectrographs.

The catalogue that we use to compute the RS LF is the DR10
Large Scale Structure (DR10 LSS) catalogue. This catalogue, which
is thoroughly described in Anderson et al. (2014), incorporates a
detailed treatment of angular incompleteness (caused by fibre col-
lisions and redshift failures) and of a variety of systematics that
could potentially affect the target density of spectroscopically iden-
tified galaxies (e.g. stellar density, seeing, Galactic extinction, etc.).
The DR10 LSS catalogue includes galaxies from the SDSS Legacy
Survey, which basically contains the SDSS-I survey and a small
fraction of the SDSS-II survey. We refer to Anderson et al. (2014)
for further details about this catalogue. The results presented in this
paper, being limited primarily by systematic error, would not be
expected to change significantly if the analysis were applied to the
final, larger BOSS DR12 data set (Alam et al. 2015).

3.1 The CMASS galaxy target selection

The BOSS galaxy target selection is based on a similar strategy as
that used by Eisenstein et al. (2001) to build the SDSS I-II LRG
sample (for a detailed description of the BOSS selection, see Reid
et al. 2016). The selection was designed to produce two different
galaxy samples: a low-redshift sample called LOWZ and a high-
redshift sample called CMASS. The LOWZ sample contains LRGs
within the redshift range 0.15 < z < 0.43. The CMASS sample,
which is the one that we use in this study, covers a nominal redshift
range 0.43 < z < 0.70, although it extends slightly beyond these
limits. The acronym CMASS stands for ‘constant mass’, empha-
sizing the fact that the sample was designed to be approximately
stellar mass limited. This requisite naturally introduces a highly in-
complete population of bluer galaxies that increases with redshift.

The CMASS selection scheme consists of the following magni-
tude, colour and colour-magnitude cuts:

17.5 < icmoa < 19.9,
Fmod — Imod < 2,
Ifiverr < 21.5,
d; > 0.55,
icmod < 19.86 +1.6 x (d; —0.8), 1)

where dl = (rmod - imod) - (gmod - rmod)/8 and Ifiber2 is an i-band
magnitude within a 2 arcsec diameter aperture. The subscripts ‘mod’
and ‘cmod’ denote model and cmodel magnitudes, respectively.
Model magnitudes are more efficient at tracing galaxy colours,
whereas the cmodel i-band flux is the best proxy for the galaxy
flux. All colours quoted in this paper are model colours and all
magnitudes cmodel magnitudes, unless otherwise stated (hereafter
we drop the subindices when we refer to these quantities). For more
information on the BOSS selection, refer to Reid et al. (2016),
Eisenstein et al. (2011) and Dawson et al. (2013).

The process of generating the LSS catalogue, as discussed in de-
tail in Anderson et al. (2014), is known to suffer from some degree
of incompleteness, which mainly manifests itself in two forms: fi-
bre collisions and redshift failures. Fibre collisions occur because of
the finite size of the fibre plugs in the spectrographs. In BOSS, two
fibres may not lie within 62 arcsec of one another on a given spec-
troscopic tile (see Dawson et al. 2013 and Reid et al. 2016 for more
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Figure 1. Redshift distribution for the entire CMASS sample in bins of
Az = 0.01. The total number of unique CMASS galaxies with a good
redshift estimate and with model and cmodel apparent magnitudes and
photometric errors in all g, r and i bands is 549 005.

information).”> With regard to redshift failures, the pipeline achieves
an automated classification success rate of 98.70 per cent within the
CMASS sample and confirms 95.4 per cent of unique CMASS tar-
gets as galaxies (from all spectra actually entering the pipeline, in
the DR9). Note that the difference between these percentages arises
from stars that pass the CMASS selection criteria (see Bolton et al.
2012 for more information). These issues should have little cor-
relation with colour or magnitude, which implies that this type of
incompleteness simply translates into some small uncertainty in the
determination of the normalization of the LF.

In Fig. 1, we show the redshift distribution for the CMASS spec-
troscopic sample in bins of Az = 0.01. This is the redshift bin
size that we use throughout this paper. The total number of unique
CMASS galaxies with a good redshift estimate and with model
and cmodel apparent magnitudes and photometric errors in all g,
and i bands is 549 005. The mean value of the redshift distribution
in Fig. 1 is 0.532 and its standard deviation 0.128; approximately
~7.5 and ~4.5 per cent of galaxies lie below and above the nom-
inal low-redshift and high-redshift limits, i.e. z = 0.43 and 0.70,
respectively.

3.2 CMASS observed distributions
in colour—colour-magnitude space: the blurring effect

The CMASS observed distributions are not representative of the
intrinsic, latent RS/blue cloud (BC) distributions. Fig. 2 presents
in a g — r versus r — i colour—colour diagram the distribution of
CMASS galaxies in a redshift slice centred at z = 0.55 (Az =
0.01), for different apparent magnitude bins. The z = 0.55 bin is
very close to the mean redshift of the CMASS sample (see Fig. 1).
Fig. 2 illustrates the type of broadened colour—colour distributions
that we find in the BOSS galaxy data. The RS appears as an irregular
blob, elongated mostly in the g — r direction due to the relatively
large g-band errors, that is progressively more populated towards
the fainter magnitude bins. Adjacent to the RS, in the g — i direction
(diagonal in this diagram), is a population of bluer galaxies, which

2 Note that the fibre collision distance limit has increased with respect to the
SDSS I-1I programmes, from 55 to 62 arcsec. As a reference, Blanton et al.
(2003) estimate that fibre collisions account for approximately 6 per cent of
all incompleteness in the SDSS survey.
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Figure 2. Distribution of CMASS galaxies in a g — r versus r — i colour—
colour diagram for a redshift bin centred at z = 0.55, with a width of Az =
0.01. In each panel, the solid and dashed lines represent the d; demarcation
d; > 0.55 and the sliding cut i < 19.86 + 1.6 x (d, — 0.8), respectively.
The observed CMASS distributions are considerably blurred by photometric
errors, especially along the g — r axis. The typical photometric error quoted
in the catalogue is ~0.20 for the g — r colour and ~0.08 for the r — i colour.

are not excluded by the CMASS selection. Atz = 0.55, these objects
correspond, at least in observed space, to the upper, redder part of
the BC and to the so-called green valley, the narrow region between
the BC and the RS. Colour bimodality is especially noticeable in
the i = 19.25 magnitude bin.

The observed CMASS distribution is strongly affected by the d
constraint (solid line in Fig. 2), which was designed to lie parallel to
the locus of a passively evolving population of galaxies. This cut is
supposed to isolate the RS, while allowing for a population of bluer
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Figure 3. CMASS number counts for different redshift slices, from z =
0.45 to 0.70. CMASS number counts are strongly affected by selection
effects and photometric errors. By determining the intrinsic number counts,
we can correct for this incompleteness.

galaxies. In practice, the d, demarcation is not fixed, but actually
depends on magnitude. It is determined by the combination of the
dy cut and the sliding d, —i-band magnitude cut (dashed line in
Fig. 2). Rearranging in equation (2), the d, demarcation at a given
apparent magnitude, i, is given by the following two inequalities:

d; > 0.55,
i —19.86

which implies that the d; condition starts to be more restrictive at
i > 19.46. It is also quite evident from Fig. 2 that the r — i < 2 cut
has little impact on the CMASS distribution.

The CMASS colour—colour diagram changes significantly when
we examine different redshift slices, due to a combination of in-
trinsic evolution and the effect of redshift itself. In terms of the
CMASS selection, the fraction of the RS and the BC accessible in-
creases with redshift. At z >~ 0.45, only the top of the RS is targeted,
whereas at z >~ 0.65 the RS and the BC are better covered (even
though the effective magnitude range shrinks significantly).

InFig. 3, we show the CMASS number counts, i.e. the distribution
of CMASS galaxies in bins of i-band magnitude, for six different
redshift slices, from z = 0.45 to 0.70. The shape of the number
counts in Fig. 3 is determined by several factors, including redshift,
selection effects and photometric errors. The covariance matrix of
photometric errors scatters objects around in the 3D space, including
along the i-band axis.

4 MODELING THE COVARIANCE MATRIX
WITH STRIPE 82

We use Stripe 82 multi-epoch data to model the blurring effect
produced by photometric errors and correlations between different
ugriz bands. Stripe 82 is an SDSS stripe along the celestial equator
in the Southern Galactic Cap (covering a total of ~270 sq. deg.)
that was observed multiple times, as many as ~80 times before
the final release of the Stripe 82 data base. These multi-epoch data
are used to build our model for the covariance matrix of the i-band
magnitude, (g — r) colour and (r — i) colour (also represented here
as X, Y, Z), a key element in our deconvolution procedure.

A detailed description of the Stripe 82 data and the construc-
tion of our covariance matrix model can be found in Appendix A.

MNRAS 461, 1131-1153 (2016)
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Two important aspects of the modelling are, however, worth high-
lighting here. First, the model must account for the dependence of
the elements of the covariance matrix on the location in colour—
colour—magnitude space. Secondly, it must also accommodate pos-
sible overall inconsistencies in the photometric quality between the
Stripe 82 and the SDSS footprint. To this purpose, we allow our co-
variance matrix model to be multiplied by a scale factor that could
in principle have a small dependence on magnitude, but should be
close to 1. The value or functional form for this factor, that we call
B(i), will be empirically determined as part of the modelling of the
intrinsic distributions.

5 HINTS ON THE SHAPE OF THE INTRINSIC
COLOUR-COLOUR-MAGNITUDE
DISTRIBUTION

Although SPS models are known to suffer from major uncertainties
(see Conroy, Gunn & White 2009, for a discussion), they pro-
vide preliminary information on the typical intrinsic location in the
colour—colour plane of physically plausible galaxies in the absence
of photometric errors. In order to explore the predictions from these
models, we use the Granada rsps galaxy product (Montero-Dorta
et al., in preparation) based on the publicly available ‘Flexible Stel-
lar Population Synthesis’ Fsps code of Conroy et al. (2009). The
Granada rsps product, which is part of the SDSS DR10 (Ahn et al.
2014), provides spectrophotometric stellar masses, ages, specific
star formation rates and other stellar population properties, along
with corresponding errors, for the entire DR10 galaxy sample. Here
we use the same grid of Composite Stellar Population models with
varying star formation history (SFH, based on simple 7-models),
metallicity and dust attenuation used to generate the Granada Fsps
product. This extensive grid of 84 000 models (in its complete ver-
sion, before applying any priors) was designed to adequately cover
the CMASS parameter space.

