
16
Recursive InterNetwork Architecture,
Investigating RINA as an Alternative

to TCP/IP (IRATI)

Eduard Grasa1, Leonardo Bergesio1, Miquel Tarzan1, Eleni Trouva2,
Bernat Gaston1, Francesco Salvestrini3, Vincenzo Maffione3,

Gino Carrozzo3, Dimitri Staessens4, Sander Vrijders4,
Didier Colle4, Adam Chappel5, John Day6

and Lou Chitkushev6

1Fundacio 12CAT, Spain
2University of Patras, Greece
3Nextworks, Italy
4University of Ghent, Belgium
5Interoute, UK
6Boston University, USA

16.1 Introduction

Driven by the requirements of the emerging applications and networks, the
Internet has become an architectural patchwork of growing complexity which
strains to cope with the changes. Moore’s law prevented us from recognising
that the problem does not hide in the high demands of today’s applications
but lies in the flaws of the Internet’s original design. The Internet needs to
move beyond TCP/IP to prosper in the long term, TCP/IP has outlived its
usefulness.

The Recursive InterNetwork Architecture (RINA) is a new Internetwork
architecture whose fundamental principle is that networking is only inter-
process communication (IPC). RINA reconstructs the overall structure of the
Internet, forming a model that comprises a single repeating layer, the DIF
(Distributed IPC Facility), which is the minimal set of components required

491

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/147056176?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


492 Recursive InterNetwork Architecture

to allow distributed IPC between application processes. RINA supports inher-
ently and without the need of extra mechanisms mobility, multi-homing and
Quality of Service, provides a secure and configurable environment, motivates
for a more competitive marketplace and allows for a seamless adoption.

RINA is the best choice for the next generation networks due to its sound
theory, simplicity and the features it enables. IRATI’s goal is to achieve
further exploration of this new architecture. IRATI will advance the state
of the art of RINA towards an architecture reference model and specifcations
that are closer to enable implementations deployable in production scenarios.
The design and implemention of a RINA prototype on top of Ethernet will
permit the experimentation and evaluation of RINA in comparison to TCP/IP.
IRATI will use the OFELIA testbed to carry on its experimental activities.
Both projects will benefit from the collaboration. IRATI will gain access
to a large-scale testbed with a controlled network while OFELIA will get
a unique use-case to validate the facility: experimentation of a non-IP based
Internet.

16.1.1 RINA Overview

RINA is the result of an effort that tries to work out the general principles
in computer networking that applies to everything. RINA is the specific archi-
tecture, implementation, testing platform and ultimately deployment of the
theory. This theory is informally known as the Inter-Process Communication
“IPC model” [1, 2] although it also deals with concepts and results that are
generic for any distributed application and not just for networking. RINA is
structured around a single type of layer – called Distributed IPC Facility
or DIF – that repeats as many times as needed by the network designer
(Figure 16.1). In RINA all layers are distributed applications that provide
the same service (communication flows between distributed applications) and
have the same internal structure. The instantiation of a layer in a computing
system is an application process called IPC Process (IPCP).All IPCPs have the
same functions, divided into data transfer (delimiting, addressing, sequencing,
relaying, multiplexing, lifetime termination, error check, encryption), data
transfer control (flow and retransmission control) and layer management
(enrollment, routing, flow allocation, namespace management, resource allo-
cation, security management). The functions of an IPCP are programmable
via policies, so that each DIF can adapt to its operational environment and to
different application requirements.



16.1 Introduction 493

Figure 16.1 Illustration of the RINA structure: DIFs and internal organisation of IPC
Processes (IPCPs).

The DIF service definition provides the abstract description of an API
as seen by an Application Process using a DIF (specific APIs are system-
dependant and may take into account local constraints; in some cases there
may not be anAPI at all, but an equivalent way to have equivalent interactions).
The Application Process might be an IPC Process, reflecting the recursive
nature of RINA (a DIF can be used by any distributed application, including
other DIFs). All DIFs provide the same service, called flows. A flow is the
instantiation of a communication service between two or more application
process instances.

In contrast with traditional network architectures in which layers have
been defined as units of modularity, in RINA layers (DIFs) are distributed
resource allocators [3]. It isn’t that layers perform different functions; they all
perform the same functions at different scopes. They are doing these functions
for the different ranges of the environments the network is targeted at (a single
link, a backbone network, an access network, an internet, a VPN, etc.). The
scope of each layer is configured to handle a given range of bandwidth, QoS,
and scale: a classic case of divide and conquer. Layers manage resources
over a given range. The policies of each layer will be selected to optimize



494 Recursive InterNetwork Architecture

that range, bringing programmability to every relevant function within the
layer [4]. How many layers are needed? It depends on the range of bandwidth,
QoS, and scale: simple networks have two layers, simple internetworks, 3;
more complex networks may have more. This is a network design question,
not an architecture question.

