938 research outputs found

    3D MHD simulation of polarized emission in SN 1006

    Get PDF
    We use three dimensional magnetohydrodynamic (MHD) simulations to model the supernova remnant SN 1006. From our numerical results, we have carried out a polarization study, obtaining synthetic maps of the polarized intensity, the Stokes parameter QQ, and the polar-referenced angle, which can be compared with observational results. Synthetic maps were computed considering two possible particle acceleration mechanisms: quasi-parallel and quasi-perpendicular. The comparison of synthetic maps of the Stokes parameter QQ maps with observations proves to be a valuable tool to discern unambiguously which mechanism is taking place in the remnant of SN 1006, giving strong support to the quasi-parallel model.Comment: 6 pages, 4 figures, accepted by MNRA

    Simulation of dark lanes in post--flare supra--arcades

    Full text link
    Using two simulations of 1.5D, for the first time, in Costa et al. (2009) and Shulz et al. (2010) we numerically reproduce the observational dark inflows described in Verwichte et al. (2005). We show that the dark tracks can be explained as hot plasma vacuums generated upstream of a slow magnetoacoustic shock wave produced by a localized deposition of energy. In this work, we show that the overall 2D results are in agreement with the observational behaviour. However they show a slight shift in the characteristic parameter with respect to those found previously. Also, we confirm qualitatively the behaviour found in the previous papers, i.e. for a given numerical domain the period of the kink--like structure is a function of the magnetic field intensity: larger periods are associated with lower magnetic field intensities. Contrary to the 1D result -where the sunward dynamic is independent of the magnetic field intensity due to its exclusively waveguide role- in the 2D simulation the sunward speed is larger for larger values of the magnetic field. This can be interpreted as the capability of the low coronal plasma to collimate the deposition of energy into the magnetic field direction. The moving features consistent of low--density and high--temperature plasma cavities have larger inside values of the structuring parameter beta than the neighboring media. Thus, the voids seem to be the emergence structures of a whole nonlinear interacting plasma context of shocks and waves more than voided plasma loops magnetically structured.Comment: 5 pages, 5 figure

    Determination of a Wave Function Functional

    Full text link
    In this paper we propose the idea of expanding the space of variations in standard variational calculations for the energy by considering the wave function ψ\psi to be a functional of a set of functions χ:ψ=ψ[χ]\chi: \psi = \psi[\chi], rather than a function. In this manner a greater flexibility to the structure of the wave function is achieved. A constrained search in a subspace over all functions χ\chi such that the wave function functional ψ[χ]\psi[\chi] satisfies a constraint such as normalization or the Fermi-Coulomb hole charge sum rule, or the requirement that it lead to a physical observable such as the density, diamagnetic susceptibility, etc. is then performed. A rigorous upper bound to the energy is subsequently obtained by variational minimization with respect to the parameters in the approximate wave function functional. Hence, the terminology, the constrained-search variational method. The \emph{rigorous} construction of such a constrained-search--variational wave function functional is demonstrated by example of the ground state of the Helium atom.Comment: 10 pages, 2 figures, changes made, references adde

    VLBI and Archival VLA and WSRT Observations of the GRB 030329 Radio Afterglow

    Full text link
    We present VLBI and archival Karl G. Jansky Very Large Array (VLA) and Westerbork Synthesis Radio Telescope (WSRT) observations of the radio afterglow from the gamma-ray burst (GRB) of 2003 March 29 (GRB 030329) taken between 672 and 2032 days after the burst. The EVLA and WSRT data suggest a simple power law decay in the flux at 5 GHz, with no clear signature of any rebrightening from the counter jet. We report an unresolved source at day 2032 of size 1.18±0.131.18\pm0.13 mas, which we use in conjunction with the expansion rate of the burst to argue for the presence of a uniform, ISM-like circumburst medium. We develop a semi-analytic method to model gamma-ray burst afterglows, and apply it to the 5 GHz light curve to perform burst calorimetry. A limit of <0.067< 0.067 mas yr−1^{-1} is placed on the proper motion, supporting the standard afterglow model for gamma-ray bursts.Comment: 24 pages, 5 figure

    Recursive internetwork architecture, investigating RINA as an alternative to TCP/IP (IRATI)