Fig. 4 displays, in white contours, the distribution of Fsps models
in a g — r versus r — i colour—colour diagram, for six redshift
slices from z = 0.45 to 0.70. The only prior imposed here is that
the look-back formation time of the galaxy cannot exceed the age
of the Universe at the corresponding redshift. As mentioned above,
models expand a wide range of stellar population properties, so
the width of the model distribution should be considered an upper-
limit prediction for the intrinsic distribution. In the background
of each panel, we show the distribution of CMASS galaxies in
the corresponding redshift slice. The rsps models align extremely
well with the data at every redshift. As expected, models expand a
narrow intrinsic distribution in colour space, which suggests that the
observed CMASS distribution is largely broadened by photometric
errors. Interestingly, colour bimodality appears naturally in the grid.
In addition, the RS and the BC form a continuous sequence at
redshifts z < 0.55 in the models. This sequence clearly breaks at z
2 0.60, so that both components are no longer aligned [note that a
lack of alignment of the RS with the BC has been reported before
using optical-IR colour; a similar result was found by Brown et al.
(2014) in the z ~ 0 u — g — r colour—colour diagrams for nearby
galaxies].

The distribution of models in Fig. 4 has not been calibrated with
observations, so it simply provides a sense for the intrinsic loci
of RS objects. Tighter constraints on the shape of the intrinsic RS
distribution are obtained from a simple histogram deconvolution of
the CMASS observed distributions. Although this method is not
accurate enough in the context of our analysis, as binning effects
can propagate into the computation of the LF, it does provide infor-
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Figure 4. The distribution of Fsps models (white contours) in a g — r versus
r — i colour—colour diagram, for six different redshift slices from z = 0.45
to 0.70. Fsps models are taken from the Granada Fsps galaxy product, which
is part of the SDSS DR10 (Ahn et al. 2014). These Fsps models cover a wide
range of metallicities, SFHs and dust attenuation levels. The colour map
shows the distribution of CMASS galaxies in the corresponding redshift
slice. The typical photometric error quoted in the catalogue is ~0.20 for the
g — rcolour and ~0.08 for the r — i colour.

mation on the general shape of the intrinsic distributions. What we
find is that only an extremely compact (<0.1 mag) RS can be con-
sistent with our photometric error model. In addition, a declining
colour—magnitude relation (for the centroid of the RS distribution)
is necessary to fit the observations. Another important piece of in-
formation that we obtain from this simple analysis is that the effect
of the covariance matrix obtained from our error model must be
slightly reduced in order to further achieve a good agreement with
the observations (i.e. 8 ~ 0.92).

Our modelling of the intrinsic distributions is not based on SPS
models, nor it uses a histogram deconvolution method. The knowl-
edge gained from these approaches is however transmitted into our
deconvolution method in the form of constraints that reduce the
dimensionality of our parameter space.
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6 A METHOD FOR THE ANALYTICAL
DECONVOLUTION OF INTRINSIC
DISTRIBUTIONS OF PHOTOMETRIC
PROPERTIES FROM BOSS

In this section, we describe a forward-modelling method for the
deconvolution of the CMASS intrinsic colour-magnitude distribu-
tions. The method is based on an unbinned maximum likelihood
(UML) method. The key idea for the UML is that the underlying
statistical quantity that we optimize, the likelihood .Z (or log.%),
does not require any artificial binning beyond the one produced by
the measurement instruments. Although, for the sake of clarity, we
will describe our deconvolution method in the context of BOSS
data, our method can be naturally extended to future DE surveys
like eBOSS or DESI.

The UML method is based on constructing the predicted prob-
ability density function (PDF) for the data as a function of the
parameters of interest. Once we have an analytical parametric ex-
pression for this PDF, the likelihood of a particular set of values for
the parameters, 6, given the data, d, can be obtained. This likelihood
is equal to the probability, P, of measuring the data given that set of
values, which is equal to the product of all individual probabilities,
pi- Namely

Z2©{d)) = PAd}o) = [ | p:(di}10). 3

To find the best-fitting parameters, it is common to optimize the
logarithm of the likelihood, log-Z(6|{d}), instead of the likelihood
itself.

The observed PDF for the distribution of CMASS objects in the
colour—colour—-magnitude space is shaped by contributions from the
intrinsic distribution, the blurring effect of photometric errors and
the CMASS selection. For the sake of simplicity, we will first restrict
the analysis to the RS. Results from a simple histogram deconvo-
lution method suggest that the RS can be described with sufficient
accuracy in observed space by a Gaussian function representing
the colour—colour component and a Schechter function in apparent
magnitude accounting for the i-band magnitude dependence. This
information is incorporated in our analytical modelling of the PDE.

In this paper, we focus on the deconvolution of photometric quan-
tities (colour-magnitude distributions). Many galaxy-evolution sci-
ence cases using DE surveys will involve distributions of spectro-
scopic quantities. The photometric deconvolution of spectroscopic
quantities (e.g. velocity dispersion) is addressed in Montero-Dorta
et al. (2016).

6.1 The CMASS PDF

In order to build the observed CMASS PDF, we start by expand-
ing the Schechter function (that accounts for the intrinsic number
counts) in terms of a non-negative sequence of Gaussians along the
i-band magnitude axis:

nsch(Xs {d;*’ ny, (X}) = Z C_jgjs (4)
J

where ng, represents the intrinsic number counts (i.e. the intrinsic
number of objects at each magnitude bin), {<]5*, my, o} are the ap-
parent magnitude counterparts of the Schechter LF parameters, c;
is coefficient j of the expansion and G; is the corresponding Gaus-
sian function. By expanding the Schechter function as a series of
Gaussians, we are able to implement an analytic convolution of the
LF with the Gaussian colour—colour-magnitude error model. The
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Schechter function can be expressed as

naen(X, { m, a}) = 0.410g(10), [10740"=0etD]

X exp (—100'4(’"*7”) . 5)

Here, we assume that « = —1 and qg* = 1 object, for the sake
of simplicity. The magnitude interval considered is 17 < X < 20.5,
which exceeds by half a magnitude the CMASS limits at both ends,
in order to avoid boundary problems. For convenience, we choose
to use 22 Gaussian functions to completely cover this interval, with
equal width o; = 0.25 mag.

The above expansion can be generalized to account for the colour
component at each apparent magnitude bin. In particular, we can
model the PDF at a given magnitude bin k as a 3D Gaussian of
i-band magnitude (X), g — r colour (Y) and r — i colour (2). In a
compact notation, this function can be written as follows:

@nlup?

where V is a vector of coordinates in the colour—-colour-magnitude
space, i.e. V= {X, Y, Z}, and V., is the vector of coordinates at
{X,, Y., Z.}, which corresponds to the centre of Gaussian k along
the i-band axis and the centroid of the RS on the colour—colour plane,
respectively. All the information regarding the shape of the PDF is
contained in matrix U, including both the contribution from the
intrinsic distribution and the covariance matrix for the photometric
errors, C. It can be shown that if the intrinsic model is assumed to
be a 3D Gaussian where o, is the intrinsic size along the magnitude
axis and o . is the intrinsic scatter on the colour—colour plane, matrix
U can be expressed as

PVI10) Xp —%(V —Volu (v -=vy|, (©)

o? 0 0

U=C+ | 0 o2(q%*a®+b*> o2ab(l1—¢g? |,
0 o2ab(l —q* o2(qg*h* +a?)

where 0 is the position angle of the Gaussian on the colour—colour
plane w.r.t. the X-axis, a = sin(0), b = cos (0) and ¢ is the inverse
of the ellipticity. The second term in the above equation accounts
for the contribution of the intrinsic distribution on the covariance
matrix for the PDF — hereafter C;.

As mentioned before, we need to account for the possible shift
of the RS centroid with magnitude on the colour—colour plane. To
this end, we model {Y,, Z.} as

Yo =Y+ Yi(X — Xrep)
Z.=Zp+ ZI(X - Xref)a (7)

where X, is a reference magnitude, for which we choose X, = 19.

Expression (6) is still not a fully representative model for the
observed CMASS PDF, because the CMASS selection has not yet
been taken into account. This step is done trivially by applying the
CMASS selection matrix, Scvass. Namely

Pemass(V10) = P(V[0)Scmass- (€]

A single-Gaussian model is a good approximation for the RS,
but not for the entire CMASS sample, which contains a fraction
of blue objects that increases with redshift. In order to take this
population into account, we use a double-Gaussian model for the
CMASS PDF:

Pemass(V10) = fore Peyass(V105)

+(1 = foue)Peyiass(V10F), )
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Table 1. Fitting parameters of the PDF for each Gaussian function (m.., «, Yo, Y1, Zy, Z1, 0, 0, g) along with fj,. and S.

PDF parameter Description

My Characteristic apparent magnitude for intrinsic number counts

o Faint-end slope of the LF

Yo Zero-point for the linear dependence of the (g — r) component of the centroid with magnitude
Y1 Slope for the linear dependence of the (g — ) component of the centroid with magnitude
Zy Zero-point for the linear dependence of the (r — i) component of the centroid with magnitude
Z Slope for the linear dependence of the (r — i) component of the centroid with magnitude

o Intrinsic scatter on the colour—colour plane

2 Position angle of the Gaussian function on the colour—colour plane w.r.t. the g — r axis

q Inverse of the ellipticity of the Gaussian function on the colour—colour plane

Jolue Observed fraction of blue objects in the CMASS sample

B Error scale factor for the covariance matrix model

where P85 is the PDF for the BC, P& qs is the PDF for the
RS and fe is the observed fraction of blue objects in the sample
(blue objects meaning non-RS objects). With this extension, the
total number of fitting parameters is 19 (2 x 94-1). In the following
sections, we discuss possible priors that can reduce the number of
parameters in our PDF model.

Even though we use the standard terminology ‘blue cloud/BC’
here, this distribution must not be assumed to correspond to any
previous definitions of blue cloud or blue objects. Our BC distribu-
tion is a second component that we need in order to fit the observed
distributions and that is statistically separable from the prominent
RS (see a similar approach in Taylor et al. 2015).

Table 1 lists all parameters of the PDF for each individual Gaus-
sian function, along with the parameters accounting for the fraction
of blue objects, fi,e. In addition, we include 8, the error scale factor
for the covariance matrix C.

6.2 Computation of best-fitting parameters

The determination of best-fitting parameters is performed by sim-
ply minimizing the —log.%. The likelihood . for a given set of
parameters can be obtained at each redshift slice by evaluating our
observed CMASS PDF at the position of each object in our 3D
space, and summing the probabilities.