One of the key RINA design principles has been to maximize invariance
and minimize discontinuities. In other words, extract as much commonality as
possible without creating special cases. Applying the concept from operating
systems of separating mechanism and policy, first to the data transfer protocols
and then to the layer management machinery (usually referred to the control
plane), it turns out that only two protocols are required within a layer [1]:

• A single data transport protocol that supports multiple policies and that
allows for different concrete syntaxes (length of fields in the protocol
PDUs). This protocol is called EFCP – the Error and Flow Control
Protocol – and is further explained in Section 4.2.

• A common application protocol that operates on remote objects used by
all the layer management functions. This protocol is called CDAP – the
Common Distributed Application Protocol.

Separation of mechanism and policy also provided new insights about the
structure of those functions within the layer, depicted in Figure 16.1. The
primary components of an IPC Process are shown in Figure 16.1 and can be
divided into three categories: a) Data Transfer, decouple through a state vector
from b) Data Transfer Control, decoupled through a Resource Information
Base from c) Layer Management. These three loci of processing are char-
acterized by decreasing cycle time and increasing computational complexity
(simpler functions execute more often than complex ones).

• SDU Delimiting. The integrity of the SDU written to the flow is preserved
by the DIF via a delimiting function. Delimiting also adapts the SDU to
the maximum PDU size. To do so, delimiting comprises the mechanisms
of fragmentation, reassembly, concatenation and separation.

• EFCP, the Error and Flow Control Protocol. This protocol is based
on Richard Watson’s work [5] and separates mechanism and policy.
There is one instance of the protocol state for each flow originating
or terminating at this IPC Process. The protocol naturally cleaves into
Data Transfer (sequencing, lost and duplicate detection, identification of
parallel connections), which updates a state vector; and Data Transfer
Control, consisting of retransmission control (ack) and flow control.



16.2 IRATI Goals 495

• RMT, the Relaying and Multiplexing Task. It makes forwarding decision
on incoming PDUs and multiplexes multiple flows of outgoing PDUs
onto one or more (N – 1) flows. There is one RMT per IPC Process.

• SDU Protection. It does integrity/error detection, e.g. CRC, encryption,
compression, etc. Potentially there can be a different SDU Protection
policy for each (N – 1) flow.

The state of the IPC Process is modelled as a set of objects stored in the
Resource Information Base (RIB) and accessed via the RIB Daemon. The
RIB imposes a schema over the objects modelling the IPCP state, defining
what CDAP operations are available on each object and what will be their
effects. The RIB Daemon provides all the layer management functions
(enrolment, namespace management, flow allocation, resource allocation,
security coordination, etc) with the means to interact with the RIBs of
peer IPCPs. Coordination within the layer uses the Common Distributed
Application Protocol (CDAP).

16.2 IRATI Goals

The overarching goal ofARCFIRE is to contribute to the experimental research
and development of RINA, investigating it as an alternative technology to
functional layering and TCP/IP. This objective is divided into the following
four goals:

1. Enhancement of the RINA architecture reference model and specifi-
cations, focusing on DIFs over Ethernet. The enhancement of the RINA
specifications carried out within IRATI will be driven by three main forces:
i) the specification of a DIF over Ethernet as the underlying physical media;
ii) the completion of the specifications that enable RINA to provide a level
of service similar to the current Internet (low security, best-effort) and
iii) the project use cases targeting ambitious scenarios that are challenging
for current TCP/IP networks (targeting features like multi-homing, security or
quality of service). The industrial partners in the consortium will be leading
the elaboration of the use cases, with the input of the External Advisory
Board.

2. RINA open source prototype over Ethernet for a UNIX-like OS. This
is the goal that can better contribute to IRATI’s impact and the dissemination



496 Recursive InterNetwork Architecture

of RINA. Besides being the main experimentation vehicle of the project, the
prototype will provide a solid baseline for further RINAwork after the project.
By the end of the project the IRATI partners plan to setup an open source
community in order to attract external interest and involve other organizations
in RINA R&D.

3. Experimental validation of RINA and comparison against TCP/IP.
This objective is enabled due to the availability of the FIRE facilities,
which provide the experimentation environment for a meaningful comparison
between RINA and TCP/IP. IRATI will follow iterative cycles of research,
design, implementation and experimentation, with the experimental results
retrofitting the research of the next phase. Experiments will collect and analyse
data to compare RINA and TCP/IP in various aspects like: application API,
programmability, cost of supporting multi-homing, simplicity, vulnerability
against attacks, hardware resource utilization (proportional to energy con-
sumption). The industrial partners in the consortium will be leading the
choice of benchmarking parameters, with the input of the External Advisory
Board.

