7 research outputs found

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)

    An evidence-based approach to establish the functional and clinical significance of copy number variants in intellectual and developmental disabilities

    No full text
    Purpose: Copy number variants have emerged as a major cause of human disease such as autism and intellectual disabilities. Because copy number variants are common in normal individuals, determining the functional and clinical significance of rare copy number variants in patients remains challenging. The adoption of whole-genome chromosomal microarray analysis as a first-tier diagnostic test for individuals with unexplained developmental disabilities provides a unique opportunity to obtain large copy number variant datasets generated through routine patient care.Methods: A consortium of diagnostic laboratories was established (the International Standards for Cytogenomic Arrays consortium) to share copy number variant and phenotypic data in a central, public database. We present the largest copy number variant case-control study to date comprising 15,749 International Standards for Cytogenomic Arrays cases and 10,118 published controls, focusing our initial analysis on recurrent deletions and duplications involving 14 copy number variant regions.Results: Compared with controls, 14 deletions and seven duplications were significantly overrepresented in cases, providing a clinical diagnosis as pathogenic.Conclusion: Given the rapid expansion of clinical chromosomal microarray analysis testing, very large datasets will be available to determine the functional significance of increasingly rare copy number variants. This data will provide an evidence-based guide to clinicians across many disciplines involved in the diagnosis, management, and care of these patients and their families.<br/

    Genome-wide Generation and Systematic Phenotyping of Knockout Mice Reveals New Roles for Many Genes

    No full text

    Author Correction: CHD3 helicase domain mutations cause a neurodevelopmental syndrome with macrocephaly and impaired speech and language

    Get PDF
    The original version of this Article contained an error in the spelling of the author Laurence Faivre, which was incorrectly given as Laurence Faive. This has now been corrected in both the PDF and HTML versions of the Article
    corecore