The above optimization method provides a best-fitting intrinsic
distribution at each redshift slice. As part of this process, it provides
m, which, as we demonstrate in subsequent sections, can be trivially
transformed into M., the characteristic absolute magnitude of the
LF

Our method also incorporates an easy way to compute ¢,, the
normalization of the RS LF. We have assumed for simplicity that
¢.., the normalization of the Schechter function that represent the
RS intrinsic distribution, is equal to 1. The predicted fraction of
objects that are selected for the CMASS sample, after convolving
with the error model, is given by

Mored = Y Plaiass(ViI)AXAY AZ, (10)

where this computation must be performed prior to any normaliza-
tion. If the total number of real CMASS objects detected within the
corresponding redshift slice is given by ngs, the value of ¢, for the
RS LF can be calculated by

(1 - fblue):Obs
98 = —— (1n

MNRAS 461, 1131-1153 (2016)

where (1 — foue) X y’::ﬁ is the predicted number of intrinsic RS
objects and Vi, is the maximum volume in the corresponding
redshift slice. A similar procedure can be used to obtain ¢EC.

In the case of CMASS sample, as we discuss in the next sections,
the Schechter parameters ¢, and M, must be exclusively considered
the parameters of an analytic functional form for the computed LE.
A physical interpretation of these parameters is misleading, given
that the CMASS sample probes only the very bright end of the LF,

more than 1 mag brighter than M.,.

6.3 Adopted forms for the intrinsic RS and BC distributions

We use our histogram deconvolution method to place constraints
on the analytical model for the CMASS PDF described above. This
helps us reduce the dimensionality of our parameter space. The
following information is incorporated into our model.

(i) The RS is consistent with a single point on the colour—colour
plane at fixed magnitude, with all the observed scatter being due to
photometric errors, i.e. g8 =0, oS = 0.

(i1) The location of the RS in the colour—colour plane must have
a slight dependence on magnitude.

(iii) Our error model alone cannot account completely for the
scatter seen on the blue side, even though a simple one-dimensional
Gaussian, a line in the colour—colour plane, is certainly not a bad
approximation.

(iv) Due to the severe incompleteness affecting the blue side, the
BC must only be modelled for the sake of subtracting its contribution
on the red side.

(v) Allowing too much freedom to the model when finding the
location of the BC centroid might result in unphysical solutions.

With the above considerations, the intrinsic component of the co-
variance matrix in equation (6), for the single-point RS, can be
simply expressed as

o> 0 0
C=10 00
0 00

which is equivalent to a delta function on the colour—colour plane,
with position given by Y&, Y5, Z&S, ZRS.,
As for the BC component, we keep Ci, in its general form,
namely
o? 0 0

CEC= 1|0 oXg*a*+b>) olab(l—q?
0 o2ab(l —g* o2X(g*h* +a?)
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but we impose Y€ = 0 and ZBC = 0. We also include the condition
YE€ + ZB€ = 1.7, independently of redshift. By doing so, we can fix
the centroid of the BC at g — i = 1.7, ensuring an adequate BC/RS
separation. This value was chosen by examining the distribution of
rsps models (Fig. 4) and the distribution of objects in the PRIsm
MUIti-object Survey (PRIMUS; Coil et al. 2011; Cool et al. 2013),
which is not affected by a colour cut. We have also checked, and
this is visible in Fig. 4, that the observed centroid of the BC is stable
as we move across redshift, due to the typical shape of the SED for
blue galaxies, which lack a 4000 A break. Note that the BC here acts
as a background component that is necessary to fit the observations.

6.4 Parameter uncertainty estimation

In order to estimate the uncertainty in the fitted parameters, we start
by estimating the statistical errors, by means of a bootstrap analysis.
We generate 250 bootstrap samples by randomly drawing objects
from the entire CMASS sample, allowing for objects to be repeated.
Bootstrap samples are chosen to have the same size of the CMASS
sample.

In principle, a single value of 8 should hold across all redshift
bins. In practice, if we fit for 8 as a free parameter in each redshift
bin, the range of fitted values across redshift exceeds the amount
that would be expected based the on bootstrap-estimated statistical
errors on the individual 8 estimates. This flexibility in 8 can absorb
residual unmodelled redshift-dependent effects in the deconvolu-
tion.

In order to quantify the systematic effect of this 8 uncertainty
upon our estimated LF parameters, we re-fit our model in each
redshift bin with two fixed $ values chosen to approximately bracket
the distribution of free-g fits across redshift. The half-width of the
range in fitted LF parameter from this procedure is taken as an
estimate of the systematic error in those parameters, and is added
in quadrature with the bootstrap-estimated statistical errors to give
our overall LF uncertainty estimate. Note that the systematic term
is in all cases significantly larger than the statistical term, due to the
extremely large number of galaxies in each redshift slice.

7 RESULTS

7.1 Algorithm performance

The performance of the analytical deconvolution method is excel-
lent in terms of reproducing the observed distributions for redshift
slices within the redshift interval 0.53 < z < 0.65. Below z >~ 0.53,
results become progressively noisier as the CMASS RS is more and
more incomplete in colour. Above z 2 0.65, our method converges
and provides acceptable residuals (up to z = 0.70), but the effective
magnitude range is so small that some of our results may become
rather unconstrained (see the LF section below).

Fig. 5 displays our best-fitting model for the CMASS PDF in
the redshift slice centred at z = 0.55, for an apparent magnitude
i = 19.5. As described before, this PDF provides the probability
density of finding a galaxy at any given point in the colour—colour
plane, for our best-fitting error-deconvolved intrinsic distribution,
our Stripe 82 error model and the CMASS selection function. Fig. 5
also shows that the CMASS PDF is consistent, generally speaking,
with the observed CMASS distribution. In order to illustrate this
more clearly, we have generated a mock distribution assuming this
best-fitting CMASS PDF, with the same number of objects as those
passing the CMASS selection in the z = 0.55 redshift slice. Fig. 6
compares these two distributions, which are presented in bins of
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Figure 5. Best-fitting model for the CMASS PDF in a redshift slice centred
atz =0.55(Az =0.01) obtained using our analytical deconvolution method.
The analytical form of the CMASS PDF contains both the contribution of
the intrinsic distribution and the effect of photometric blurring and selection
effects.

magnitude (Ai = 0.1) and colours (Ag — r=0.1, Ar —i=0.1). In
particular, we show the data, the model, the data—model residuals
and the RS and BC components, respectively.

A visual inspection of the residuals in Fig. 6 suggests that our
CMASS PDF reproduces, to a high level of accuracy, the shape and
main characteristics of the observed CMASS distributions and also
account for its magnitude dependence. As expected, most discrep-
ancies appear towards the bright end (i.e. i < 19) where number
counts are small.

To quantify the agreement between the model and the data, in
the context of the computation of the LF, we compare the observed
number counts with those predicted by our model in Fig. 7, for
12 redshift slices from z = 0.54 to 0.65. The subplots provide the
fractional residuals, where the errors in the model are obtained from
the scatter on the Schechter best-fitting parameters (see following
sections). The agreement between the model and the data is quite
good across the entire redshift range, within the apparent magnitude
range that contains the great majority of the sample. Only at the
very bright end, where Poisson statistics dominate, do we find some
notable discrepancies. The average of the rms of the fractional
residuals within the redshift range 0.52 < z < 0.65 is ~3.8 per cent
for i > 19 and ~6.7 percent for i > 18.5. The i > 19 limit, for a
given redshift slice within our preferred redshift range, encompasses
between 90 and 97 per cent of the entire subsample, depending on
the redshift slice considered, from low to high redshift. The i > 18.5
limit encompasses at least 99 per cent of any given subsample within
the redshift range considered. In order to illustrate how bright these
ranges are, the vertical dashed line indicates the apparent magnitude
at which the corresponding K-corrected absolute magnitude equals
—24,ie. O5M; = —24.

Even though the data are noisy at the very bright end (i ~ 18),
there might be a systematic tendency for the model to underpredict
the data. This situation might be due to the presence of a small
number of unaccounted non-CMASS objects that artificially pass
the CMASS selection and only show up where legitimate CMASS
galaxies are scarce. It is also possible that the Schechter function is
intrinsically not a good model for the extremely bright end of the
RS LF. We have checked that this discrepancy has no effect on our
results, as the number densities where this effect is noticeable are
extremely low and not utilized to extract any conclusion.

7.2 The intrinsic high-mass RS: an extremely compact
distribution in colour—colour-magnitude space

In Fig. 8, we show the best-fitting intrinsic distributions in a colour—
colour diagram at z = 0.55 in progressively fainter i-band magnitude
bins in logarithmic scale. The RS is, by definition, a point that shifts
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Figure 6. Best-fitting model in observed space as compared with the data, in a redshift slice of width Az = 0.01 centred at z = 0.55. From left to right: data,
model, data-model residuals, model for the RS component and model for the BC component, respectively, in g — r versus r — i colour—colour diagrams for
12 different magnitude bins. The bin size is 0.1 in all three quantities. The same colour code applies to all distributions in the same panel, but colour codes
vary for different panels. The typical photometric error quoted in the catalogue is ~0.20 for the g — r colour and ~0.08 for the r — i colour. Our CMASS
PDF reproduces, to a high level of accuracy, the shape and main characteristics of the observed CMASS distributions and also accounts for its magnitude
dependence.
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Figure 7. The i-band number counts for both the data and the model at 12 redshift slices from z = 0.51 to 0.70, illustrating that the agreement between
the model and the data is quite good across the redshift range considered (see the text). Each upper panel shows the logarithm of the number of galaxies in
each magnitude bin, N(m), as a function of magnitude for the data (black crosses) and the model in observed space (green solid line). The subplots show the
fractional residuals, where the errors in the model are obtained from the scatter on the Schechter best-fitting parameters. The vertical dashed line is the apparent

magnitude corresponding to a K-corrected absolute magnitude of “3M; = —24.

slightly towards redder colours for fainter magnitudes. The BC, on
the other hand, is consistent with a diffuse distribution that extends
through the red side of the diagram, where the RS is superimposed
upon. These two distinct distributions are identified by exclusively
using the data that we have in hand, including the error model
obtained from Stripe 82 multi-epoch data.

The assumption that the high-mass RS is well described by a
delta function in the colour—colour plane is motivated by our pre-
liminary histogram deconvolution results. Our analytical deconvo-
lution results clearly confirm the adequacy of such an assumption.
Our modelling gives us robust indications that the width of the RS
cannot exceed ~0.05 mag. This result is illustrated in Fig. 9, where
the likelihood of the model (in the form of —log.¥’) is shown as a
function of the width of the RS component for the redshift slice cen-
tred at z = 0.55. The minimum likelihood is reached somewhere

between 0.03 and 0.04 mag, but below 0.05 mag the likelihood
function becomes fairly flat. For a width >0.05 mag, the likeli-
hood worsens rapidly. The fact that the likelihood function is so
flat below 0.05 mag, in combination with the limited resolution
that we have (given the large photometric errors, especially along
the g — r colour axis), makes our point-like assumption well jus-
tified. We have also checked that assuming a width of 0.035 mag
would have a negligible effect on the results and conclusions of this
work.