4. Provide feedback to OFELIA in regards to the prototyping of a clean
slate architecture. Apart from the feedback to the OFELIA [6] facility in
terms of bug reports and suggestions of improvements, IRATI will contribute
an OpenFlow controller capable of dynamically setting up Ethernet topologies
to the project. IRATI will be using this controller in order to setup different
topologies for the various experiments conducted during the project. More-
over, experimentation with a non-IP based solution is an interesting use case
for the OFELIA facility, since IRATI will be the first to conduct these type of
experiments in the OFELIA testbed.

16.3 Approach

The technical work of the IRATI Project comprises requirements analysis,
design, implementation, validation, deployment and experimentation activi-
ties organized in three iterations. Such activities have been broken down in
three technical work packages.

WP2 is the overarching work package that will define the scope of the
use cases to be validated, propose a set of refinements and enhancements to



16.3 Approach 497

the RINA architecture reference model and specifications, and elaborate a
high level software architecture for the implementation. For each phase of the
project, WP2 will:

• Elaborate the use cases to be showcased during the experimentation
phases, analyze them and extract requirements. Use cases will try to
focus at first on the availability/integration of core RINA functionalities
in basic experimental setups; then, more complex scenarios that are
challenging with the current Internet will be targeted to explore the full
RINA functionalities and thus meet the expectations/take-up strategies
of network operators and cloud service providers (like Interoute). The
use cases will drive the experiment design and provide requirements for
the completion/validation of the RINA architecture reference model and
specifications.

• Analyse the RINA architecture reference model and specifications,
identify holes in the mechanisms or missing policies, and propose
enhancements/refinements.

• Based on the RINA architecture reference model and specifications on
one side and the phase scenario and targeted platform on the other side,
provide a high-level software architecture for the design and implemen-
tation of the prototype. This high-level software architecture will be the
unifying document for the WP3 implementation tasks.

WP3 is the development work package of the project. Its overall objective
is to translate the WP2 specifications and high-level software design into
a set of prototypes that will be used by WP4 for its test-bed activities and
experimentation. The main objectives of this WP are:

• to provide a common development environment
• to implement a RINA prototype over Ethernet for Linux/OS
• to integrate the various functionalities and components into a demon

strable system (at node-level)

The architecture releases at the various project phases and the related func-
tional decompositions delivered by WP2 are the starting point of work for
WP3. Software prototypes are the major WP3 outcomes to be delivered to
WP4. Moreover, it is expected that WP3 will produce a number of feedbacks
on previous or concurrent activities, both internally (i.e. among tasks) and
externally (i.e. towards other WPs). The feedbacks produced by WP3 to either
internal or external tasks will have eventually an impact on the work produced
by the target task, i.e. its deliverable.As a general rule, it is expected that major



498 Recursive InterNetwork Architecture

feedbacks on a task could lead to fix and reissue the deliverable(s) produced
by that task previously.

WP4 is the experimentation and validation work package, responsible of
the following goals:

• Design the experiments required to validate the use cases and deploy
WP3 prototypes into the OFELIA facility for experimentation.

• Validate the correctness of the prototype with respect to its compliance
with the use cases through experimentation.

• Compare and document RINA benefits against TCP/IP in different
areas: application interface, multi-homing, support of heterogeneous
applications, security and others identified by WP2.

• Based on the experiments result analysis, provide feedback to the RINA
specifications enhancement and high-level software architecture design
activities in WP2.

16.4 Discussion of Technical Work and Achievements

16.4.1 Enhancements of the RINA Specifications
and Reference Model

16.4.1.1 Shim DIF over 802.1Q layers
This specification defines the shim IPC process for the Ethernet (IEEE 802.3)
layer using IEEE 802.1Q [7]. Other Shim DIFs specifications will cover the
use of Ethernet with other constraints. This type of IPC process is not fully
functional. It presents an Ethernet layer as if it was a regular DIF. The task
of a shim DIF is to put as small as possible a veneer over a legacy protocol
to allow a RINA DIF to use it unchanged. In other words, because the DIF
assumes it has a RINAAPI below, the Shim DIF allows a DIF to operate over
Ethernet without change. The shim IPC process wraps the Ethernet layer with
the IPC process interface. The goal is not to make legacy protocols provide
full support for RINA and so the shim DIF should provide no more service or
capability than the legacy protocol provides.