    Get PDF
    Driven by the requirements of the emerging applications and networks, the Internet has become an architectural patchwork of growing complexity which strains to cope with the changes. Moore’s law prevented us from recognising that the problem does not hide in the high demands of today’s applications but lies in the flaws of the Internet’s original design. The Internet needs to move beyond TCP/IP to prosper in the long term, TCP/IP has outlived its usefulness. The Recursive InterNetwork Architecture (RINA) is a new Internetwork architecture whose fundamental principle is that networking is only interprocess communication (IPC). RINA reconstructs the overall structure of the Internet, forming a model that comprises a single repeating layer, the DIF (Distributed IPC Facility), which is the minimal set of components required to allow distributed IPC between application processes. RINA supports inherently and without the need of extra mechanisms mobility, multi-homing and Quality of Service, provides a secure and configurable environment, motivates for a more competitive marketplace and allows for a seamless adoption. RINA is the best choice for the next generation networks due to its sound theory, simplicity and the features it enables. IRATI’s goal is to achieve further exploration of this new architecture. IRATI will advance the state of the art of RINA towards an architecture reference model and specifcations that are closer to enable implementations deployable in production scenarios. The design and implemention of a RINA prototype on top of Ethernet will permit the experimentation and evaluation of RINA in comparison to TCP/IP. IRATI will use the OFELIA testbed to carry on its experimental activities. Both projects will benefit from the collaboration. IRATI will gain access to a large-scale testbed with a controlled network while OFELIA will get a unique use-case to validate the facility: experimentation of a non-IP based Internet

    Deoxyfluorination tunes the aggregation of cellulose and chitin oligosaccharides and highlights the role of specific hydroxyl groups in the crystallization process

    Get PDF
    Cellulose and chitin are abundant structural polysaccharides exploited by nature in a large number of applications thanks to their crystallinity. Chemical modifications are commonly employed to tune polysaccharide physical and mechanical properties, but generate heterogeneous mixtures. Thus, the effect of such modifications is not well understood at the molecular level. In this work, we examined how deoxyfluorination (site and pattern) impact the solubility and aggregation of well-defined cellulose and chitin oligomers. While deoxyfluorination increased solubility in water and lowered the crystallinity of cellulose oligomers, chitin was much less affected by the modification. The OH/F substitution also highlighted the role of specific hydroxyl groups in the crystallization process. This work provides guidelines for the design of cellulose- and chitin-based materials. A similar approach can be imagined to prepare cellulose and chitin analogues capable of withstanding enzymatic degradation

    Submerse: Visualizing Storm Surge Flooding Simulations in Immersive Display Ecologies

    Full text link
    We present Submerse, an end-to-end framework for visualizing flooding scenarios on large and immersive display ecologies. Specifically, we reconstruct a surface mesh from input flood simulation data and generate a to-scale 3D virtual scene by incorporating geographical data such as terrain, textures, buildings, and additional scene objects. To optimize computation and memory performance for large simulation datasets, we discretize the data on an adaptive grid using dynamic quadtrees and support level-of-detail based rendering. Moreover, to provide a perception of flooding direction for a time instance, we animate the surface mesh by synthesizing water waves. As interaction is key for effective decision-making and analysis, we introduce two novel techniques for flood visualization in immersive systems: (1) an automatic scene-navigation method using optimal camera viewpoints generated for marked points-of-interest based on the display layout, and (2) an AR-based focus+context technique using an auxiliary display system. Submerse is developed in collaboration between computer scientists and atmospheric scientists. We evaluate the effectiveness of our system and application by conducting workshops with emergency managers, domain experts, and concerned stakeholders in the Stony Brook Reality Deck, an immersive gigapixel facility, to visualize a superstorm flooding scenario in New York City

    A METHODOLOGY FOR SIMULATION AND ASSESSMENT OF CONCENTRATED SOLAR POWER PLANTS

    Get PDF
    A thermal analysis of Concentrated Solar Power plants is conducted considering parabolic trough collectors (PTC), linear Fresnel collectors using direct steam generation scheme (LFC-DSG) and central receiver system using both molten nitrate salts (CRS-MNS) direct steam generation (CRS-DSG). The plant capacities were ranged from 50 to 800 MWth and the analysis focuses on the environmental conditions of selected locations in South America. Thus, the study considers a parametric analysis of the main design parameter for different plant scales, in terms of the thermal performance indicators as solar field aperture area, power block rating capacity and plant annual efficiencies. The annual production of the plants is calculated by using the Transient System Simulation program (TRNSYS), which considers a new component library developed for that purpose. This library is based in the open access models developed by the U.S National Renewable Energy Laboratory and currently employed by the System Advisor Model (SAM) program. In addition, a new fluid properties subroutine compatible with TRNSYS codes standards was developed, which uses the freeware CoolProp library. These approaches allowed to modify and create new configurations for CSP plants, e.g. thermal storage for the DSG scheme
    • …
    corecore