We have compared our results for the location of the intrinsic RS
colour—colour distribution with publicly available PRIMUS data, to
the extent that the data allow. This comparison is illustrated in a
g — rversus r — i colour—colour diagram in Fig. 10. The position
of the RS as inferred from both surveys is in good agreement,
even though the CMASS RS is slightly redder. Note that this is
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Figure 8. Best-fitting intrinsic distributions in the colour—colour diagram
at z = 0.55 for five i-band apparent magnitude bins (in logarithmic scale).
The point representing the RS has been exaggerated for the sake of clarity.
In each panel, the solid and dashed lines represent the d; demarcation d |
> (.55 and the sliding cut i < 19.86 + 1.6 x (d — 0.8), respectively. The
RS is, by definition, a point that shifts slightly towards redder colours for
fainter magnitudes. The BC, on the other hand, is consistent with a diffuse
distribution that extends through the red side of the diagram, where the RS
is superimposed upon.

a qualitative comparison, as in the magnitude range covered by
the CMASS sample the PRIMUS data are very scarce. Also, the
PRIMUS distribution is affected by photometric errors. Importantly,
Fig. 10 illustrates that the scatter found in the PRIMUS data can
be understood in terms of the colour-magnitude relation and the
progressive reddening produced by redshift.

Independently of the priors that we choose, our model requires
an intrinsic BC component that extends through the red side of the
colour—colour diagram, in order to achieve an acceptable agree-
ment with the number counts. This result implies that there are
BC galaxies that are intrinsically redder than the RS itself. This
should not be interpreted in light of any previous arbitrary sep-
aration between red and blue galaxies, based on colour cuts or
stellar population properties. Again, the BC distribution must be
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Figure 9. Normalized —log.Z as a function of the width of the RS compo-
nent in the (g — r) versus (r — i) colour—colour plane at z = 0.55.
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Figure 10. The g — r versus r — i colour—colour diagram for PRIMUS
data within the redshift range 0.5 < z < 0.6 and magnitude range 17.5 <
m; < 20, as compared with the intrinsic RS location as inferred from this
work. Crosses show each of the objects contained in the PRIMUS data set
according to the aforementioned selection whereas the contours include a
completeness correction (provided by the PRIMUS team). The blue dashed
lines show the location of the intrinsic RS as inferred from BOSS within the
same magnitude range for each redshift slice between z = 0.5 and 0.6. The
green dots represent the z = 0.55 results.

considered a background component, which includes every type of
object which is not contained in the extremely narrow RS com-
ponent. By looking at available BOSS spectra, we have checked
that the red side of the BC distribution is spectroscopically het-
erogeneous, to the extent that BOSS S/N permits. The existence
of spirals with unusually red colours has been thoroughly docu-
mented in the literature (e.g. Wolf et al. 2009; Bundy et al. 2010;
Masters et al. 2010a,b). Also, the definition of our BC as a back-
ground distribution containing all objects that do not belong to
the extremely concentrated RS is consistent with the presence of
dusty early-type galaxies. In following sections, the expected frac-
tion of BC objects within the entire sample, along with the fraction
of BC objects on the red side of the colour—colour plane, will be
provided.

7.3 Completeness in the CMASS sample

Our deconvolution method allows us to estimate complete-
ness as a function of intrinsic magnitude, colour and redshift.
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Figure 11. Completeness in the CMASS sample. Upper panel: RS com-
pleteness as a function of i-band magnitude in the CMASS sample for nine
redshift slices within the redshift range 0.5 < z < 0.7. Lower panel: over-
all RS completeness as a function of redshift, integrating over the colour
and apparent magnitude limits of the CMASS selection. As expected, the
sample is complete for the RS at the bright end (i < 19.4) across the entire
redshift range. Between i >~ 19.4 and i >~ 19.7, completeness declines quite
abruptly, this effect occurring at progressively fainter magnitudes for higher
redshifts. The overall RS completeness increases from a very low value at
low redshift to ~0.8 at z = 0.55, reaching a plateau around ~0.82 at z 2>
0.52. Analytical forms for completeness as a function of magnitude and
redshift (dashed lines) are given by equations (12) and (13), and best-fitting
parameters are listed in Table 2.

Completeness is defined here as the fraction of objects from the
intrinsic distribution (in intrinsic space) within a given range of
magnitude, colour and redshift that is expected to pass the CMASS
selection.

In the upper panel of Fig. 11, we show completeness as a func-
tion of magnitude for the RS distribution in nine redshift slices from
z = 0.50 to 0.70. As expected, the sample is complete for the RS
at the bright end (i < 19.4) across the entire redshift range. Be-
tween i 2~ 19.4 and i ~~ 19.7, completeness declines abruptly, this
effect occurring at progressively fainter magnitudes for higher red-
shifts. The shape of the completeness function is determined by
the d, cut and the sliding colour-magnitude cut being applied
to an RS distribution that is progressively redder at higher red-
shifts. The bottom panel of Fig. 11 provides the integrated RS
completeness of actual CMASS sample relative to what it would
be, given noise-free photometry as a function of redshift. Here,
we have integrated over the colour and magnitude limits of the
CMASS selection. The RS completeness increases from a small
value at low redshift to ~0.8 at z = 0.55, reaching a plateau of
~0.82 at z 2 0.52. Unfortunately, we can only confidently report
completeness for the RS, due to the extreme incompleteness on the
BC.

The RS completeness as a function of apparent magnitude for a
given redshift slice z is well fitted by the following function (dashed
lines in Fig. 11):

1 =
Clmy) = Serfe {mc—lc} , (12)

The high-mass RS from BOSS 1143

Table 2. Best-fitting parameters for
RS completeness as a function of
i-band apparent magnitude for nine
different redshift slices, according to
the analytical form of equation (12).
Also listed are the best-fitting param-
eters for the integrated RS complete-
ness as a function of redshift, accord-
ing to equation (13). In both cases,
results below z = 0.5 must be consid-
ered pure extrapolation of the higher
redshift results, as completeness is too
low to allow for a reliable deconvolu-
tion of the intrinsic populations.

Redshift I el

0.450 19.133 0.800
0.475 19.533 0.235
0.500 19.662 0.224
0.525 19.750 0.233
0.550 19.813 0.213
0.575 19.851 0.200
0.600 19.864 0.189
0.625 19.880 0.183
0.650 19.887 0.186
0.675 19.893 0.199
0.700 19.895 0.204
m & c

1.712 0.420 0.100

where erfc is the complementary error function. Similarly, the in-
tegrated RS completeness as a function of redshift is well fitted by
the following expression:

2

L, {m,- —c}]
C(z):iczerf —, (13)

where erf is the error function. Table 2 lists best-fitting coefficients
for completeness as a function of magnitude (for nine different
redshift slices) and integrated completeness as a function of redshift.

As previously pointed out, it would be risky to report complete-
ness/LF for the BC, given the insufficient constraints in the CMASS
data. However, we can provide an estimation of the fraction of BC
objects in the sample, i.e. the fi,,. parameter, and the contamination
from intrinsically BC objects on the red side of the colour—colour
diagram. We emphasize here on the difference between the red side,
which is commonly defined by a simple colour demarcation (e.g. g
— i =2.35) in observed space, and the RS, which is a distinct galaxy
population, modelled here as a delta function in the colour—colour
plane, and intrinsically separated from the BC component.

Fig. 12 shows contamination as a function of redshift assuming
two g — i colour demarcations. First, we use a fixed g — i cut at g —
i = 2.35, which has been previously used to separate red and blue
galaxies in the CMASS sample in observed space (Maraston et al.
2013). Under such conditions, the contamination hovers around
~25 per cent within the redshift range considered. In order to ac-
count for the effect of redshift on the colour distributions, we also
assume a redshift-dependent demarcation that is obtained empir-
ically from the observed colour—colour distributions themselves.
This approach decreases the contamination from ~0.30 at z = 0.50
to ~0.22 at z = 0.70. Interestingly, even though the completeness
of the BC increases significantly towards higher redshifts (i.e. we
have more BC objects at high redshift), the fraction of BC objects
that contaminate the red side remains essentially constant. Fig. 12
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Figure 12. The intrinsic fraction of BC objects contaminating the red side of
the colour—colour diagram of the total number of red objects. The red side
is defined here in two different ways: using a fixed redshift-independent
g — i demarcation at g — i = 2.2, 2.3 and 2.4, respectively, and using
a redshift-dependent demarcation that is obtained empirically from the ob-
served colour—colour distributions. Also shown in the plot is the total fraction
of BC objects in the CMASS.

also displays the fraction of BC objects in the sample (the fye pa-
rameter). This fraction does experience a considerable increase as a
function of redshift, from ~36 per cent at z = 0.50 to ~46 per cent at
z =0.70. The total fraction of intrinsic BC objects (not just objects
with blue colours) in the CMASS sample is 37 per cent.

7.4 The high-mass end of the RS LF at z ~ 0.55

Our analytical deconvolution method provides, by construction, a
straightforward approach to determine the LF for both the RS and
the BC, although (due to BC incompleteness) only the first one is
reported here. We have checked that our main conclusions in terms
of colour bimodality and RS completeness are not significantly
affected by systematic error as quantified by the variation in the g
parameter described in Section 6.4. Likewise, our results for the
normalization of the LF are robust. Our results for the redshift-
dependent variation of the LF are more uncertain given the level of
systematic error in our modelling.

As indicated above, the BOSS selection is designed to peak at z ~
0.55. When we move away from this redshift, we encounter several
selection effects. At higher redshift, the effective magnitude range
becomes progressively narrower, with number counts being pushed
to the faint limit of the survey. Also, the fraction of BC objects in
the sample becomes significant. At lower redshift, the BC is not
accessible at all, but completeness in the RS is too low due to the
colour cut to guarantee an efficient deconvolution. The coupling
between these redshift-dependent selection effects, the relatively
narrow overall redshift range and the residual systematics of our
modelling limits the effectiveness of our analysis for the study of
RS evolution internal to the CMASS sample. A better measurement
of RS evolution would require a more accurate determination of
the error model in follow-up work, and/or the incorporation of
higher/lower redshift results into our analysis framework.