An Ethernet shim DIF spans a single Ethernet “segment”. This means
relaying is done only on 1-DIF addresses. Each shim DIF is identified by a
VLAN (IEEE 802.1Q) id, which is in fact the shim DIF name. Each VLAN
is a separate Ethernet Shim DIF. All the traffic in the VLAN is assumed to be
shim DIF traffic.

Ethernet comes with the following limitations, which are reflected by the
capabilities provided by the Ethernet shim DIF:



16.4 Discussion of Technical Work and Achievements 499

• It assumes that there is a single “network layer” protocol machine
instance that is the only user of the Ethernet protocol machine at each
system. The Ethertype field on the Ethernet header just identifies the
syntax of the “network layer” protocol.

• Because it is only possible to distinguish one flow between each pair of
MAC addresses, there is no explicit flow allocation.

• There are no guarantees on reliability.

These limitations impact the usability of the Ethernet shim DIF: it only
provides enough capabilities for another DIF to be the single user of the
Ethernet shim DIF. Therefore, the only applications that can register in an
Ethernet shim DIF are IPC Processes. Moreover, since Ethernet doesn’t
provide the means to distinguish different flows nor explicit flow allocation,
there can only be one instance of an IPC Process registered at each Ethernet
shim IPC Process. The following figure illustrates an Ethernet frame as used
by the Ethernet shim DIF.

• Destination MAC address: The MAC address assigned to the Ethernet
interface the destination shim IPC Process is bound to.

• Source MAC address: The MAC address assigned to the Ethernet
interface the source shim IPC Process is bound to.

• 802.1Q tag: The DIF name.
• Ethertype: Although it is not strictly required to have a special Ethertype

for the correct operation of the shim DIF (since all the traffic in the VLAN
is assumed to be shim DIF traffic), it is handy to define an Ethertype for
RINA (if, for no other reasons, to facilitate debugging). Therefore the
Ethernet frames used within the shim Ethernet DIF will use the 0xD1F0
value for the Ethertype field.

• Payload : Carries the upper DIF SDUs. The maximum length of the SDU
must be enforced by the upper DIF, since the Ethernet shim DIF doesn’t
perform fragmentation and reassembly functions. The only delimiting
supported by this Shim DIF is “1 for 1,” i.e. it is assumed the entire
Payload is a single SDU.

Instead of using the RINA Flow Allocator, the Ethernet shim DIF reuses ARP
in request/response mode to perform this function. ARP resolves a network
layer address into a link layer address instantiating the state for a flow to this



500 Recursive InterNetwork Architecture

Figure 16.2 Relation between protocol machines.

protocol. In effect, in the context of the shim DIF, mapping the application
process name to a shim IPC Process address and instantiating a MAC protocol
machine equivalent of DTP, exactly the function that the Flow Allocator
provides. The relation between these different protocol machines can be seen
in Figure 16.2.

16.4.1.2 Shim DIF for hypervisors
In order to cope with the vast amount of virtualization technologies and
hardware (HW) architectures, this specification aims at providing a generic
schema in order to ease defining shim IPC Processes for Hypervisors
(HV) [8]. Therefore, it does not target any particular HV/HW technology but
describes basic mechanisms that shim IPC Process for specific virtualization
technologies could inherit. It is expected that other specifications, focusing on
specific HV/HW solutions, will be deriving from this one and will be defining
the necessary low-level details.

Shim IPC Processes for HV are not fully functional processes, they just
present their mechanisms for VM-to-VM intercommunication as if they were
a regular DIF. The task of this shim DIF is to put as small as possible layering
overhead on the VM-to-VM intercommunication mechanisms, wrapping
them with the RINA API.

The scope of the communication mechanisms described is point-to-point
and HV local, i.e. between guest and host VMs in the same HV system.
Therefore, the host must rely on other shims IPC Processes to allow for inter-
communications with other systems than the ones managed by the Hypervisor,



16.4 Discussion of Technical Work and Achievements 501

Figure 16.3 Environment of the shim DIF for Hypervisors.

for instance the shim IPC Process over Ethernet 802.1Q as depicted in
Figure 16.3.

16.4.1.3 Link state routing policy
This specification describes a link-state routing based approach to generate
the PDU forwarding table [9]. The PDU forwarding table is a component of an
IPC Process. Routing in RINAis all policy; that is, each DIF is free to decide on
the best approach to generate the PDU forwarding table for its environment.
Link-state routing is just one of the possible policies. The ultimate goal of
routing research in RINA is to create a framework for investigating different
routing schemes in a recursive model. Since most DIFs will be of moderate
size, starting with link-state routing seems a reasonable approach.