7.4.1 LF computation and the Schechter parametrization

The RS LF is modelled as a Schechter function, which is the func-
tional form that we have found to describe better the number counts
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at the bright end. However, the entire CMASS sample is consider-
ably brighter than the best-fitting m,. (and consequently, M, ). For
this reason, the Schechter parametrization that we derive for the RS
LF must be considered only an analytic functional form; making
physical interpretations using the Schechter parameters alone can
be misleading.

We have assumed a fixed value for the faint-end slope, o = —1.
This fixed choice for « is motivated by the insufficient constraints
on the faint-end slope that we can extract from the CMASS sample.
The ¢, Schechter parameter is estimated for the RS component and
for each redshift slice in the way described in Section 6.2. Here, the
maximum volume is assumed to be constant within the correspond-
ing redshift slice. Neglecting any 1/Vy,, effects is a reasonable
approximation considering the width of our redshift slices and the
apparent magnitude range of the CMASS selection. The typical
distance-modulus variation within our redshift slices is ~0.05 mag,
which is of the order (if not smaller) of the typical i-band magnitude
error.

The absolute magnitude M, parameter is directly derived by
transforming the best-fitting (apparent magnitude) m, parameter,
using the standard equation. For the K-correction, we opt to blueshift
the rest-frame redshift to z = 0.55. The motivation for this choice
is twofold. First, the *3i passband is covered within the entire
CMASS redshift range. Secondly, K-correcting to a redshift that
is close to the mean redshift of the sample reduces the correction
itself and, therefore, the uncertainties associated with it. We also
choose not to apply any evolution correction (that accounts for the
intrinsic luminosity evolution of each galaxy from z to the chosen
rest-frame redshift). The size of the CMASS sample allows us to
split the sample into very narrow redshift bins, where evolutionary
effects are negligible.

Average K-corrections to zo = 0.55 are derived, for each bin in the
colour—colour plane, using the extensive grid of physically plausible
rsps models described in Section 5. The fact that the RS intrinsic
distribution is modelled as a delta function on the colour—colour
plane helps simplify the computation here. Moreover, the computed
displacement of the RS centroid within the CMASS magnitude
range is rather small (i.e. <0.1), so we can simply take the average
of the K-correction within this magnitude range. We have checked
that accounting for the colour—-magnitude relation for the RS when
estimating K-corrections does not change our results for the LF in
any significant way.

Fig. 13 shows the redshift evolution of best-fitting Schechter
parameters ®, and *3° M., within the redshift range 0.525 < z <
0.63. The best-fitting linear relations are

@, = [(—0.189 £ 0.372) z + (0.834 = 0.216)]

x 107> Mpc ™ mag™! (14)

0351, = (—1.943 &+ 0.228) z + (—20.658 + 0.132). (15)

The error bars shown in Fig. 13 take into account not only the
statistical errors of the optimization procedure, but also the uncer-
tainty in the modelling, derived from the variation of the best-fitting
B parameter (see Section 6.4). We have opted to use a restricted
redshift range in order to minimize the effect of systematics on the
computation of the RS LF at high and low redshift. Table 3 lists the
Schechter parameters within this redshift range.

Fig. 13 shows a very mild evolution in ®, within the narrow
redshift range considered, with a slope for the best-fitting linear
relation of —0.189 + 0.372. In a shaded region, we provide our
estimate for the best-fitting purely passive model (constant @), i.e.
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Figure 13. Redshift evolution of the computed Schechter parameters ¢,
and %% M, for the bright end of the RS LF. The red dots represent the
fiducial model, and the red dashed line a linear fit to the fiducial model
within the redshift range 0.525 < z < 0.63. The error bars represent the
statistical error of the optimization and the uncertainty in the modelling.
The solid line and shaded regions show the best-fitting constant-¢, model
(purely passive) model and its uncertainty range, respectively.

Table 3. Best-fitting Schechter parameters for the i-band RS LF at multiple
redshift slices from z = 0.525 to 0.63. The LF has been k-corrected to
7z = 0.55. We have assumed o = —1.

Redshift ¢ x 1073 Mpc’3 mag’l 0551,

0.525 0.77 + 0.0930 —21.6504 + 0.047
0.53 0.7749 + 0.0938 —21.6586 + 0.0483
0.535 0.7420 £ 0.0910 —21.6885 + 0.0490
0.54 0.7298 + 0.0903 —21.7115 + 0.0489
0.545 0.7371 £ 0.0878 —21.7272 + 0.0483
0.55 0.7234 + 0.0873 —21.7371 + 0.0491
0.555 0.7846 + 0.0991 —21.7154 + 0.0494
0.56 0.791 + 0.101 —21.7242 + 0.0501
0.565 0.735 £ 0.0956 —21.7572 + 0.0511
0.57 0.679 + 0.0920 —21.7915 £ 0.0522
0.575 0.6 £ 0.0973 —21.7906 + 0.0539
0.58 0.690 + 0.110 —21.7878 £ 0.0586
0.585 0.6636 + 0.105 —21.8047 + 0.0570
0.59 0.6728 £ 0.107 —21.8098 + 0.0588
0.595 0.6724 + 0.105 —21.8246 + 0.0604
0.6 0.6077 £ 0.106 —21.8568 £ 0.061
0.605 0.7698 + 0.102 —21.8253 + 0.0630
0.61 0.7580 £ 0.0986 —21.8450 + 0.0524
0.615 0.7724 £ 0.12 —21.8440 + 0.0661
0.62 0.7430 £ 0.125 —21.8555 + 0.066
0.625 0.7482 + 0.137 —21.8540 + 0.0687
0.63 0.7433 £ 0.141 —21.8627 £ 0.0682

&, = (7.248 £0.204) x 10~* Mpc~> mag~'. The %M,z rela-
tion corresponding to the best-fitting fixed-®, model is also rep-
resented by a shaded region in the bottom panel of Fig. 13. We
estimate that a passive model with a fading rate within the range
A" M, /Az =[1.1-1.9] is consistent with both the data and the
uncertainties in the modelling.

The high-mass RS from BOSS 1145

Due to the fact that the Schechter parameters are covariant, rel-
atively large variations in the Schechter parameters translate into
small variations in the shape of the LF. Fig. 14 presents the RS
LF in six redshift bins within the redshift interval 0.525 < z <
0.65. In each panel, we show the RS LF computed with our fidu-
cial model at the corresponding redshift, the RS LF obtained with
the linear fits to the Schechter parameters of the fiducial model at
the corresponding redshift, our best-fitting passive evolving model
with A%>3M,/Az = 1.5 (the centre value of our high-confidence
interval), the fiducial model at z = 0.55 and an ‘observed’ RS LF
previous to any deconvolution, assuming a fixed colour demarcation
of g — i = 2.35 to separate the red and blue populations. Fig. 14
illustrates the extreme luminosity of the sample, with 50 per cent
completeness limits between —22.1 and —22.7, i.e. 0.6-1 mag
brighter than °3° M, within our high-confidence redshift interval.
Importantly, Fig. 14 shows that the evolution of the massive end RS
LF is consistent with our best-fitting passive-evolution model, with
®, = (7.248 £0.204) x 10~* Mpc~> mag~! and a fading rate of
A%S M, /z ~ 1.5 per unit redshift (recall that values between ~1.1
and 1.9 are possible within the uncertainties of the modelling).
Deviations from passive evolution are only noticeable at the very
brightest end, and at the edges of the redshift range, and are always
within the estimated uncertainties in the computation.

A constant-®, result at the high-mass end contrasts with the
measured evolution of @, at intermediate masses. Results obtained
from samples that directly explore the M, and ®, portion of the LF
indicate that @, for the intermediate-mass red galaxy population
increases by at least a factor of 2 from z = 1 (see, e.g., Faber et al.
2007).

7.4.2 Comparison with previous LF-evolution results at z ~ 0.5

Due to footprint limitations, previous surveys are severely affected
by small-number statistics in the absolute magnitude ranges probed
by BOSS. Here we show how our high-mass estimate compares
with published lower mass RS LFs to the extent that the data allow.
This comparison is presented in Fig. 15 for a representative set of
previous results. As most LFs in the literature are presented in the
B band, the %3 CMASS RS LF at z = 0.5 is transformed into the
rest-frame (Johnson) B-band LF, by taking advantage of the fact
that the i-band filter at z = 0.55 approximates the SDSS g band.
We apply the following transformation from g-band magnitudes to
B-band magnitudes:

B=g+0.1154+0370 x (g — 1) (16)

which is taken from Bell et al. (2004) and Faber et al. (2007). Note
that the redshift slice z = 0.50 is slightly outside our high-confidence
range, so Schechter parameters for the CMASS RS LF are obtained
by using the fits of equation (15). Note that the comparison shown
in Fig. 15 is only approximative, as it involves several assumptions
that can shift our LF slightly along the x-axis. This said, our RS LF
is a continuation of the low-mass RS LFs, within the errors reported
by the aforementioned works. At the bright end, most surveys, as
mentioned before, are very incomplete. Our results are in good
agreement with those from Cool et al. (2012), down to Mz ~ —23.

Fig. 15 confirms that our methodology for inferring the LF of
RS galaxies from BOSS data, including the treatment of photomet-
ric errors, selection cuts and red—blue deconvolution, is sound and
yields measurements that define a consistent picture when viewed
alongside previous measurements. It also shows the unique capa-
bility of BOSS for studying the most massive tail of the massive
galaxy population.
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Figure 14. The bright end of the “3i-band RS LF in six redshift slices between z = 0.525 and 0.65. Each panel shows the RS LF computed with our fiducial
model (solid red line), the RS LF obtained with the linear fits to the Schechter parameters (solid green line) and our best-fitting passively evolving model
(solid blue line). In addition, we show for reference the fiducial model at z = 0.55 (dashed black line). Vertical dashed lines represent, from left to right: a
bright-end reference magnitude corresponding to the value below which the total number of CMASS objects is 25 (purple line); the 0.5 completeness limit of
the sample (green line, including in a shaded region the 0.02 and 0.98 completeness limits) and %3 M, (red). The crosses represent the RS LF previous to any
deconvolution (see the text). Orange shaded regions show the uncertainty in our RS LF estimate, taking into account both the systematic and the statistical
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=—— DEEP2 (Faber et al. 2007), B band
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Figure 15. The CMASS RS LF at z = 0.5 in the B band (approximately) as
compared with previously reported LFs for red galaxies. The %>3i CMASS
RS LF at z = 0.5 is transformed into the rest-frame (Johnson) B-band LF, by
taking advantage of the fact that the i-band filter at z = 0.55 approximates
the SDSS g band. The g-band magnitude is transformed into the B-band
magnitude following equation (16). The following red LFs are used in this
comparison: the DEEP2 Red LF (Faber et al. 2007), the Red LF in the
Bootes field from Brown et al. (2007) using the NDWF and Spitzer IRAC
Shallow surveys, the Red LF in the Bootes field from Cool et al. (2012)
using AGES and the COMBO17 Red LF (Faber et al. 2007). The vertical
line shows the approximate magnitude where completeness in the CMASS
sample drops to 50 per cent. For the DEEP2 and the COMBO17 LFs, the
Schechter fits to the data points are plotted, and Mp = 22.15 is used as the
bright limit of the measurements (see Faber et al. 2007, fig. 6). Our RS LF
is a continuation of the low-mass RS LFs, within the errors reported by the
aforementioned works.

7.4.3 Quantifying the evolution of LRGs: is passive evolution
a good approximation?

Although our method has the potential to provide a definitive answer
to this question, due to the narrow redshift range and the sensitivity
of the Schechter parameters to uncertainties in the error model, we
can only state that our results are consistent with passive evolution.
In this section, we provide a more thorough characterization of this
result.

Although the ®,—z trend that we find for the fiducial model is
quite flat, due to the covariant nature of the Schechter parameters
and the absolute magnitude range considered, drawing conclusions
about the high-mass end from the Schechter parameters alone can
be misleading. In any given scenario, the best way to provide a
quantification of the evolution of the high-mass end of the LF is
to define an absolute magnitude where a given number density is
reached, and track the evolution of such magnitude as a function of
redshift (see Brown et al. 2007; Cool et al. 2008; Marchesini et al.
2014). As noted by Brown et al. (2007), this method is more suitable
for the high-mass end than studying the evolution of the luminos-
ity density (see an example in Wake et al. 2006). Here we define
two absolute magnitudes, My, and M,.«, so that log;o (M) =
—5.5 and log o P (Muax) = —4.5, respectively. We also define the
stretch parameter AM = Myax — M, Which is an alternative
way of parametrizing the massive end of the LF. The values of
log 10 P (Mpin) = —5.5 and log o P (M n.x) = —4.5 are defined so that
the corresponding M,;, and M,,,« are brighter than the 50 per cent
completeness limit at any redshift, but are fainter, at any redshift
slice, than the magnitude range where the data—model deviations
are large and small-number effects become important.

The high-mass RS from BOSS 1147

066 — Fiducial (fit)
--- Passive
x x Fiducial }

0.64

AM(mag)

0.58

0.54 0.56 0.58 0.60 0.62
redshift

Figure 16. Deviation from passive evolution. For the fiducial (crosses), the
fit to the fiducial model (stars) and the best-fitting passive model (which
fades at a rate of 1.5 mag per unit redshift, see the text), we show the
stretch parameter as a function of magnitude. The stretching parameter AM
is defined as the difference My,x — Mmin, Where My, and My« are the
magnitudes corresponding to the fixed number densities 10g;0P(Mpin) =
—5.5 and logg®(Mmax) = —4.5, respectively.

In a passive-evolution (constant-®,) scenario, the stretch-
parameter evolution is flat by definition.? In Fig. 16, we show this
parameter for the fiducial model, the fit to the fiducial model and the
passive model with A%>° M, /z ~ 1.5. Within a scatter of +0.01 mag
(< 1per cent in flux), the significance of the non-passive trend is al-
most zero, as expected given the flat ,—z trend. We have checked
that above z ~ 0.63, M,x becomes very unreliable: the M.x—2
trend flattens completely, which is due to the fact that the effective
magnitude range becomes too narrow.

Better characterizing the exact level of any merging and ongoing
star formation within this galaxy population will require a more
accurate determination of the covariance matrix in follow-up work
(which will also extend our analysis to a wider CMASS redshift
range). An interesting result to follow up on is the fact that our
results are, in principle, consistent with a wide range of fading
rates, some of which appear too high, as compared with previous
literature (recall, however, that this is the first work that explores
such a high-mass range at this redshift with significance). In fact, the
observed, not-completeness-corrected RS LF (obtained applying a
colour cut, not through any deconvolution method) shown as crosses
in Fig. 14 evolves at a rate of ~2 mag per unit redshift, at a number
density of logo®(Mmin) = —5. Although our deconvolution method
predicts plausible fading rates as low as ~1.1 mag per unit redshift,
this is an important aspect to clarify in future works.

7.5 The fading rate of the RS LF as a tool for constraining
the ages of the LRG population

Our results for the evolution of the RS LF are consistent with a
passive-evolution scenario, to the extent that the uncertainties in the
modelling allow. Under such an assumption (or approximation), we

3 Theoretically, one could also conceive a non-passive-evolution scenario
where mergers and star formation conspire in a way that ®, remains con-
stant, but this scenario seems very unlikely.
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Figure 17. The fading rate A%>m;/Az for a set of SSPs as a function of
the age at z = 0.70. Symbols represent both Fsps models covering a wide
range of stellar population parameters and the M09 passive LRG model. The
horizontal lines represent a fading rate of 1.5 & 0.4 mag per unit redshift.
This value corresponds to the fading rate within the redshift range 0.525 <
z < 0.630 for the best-fitting passively evolving fixed-®, model.

can interpret our constraints on A% M, /z as constraints on the age
of these populations. Our approach is distinct from the methods
of previous measurements, which are obtained from wide redshift
ranges and usually a few (< 3) data points. For the first time (at least
at these redshifts), we have enough statistics that we can divide our
redshift range into extremely narrow redshift slices, and provide a
fading rate (under the assumption of passive evolution), much in
the sense of the local derivative of %% M, with respect to redshift.
We note that this inference is only approximate, given the range of
possible A%33 M, /z values that we find.

In Fig. 17, we show the fading rate A%3°M;/Az for a set of single
stellar population (SSP) models, as a function of the age at z =
0.70. In the absence of mergers and star formation (passive), we
can assume that an SSP provides a good description of the SFH
of the stellar population.* In particular, we show both Fsps models
and the Maraston et al. (2009) passive LRG model (M09). For Fsps
models, we show models for three different metallicities and with
or without a moderate amount of dust. The fading rate is clearly
a good tracer of the age of an SSP because it is insensitive to the
model degeneracy. If we assume SSP t-models, the fading rate that
we report at z ~ 0.55 would be consistent with a formation time
for the LRGs of ~3-5 Gyr at z = 0.70, which implies a formation
redshift of z ~ 1.5-3.

Equal conclusions regarding the age of the LRG population are
drawn when comparing our results with the M09 model, as Fig. 17
shows. Maraston et al. (2009) were able to match the observed g, r,
i colours of the LRG population across the redshift range 0.1 < z <
0.7. In order to achieve this goal, the model requires ~3 per cent of

4 Note that it is common in the literature to use the word “passive’ to describe
the evolution of a galaxy population with no ongoing star formation, so the
evolution is due to the fading of the stellar populations. In this context, a
galaxy population undergoing mergers can have a ‘passively evolving stellar
population’, provided that mergers do not result in new star formation.
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the stellar mass to be in old metal-poor stars. Maraston et al. (2009)
also show that empirical stellar libraries such as the Pickles library
(Pickles 1998) provide considerably better fits than theoretical
libraries.

Even though this is still a coarse measurement, the formation
redshift (and age) that we measure using the fading rate of the
RS LF is consistent with results from high-redshift quiescent red
galaxies at 1.5 < z < 2 (using also SSPs). The spectroscopically
derived SSP-equivalent ages of these systems at their corresponding
redshifts are 1-2 Gyr (Bell et al. 2004; Whitaker et al. 2013; Onodera
et al. 2015; Mendel et al. 2015), which correspond to a truncation
redshift for the SSP model of zy,,c = 1.5-2.5. This suggests that
these high-redshift quiescent galaxies might be the progenitors of
the very massive LRG population at z = 0.55 that we target in
BOSS. As fig. 4 from Mendel et al. (2015) shows, the ages that we
measure at 7 = 0.55 appear older than what has been previously
measured at z < 1 (see e.g. Choi et al. 2014), although tighter
constraints are needed to confirm this scenario.

7.6 The colour evolution of the high-mass end of the RS

The intrinsic (g — i) colour of the RS at our reference magnitude
can be well approximated by the following linear relation:

(g —i)rs = (3.217 £0.074) z + (0.996 £ 0.042) a7

within the approximate redshift range 0.5 < z < 0.7. Note that
these are observer’s-frame, apparent colours. Intrinsic here means
noise-free, i.e. relative to the intrinsic distributions.

The evolution of the RS centroid is tightly connected to the evo-
lution in the stellar populations of these systems. However, stellar
population parameters are very degenerate, in terms of their effect in
a galaxy SED. Addressing the implications of our colour-evolution
measurement requires a detailed stellar population analysis that is
out of the scope of this paper. However, it is interesting to compare
our results with the colours predicted by the M09 model, which
is the result of a comprehensive stellar population fitting analysis
specifically aimed at matching the observed colours of the LRG
population as a function of redshift (see Maraston et al. 2009). This
comparison is shown in Fig. 18, for the intrinsic (g — i) colour of
the RS at our reference magnitude.

- - M09, age (at z=0.7) =7Gyr
- - M09, age (at z=0.7) =6Gyr
- - M09, age (at z=0.7) =5Gyr
32 - M09, age (at z=0.7) =4Gyr
- - M09, age (at z=0.7) =3Gyr
M09, age (at z=0.7) =2Gyr
Intrinsic Colours

(o))
2.8
TModeI age
2.6
24
0.50 0.55 0.60 0.65
redshift

Figure 18. The redshift evolution of the (g — i) centroid of the RS in
intrinsic space, obtained using our fiducial model, as compared with the
M09 model. Due to the magnitude dependence of the centroid, we show the
value at the reference magnitude i = 19 (Yy + Zp). The arrow is added for
the sake of clarity to indicate that dashed lines correspond to progressively
older models as we move up in the plot.
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The intrinsic RS colours are consistent with models of ages be-
tween 3 and 4 Gyr at z = 0.70, which is also consistent with the
preliminary ages that we obtain from our fading rate measurement
(3-5 Gyr). Another way to look at this is the following: the M09
models that best fit the colours of the RS display a fading rate at z
~ 0.55 of 1.3-1.7 mag per unit redshift, which is consistent with
our LF measurement. Interestingly, the slope of the colour trend is
in very good agreement with the predictions from Maraston et al.
(2009).

In follow-up work, further constraints on the stellar population
properties of RS galaxies can be placed by studying the evolution of
average RS spectra. Our red+blue photometric population model
can be extended to deconvolve average spectra of red and blue
galaxies within the BOSS sample.

8 DISCUSSION

We have developed a method for deconvolving the intrinsic colour—
colour-magnitude distributions from the effect of photometric er-
rors, correlations between bands and selection in the BOSS CMASS
sample. Our method, which is based on a forward-modelling ap-
proach, lays the foundation for future galaxy-evolution studies us-
ing not only BOSS, but also future DE surveys such as eBOSS or
DESI. The photometric deconvolution of spectroscopic quantities
is addressed in Montero-Dorta et al. (2016).

A key element in our deconvolution method is the error model
derived from Stripe 82 multi-epoch data. By using this error model,
the shape of the intrinsic distributions can be obtained directly
from the data, without the need for making any strong assumptions
based on SPS models. Our modelling is, therefore, not based on
any arbitrary definition of ‘red” and ‘blue’ galaxies, but reflects the
phenomenology of the colour—colour-magnitude diagrams (see a
similar philosophy in Taylor et al. 2015).

Our results indicate that the high-mass RS at z ~ 0.55 is con-
sistent with a delta function in the colour—colour plane, for a given
magnitude and narrow redshift slice, within the resolution limit im-
posed by photometric uncertainties. We estimate that a width for the
RS larger than ~0.05 mag would be inconsistent with the observed
scatter and our error model. Below this approximate limit, adopting
a non-zero value for the width of the RS has a negligible effect on
our results. Note that this description is, in principle, only valid at
the bright end (*>*M; < —22/ — 22.5). Importantly, in order to fit
the number counts, our model requires a colour—-magnitude relation
for the RS, with a slope of <0.05 mag (colour).

Our results are qualitatively consistent with previous results
for the RS. There is some consensus that the typical scatter in
the colour—magnitude diagram of early-type galaxies is signifi-
cantly below 0.1 mag at intermediate redshifts for the clusters’ RS:
~0.05 mag is the observed scatter measured by Bower et al. (1992),
with at least 0.03 mag due to observational errors. In the field,
the intrinsic scatter is a factor of 2 larger: 0.1-0.15 mag (Tanaka
et al. 2005; Whitaker et al. 2010; Fritz et al. 2014). The majority of
previously reported colour—colour diagrams are presented for sig-
nificantly wider redshift ranges and usually also larger magnitude
bins (we use redshift intervals of Az = 0.01). The combination
of the colour-magnitude relation and the redshift effect can cer-
tainly account for the extra scatter measured by previous works.
This is shown by comparing our colour—colour diagrams with those
extracted from the PRIMUS survey at z ~ 0.5.

The high-mass BC, on the other hand, is defined within our mod-
elling as the background component that is necessary to fit the
observed distributions. This component is well described by an ex-
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tended Gaussian function on the colour—colour plane, centred at g
— i~ 1.7. This Gaussian distribution intrinsically extends through
the red side. Note that by ‘blue cloud’ we do not necessarily mean
‘young’, ‘late-type’ or ‘spiral’, but a distribution of spectroscopi-
cally and photometrically heterogeneous objects that can be statis-
tically separated from the narrow distribution that we call ‘RS’. The
fact that our model predicts that a fraction of BC objects would have
intrinsically redder colours than the RS itself is in agreement with
results from Taylor et al. (2015). We estimate that the fraction of in-
trinsically BC objects on the red side of the colour—colour diagram
is ~25-30 per cent. This result is also quantitatively consistent with
Taylor et al. (2015), who find that a galaxy observed right on the lo-
cus of the R distribution still has a 20-25 per cent chance of having
come from the bluer B population. The total fraction of intrinsically
BC objects in the CMASS sample is 37 per cent.

From a morphological point of view, the fact that the CMASS
sample is comprised of a significant fraction of non-RS galaxies
is consistent with results from Masters et al. (2011), who studied
the morphology of 240 BOSS galaxies at 0.3 < z < 0.7 using
both Hubble Space Telescope imaging and COSMOS data. Quan-
titatively, however, notable discrepancies exist. In particular, Mas-
ters et al. (2011) find that 29 per cent of the CMASS galaxies in
their 240-object sample did not present an early-type morphology;
the majority are identified as late-type galaxies. Interestingly, only
~10percent of these objects lie on the red side of the g — i =
2.35 demarcation, which would suggest a much more concentrated
colour distribution for the BC, as compared to our model. Note that,
however, uncertainties associated with mapping observed colours
to morphologies are also well documented.

There is only limited resolution that can be attained using pho-
tometric data, so the inclusion of spectroscopic data into the mod-
elling should help alleviate some of the above tensions. This aspect
of the modelling, i.e. the connection between the RS and the BC
and the role of the so-called green valley region in between, is key
to understanding the way galaxies evolve (see examples of studies
discussing these topics in Bundy et al. 2010 and Wolf et al. 2009).

An important result of our analysis is the quantification of RS
completeness in the CMASS sample, as a function of colour and
apparent magnitude. The sample is complete in apparent magni-
tude below i >~ 19.5, where completeness starts to decline (the exact
magnitude depends on the redshift slice considered). Overall com-
pleteness for the RS, integrated within the limits of the CMASS
selection, remains above ~0.8-0.85 at z 2 0.53. RS completeness
is, by itself, a key result to the science that can be pursued with the
CMASS sample.

We have checked that uncertainties in our error model and sys-
tematics have, qualitatively, little effect on the above results. In order
to mitigate the effect of these uncertainties in the computation of the
RS LF, we have restricted our analysis to a redshift range around z =
0.55, in particular from z = 0.52 to 0.63. Even though our statistics
are large, placing tight constraints on the evolution of the RS LF
from such a narrow redshift range requires very high precision in the
deconvolution procedure. For this reason, we can only state that the
evolution of the RS LF is consistent with that of a passively evolv-
ing model, given the uncertainties in the modelling. In particular,
our results indicate that, within the approximate absolute magnitude
range "3 M; < —22, the RS LF is well described by a Schechter
function of constant ®, = (7.248 £ 0.204) x 10~* Mpc—3 mag~!,
passively fading at a rate of 1.1-1.9 mag per unit redshift.

There is consensus in the literature that the effect of mergers on
the evolution of massive RS galaxies is considerably less signifi-
cant than that of their less massive counterparts. However, different
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works differ in the extent that this evolution approximates that of a
purely passively evolving galaxy population. Note that the concept
of pure passive evolution is only an approximation, as mergers have
been observed involving massive RS galaxies (e.g. Perseus A). In
practice, we use this concept to describe a situation where the oc-
currence of mergers and star formation within a given population is
low enough that it does not affect the global evolution of the popu-
lation, as measured from statistics such as the LF. If confirmed, our
results would be in agreement with LF-evolution results from Wake
et al. (2006) and Cool et al. (2008). Using spectral analysis, Cool
et al. (2008) also conclude that the evolution in the average LRG
spectrum also supports a purely passive evolution for the LRGs
since z ~ 0.9. This idea is reinforced by subsequent work from
Maraston et al. (2013). From a galaxy-clustering perspective, the
evolution in the clustering properties of LRGs from the BOSS sam-
ples alone also appears to support the idea of a passively evolving
galaxy population (see Guo et al. 2013, 2014).

Some authors, however, have reported results that indicate that
the effect of mergers is noticeable within this population, when
studying the LF or clustering. Brown et al. (2007) report small de-
viation from passive evolution for the red LF using the NDWF and
Spitzer IRAC Shallow surveys. Also, Tojeiro et al. (2012) conclude
that the LRG population at z < 0.7 evolves, although slowly, i.e.
less than 2 per cent by merging, when the two samples are properly
matched and weighted. From cross-correlation function measure-
ments, Masjedi et al. (2006) find results that indicate that major dry
merger may still play a role in the late evolution of LRGs. Lidman
et al. (2013) also found a major merger rate of 0.38 + 0.14 merg-
ers per Gyr at z ~ 1, for BCGs using a sample of 18 distant galaxy
clusters with over 600 spectroscopically confirmed cluster members
between them. Very recently, Bernardi et al. (2016) have reported
that, while the evolution of the LF/SMF from BOSS to the SDSS is
consistent with a passive-evolution scenario, this appears not to be
the case for the evolution of clustering. SDSS galaxies appear to be
less strongly clustered than their BOSS counterparts, which seems
to rule out the passive-evolution scenario.

Within the uncertainties of the study, we do not find conclusive
evidence of non-passive evolution. From our detailed analysis of
the BOSS data, we have identified several ways to improve our
modelling, so a better characterization of the exact level of mergers
and star formation can be provided. First, we can attempt to reduce
the uncertainty in our covariance matrix model, which will reduce
the error bars in our Schechter parameters and allow us to explore a
wider redshift range in BOSS. Secondly, we can combine our BOSS
results with the SDSS, the BOSS LOZ sample or the eBOSS LRG
sample. The techniques that we have presented in this paper lay the
ideal framework to perform this study in a consistent way. This is
a similar approach as the one followed by Bernardi et al. (2016),
but in the aforementioned paper the authors acknowledge that in-
completeness in the BOSS sample is not treated rigorously, which
might be the cause of some of the tensions reported. Finally, we can
explore the possibility of incorporating tighter a priori constraints
on the BC from complementary data sets in a consistent way.

9 FUTURE APPLICATIONS: THE INTRINSIC
HALO-GALAXY CONNECTION

In Montero-Dorta et al. (2016), we use our completeness/intrinsic
distribution results within a similar framework as the one presented
here to measure the L—o relation at z ~ 0.55. These two works
provide a detailed characterization of the high-mass RS population
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at z ~ 0.55, which can be injected into a broader cosmological
framework, in a consistent way.

In particular, our intrinsic characterization can be used, in com-
bination with N-body numerical simulations, to place constraints
on the halo—galaxy connection. Importantly, this will provide a new
perspective to BOSS clustering science, which so far has entirely
focused on observed distributions. In essence, our modelling can
be combined with state-of-the-art publicly available N-body cos-
mological simulations, to generate hyper-realistic mock catalogues
for different cosmologies and where the halo—galaxy link is conve-
niently parametrized. The connection between galaxies and haloes
will be performed by applying the techniques of halo occupation
distributions (e.g. Berlind & Weinberg 2002; Zehavi et al. 2005)
and halo abundance matching (e.g. Vale & Ostriker 2004; Trujillo-
Gomez et al. 2011). By applying our error model and the selection
criteria to the resulting set of catalogues and fitting for the observed
clustering properties and the observed LF, constraints on cosmolog-
ical parameters and on the physically motivated parameters of the
intrinsic halo—galaxy connection model can be placed.

In addition to the cosmological applications, our redshift-
dependent LF can provide informative priors for the determination
of spectroscopic redshifts from low-S/N survey data in future en-
hancements to the redshift measurement pipeline for BOSS and sub-
sequent surveys (Bolton et al. 2012). Also, we may use our red+-blue
photometric population model and the PDSO method to deconvolve
average spectra of red and blue galaxies within the BOSS sample.
Finally, the forward-modelling techniques developed in this work
can be applied to quantify the evolution of massive galaxies as a
single population across redshift from z =~ 1 down to z = 0 by in-
cluding other galaxy samples from SDSS-I, -1, -IIT and -IV. This can
provide tighter constraints on the evolution of massive RS galaxies.

10 SUMMARY

The DR10 CMASS sample of the BOSS survey contains ~600 000
galaxies (0.45 < z < 0.70) covering, with unprecedented statistics,
the very massive end of the RS population at z ~ 0.55. Such a huge
sample has great potential to shed light into the evolution of mas-
sive galaxies, but it also presents significant challenges. We have
developed a forward-modelling method based on a UML approach
for deconvolving the intrinsic CMASS distributions from photo-
metric blurring and accounting for selection effects. Importantly,
our approach can be applied to other future low-S/N DE surveys.
The method allows us to (1) determine the best-fitting intrinsic (g —
r) colour—(r — i) colour—i-band magnitude distribution for the RS
at intermediate redshifts with unprecedented accuracy, including a
correction for the contamination from BC objects in the sample; (2)
determine RS completeness in the sample as a function of colours
and magnitudes; (3) compute the bright end of the RS LE.

The main conclusions of our analysis can be summarized as
follows.

(i) Our characterization of completeness in the CMASS sample
lays the foundation for a variety of galaxy-evolution and LSS studies
with BOSS.

(i1) The high-mass RS at z ~ 0.55 is extremely compact in the
colour—colour plane. At fixed magnitude and in a narrow redshift
slice, the distribution is consistent with a single point, to the extent
that photometric errors allow. In order to fit the observations, the
width of the RS cannot be larger than ~0.05 mag.

(iii) The high-mass BC, defined as a spectroscopically and pho-
tometrically heterogeneous population clearly distinguishable from
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the RS, can be modelled as a much more extended Gaussian. Our
intrinsic distributions reflect purely the phenomenology of the
colour—colour plane.

(iv) We have computed the RS LF in several redshift slices around
z =0.55, i.e. within the redshift range 0.52 < z < 0.63. Within this
narrow range, the evolution of the RS LF seems consistent with
passive evolution, within the uncertainties in the modelling.

(v) The fading rate measured from the RS LF implies a forma-
tion redshift of z = 1.5-3 for the LRGs, under the SSP assumption.
This formation redshift is in agreement with that derived from spec-
troscopy studies of high-redshift quiescent galaxies (1.5 < z < 2),
which suggests that these galaxies might be the progenitors of mas-
sive LRGs at z = 0.55.

(vi) The characterization of the intrinsic properties of the high-
mass RS at z ~ 0.55 presented in this work and in Montero-Dorta
et al. (2016) has unique potential to shed light into the intrinsic
halo—galaxy connection for this galaxy population.
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APPENDIX A: MODELING THE COVARIANCE
MATRIX WITH STRIPE 82

We use Stripe 82 multi-epoch data to model the blurring effect
produced by photometric errors and correlations between different
ugriz bands. This effect is described by the covariance matrix. Stripe
82 is the SDSS stripe along the celestial equator in the Southern
Galactic Cap, covering the region defined by —50° < ajo000 < 59°;
—1925 < 85000 < 1225, i.e. a total of ~270 sq. deg. in the sky.
What makes Stripe 82 particularly useful for this work is the fact
that it was observed multiple times, as many as ~80 times before
the final release of the Stripe 82 data base (usually as part of the
SDSS-II supernova survey; Frieman et al. 2008). The Stripe 82 data
base is comprised of a total of 303 runs (continuous scans of the
imaging telescope), plus two co-add runs. These runs correspond
to different reruns, which is how the processing algorithm used
is indicated. By imposing the latest Stripe 82 rerun, our Stripe 82
data base is reduced to 120 runs (plus 30 extra runs which are not
included in the official data base but have some overlap with the
Stripe 82 region). The total number of detections, of all types, in
this data base exceeds 100 million.

In order to identify unique objects within the data base, we use
the identification number THING_ID, which is the same for all
detections of the same object across different runs. Each run in the
data base (and in the SDSS in general) is divided into a number of
fields, this number varying for different runs. For each field, all the
needed individual-detection photometric information is contained in
the PhotoObj files. Geometric and general photometric information
for the corresponding field and run is stored in the upper-level
PhotoField and PhotoRun files, respectively. A number of fields
from different runs overlap in our Stripe 82 data base, thus giving
rise to multiple observations for the same object.

The THING_ID identification number allows us to collect all
detections for the same object, but the information about how each
detection is resolved in the survey is stored in a bitmask called
RESOLVE_STATUS. Only objects with the SURVEY_PRIMARY
bit of the RESOLVE_STATUS flag set are used for the galaxy
targeting algorithms. In order to collect a set of detections for each
unique object, we must replace this condition. Thus, we require
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Figure Al. The distribution of the number of detections (Ngetect), the i-band
magnitude, the g — r colour and the r — i colour for the entire multi-epoch
Stripe 82 summary catalogue. In the last three panels, a shaded region
highlights the approximate range covered by the CMASS sample.

all detections to have the RUN_PRIMARY bit set. This criterion
guarantees that detections are unique within each run.

Finally, we require that all detections pass the SDSS photometric
pre-selection criteria (Dawson et al. 2013, section 2.2), including
the photometric flag cuts and the star/galaxy separation. Note that
the CALIB_STATUS bitmask allows us to exclude all detections
observed in non-photometric conditions, i.e. detections in fields
that fail to satisfy the high photometric quality of the survey. Our
final Stripe 82 multi-epoch summary catalogue contains a total of
5173 086 objects that were ever selected (in any epoch) as candi-
date galaxy targets. Each object has an average of ~10 associated
detections. For each object in the catalogue, we compute the av-
erage i-band magnitude, g — r colour and r — i colour within the
corresponding set of detections. We also calculate for each object
the standard deviations of each variable (011, 025, 033 for i-band
magnitude, g — r colour and r — i colour, respectively) and the cor-
relations for the cross terms (012, P13, 023). These elements are all
that is needed to compute the covariance matrix for each individual
object.

In Fig. A1, we present some statistical properties of our Stripe 82
multi-epoch catalogue. There is a large fraction of objects for which
we only have one or two detections (~20 per cent). These objects
are excluded from our analysis, as we set a number of detections
threshold at Ngeeet = 5 for the computation of individual statistics.

The covariance matrix shows some non-negligible dependence
on magnitude and colours. In order to model this dependence, we

Table Al. The mean value and standard deviation for the
six different statistical quantities for which we model the
colour and magnitude dependence (the standard deviation
terms o'11, 022, 033 and the correlation terms p12, P13, 023).
The indices 1, 2, 3 correspond to i, (¢ — r) and (r — i),

respectively.

element (element) o (element)
o1l +0.166 0.075
g +0.357 0.301
033 +0.138 0.075
P12 +0.006 0.048
P13 —0.266 0.103
023 —0.335 0.113
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Figure A2. Performance of the best-fitting quadratic model for the dependence of the standard deviation terms o011, 022, 033 and the correlation terms p12,
p13 and pa3 terms on colour and magnitude. The indices 1, 2, 3 correspond to i, (¢ — r) and (r — i), respectively. In each panel, the red solid line and the
red dashed line represent the average of the corresponding term in bins where ¢ — i > 2.35 in the data and in the model, respectively. The shaded red region
represents the 2o scatter for the data, and the red error bars the corresponding 2o scatter for the model. In a similar format but in blue colours, we show the

average of each term for bins that satisfy g — i < 2.35.

first split our Stripe 82 sample into 3D bins of magnitude, g — r
colour and r — i colour, with a constant bin size of AX = 0.1, AY
= 0.1 and AZ = 0.1. In each 3D bin, we compute the median of
magnitude, colours, standard deviation terms and correlation terms,
as long as the bin contains at least 25 galaxies. Finally, we assume
a quadratic dependence on magnitude and colours for each of the
three standard deviation terms and three correlation terms. As an
example, the o, term is modelled as follows:

on(X,Y,Z) = i X+ el Y24 cl, 7% + el XY

telYZ 4o, XZ + el X 4+ e)'Y + e Z 4o
(AD)

with nine different coefficients. Each of the six individual fits is
performed only within the region defined by the following ranges:
16 <i<22,0<g—r<3and0 < r—i< 1.5, which exceeds the
CMASS selection region.

In Table A1, we provide the average value and the standard de-
viation for the six different statistics that we model. As expected,
the photometric errors on g — r are considerably larger than the
photometric errors on the i-band magnitude and r — i. This effect is
noticeable in Fig. 2, as the scatter in the observed CMASS distribu-
tions is larger along the g — r axis. Obviously, no correlation exists
between the i-band magnitude and the g — r colour, and a negative
correlation is present between the i-band magnitude and the r — i
colour and between the g — r colour and the r — i colour.

A visual inspection of the fits reveals that the quadratic model
is capable of reproducing the general trends reasonably well. In an
attempt to illustrate this, we present, in Fig. A2, the dependence

of each term on apparent magnitude, for two different subsamples,
defined by a colour demarcation at g — i = 2.35. The general
conclusion is that the best-fitting quadratic model reproduces the
average magnitude dependences quite accurately at the red side of
the colour—colour plane (at least up to g — i 2~ 2), but some discrep-
ancies appear at the blue side. These discrepancies are consistent
with the typical scatter in these relations.

Finally, we must account for possible overall inconsistencies
in the photometric quality between the Stripe 82 and the SDSS
footprint. To this purpose, we allow our covariance matrix to be
multiplied by a scale factor that could in principle have a small
dependence on magnitude but should be close to 1. The value or
functional form for this factor, that we call 8(i), will be empirically
determined as part of the modelling of the intrinsic distributions. A
visual inspection of the residuals shows that a constant value for
has opposite effects towards each side of the CMASS magnitude
range. In particular, it tends to make the distributions too broad at the
bright end and too narrow at the faint end. In order to avoid these
effects, we adopt the following empirically developed functional
form for B(i):

1 + 100-6(X~ig+Ad) 12

where X is the i-band apparent magnitude and i = 19.5.

This paper has been typeset from a TX/IATEX file prepared by the author.
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