In its simplest form, link-state routing is based on the dissemination of link-
state information among all the nodes in a network. Every node constructs the
network connectivity graph based on its current view of the state of the links
in the network, and applies an algorithm to this graph in order to compute
the routes to every other node in the network. The routing table contains
entries for the next hop to the shortest route to each other node (destination
address) in the network. The forwarding table is generated by recording the
mapping between each destination addresses and the corresponding outbound
interface towards the next hop. Traditional link-state routing is made more



502 Recursive InterNetwork Architecture

scalable by organizing the network into a hierarchy (for instance, prefix-
based), where link-state routing is performed in each level of the hierarchy
(and the dissemination of link-state information is limited to the nodes that
belong to the same hierarchical level or prefix). Since in RINA routing table
sizes can be bound by recursing, link-state routing can scale in most cases.
Even with large DIFs it is possible to create subnets of nodes within a DIF
where link state is used within each subnet and topological addresses across
the subnets of the DIF; so that no routing calculation is required between
subnets [10].

The functions of the PDU forwarding table generator component are to
collaborate with the RIB daemon to disseminate and collect information
about the status of the N – 1 flows in the DIF and to use this information
to populate the PDU forwarding table used by the Relaying and Multiplexing
Task (RMT) to forward PDUs. Current link-state routing protocols, such as
Open Shortest Path First (OSPF) or Intermediate System to Intermediate
System (IS–IS), perform additional functions such as automatic neighbour
discovery, adjacency forming or link-state failure detection. In an IPC Process
these functions are performed by other components such as the Resource
Allocator, therefore the PDU Forwarding Table generator doesn’t need to do
them (Figure 16.4).

The PDU Forwarding Table generator is one of the layer management
components of the IPC Process. These components interact, using the
RIB daemon, with their counterparts in neighbouring IPC Processes by
exchanging Common Distributed Application Protocol (CDAP) messages
over N – 1 flows. The CDAP messages perform remote operations (create/
delete/start/stop/read/write) on one or more objects of the targeted IPC Process
RIB. The PDU forwarding table generator is the handler of the RIB operations

Figure 16.4 A simple example of link-state routing.



16.4 Discussion of Technical Work and Achievements 503

targeting the objects related to link-state routing. To summarize, the important
details for this specification are that:

• The Enrollment task explicitly notifies the PDU Forwarding Table Gene
rator component when enrollment with a new neighbour IPC Process has
completed successfully. Then the PDU Forwarding Table Generator can
initiate the procedure to synchronize its knowledge about the state of
N – 1 flows in the DIF with its new neighbour using the RIB daemon.

• The Resource Allocator component of the IPC Process will explicitly
notify the PDU Forwarding table generator of events affecting the local
N – 1 flows (local N – 1 flows are flows that have the IPC Process as
source or target). Such events include the allocation, deallocation and
changes in the status of these flows (N – 1 flow up / N – 1 flow down).

• The PDU Forwarding Table Generator component shares their view of the
network using the RIB daemon to communicate with other IPC Processes.
The RIB Daemon notifies the PDU Forwarding Table generator when
it receives CDAP messages targeting these relevant objects (which are
defined later in this document).

• The PDU Forwarding Table Generator propagates changes in the status
of local or remote N – 1 flows by requesting the RIB Daemon to
send CDAP messages to one or more neighbour IPC Processes. These
CDAP messages cause operations on the relevant objects in the RIBs of
neighbour IPC Processes.

Figure 16.5 illustrates these details, showing the inputs and outputs of the PDU
Forwarding table component, and its relationship with the other components
in the IPC Process.

16.4.2 RINA Implementation Activities

16.4.2.1 Implementation goals and major design choices
The IRATI implementation of RINA had to accomplish two main goals:

• Become a platform for RINA experimentation. The implementation
has to be: i) flexible and adaptable (a RINA “node” can be configured as
a host, border router or interior router); ii) the design must be modular
so that it can be easily updated as new insights into RINA allow for
simpler/better implementations; iii) it must be programmable so that
researchers can experiment with different behaviours; iv) must be able
to run over multiple lower layers (Ethernet, TCP, UDP, shared memory,
USB, etc) and v) must be able to support native RINA applications.



504 Recursive InterNetwork Architecture

Figure 16.5 Inputs and outputs of the Link-state based PDU Forwarding Table generator
policy.

• Become the basis of future RINA-based products. In order to achieve
this goal, the implementation should: i) tightly integrate with the Opera
ting System; ii) allow for performance-related optimizations; iii) enable
hardware offload of some functions in the future; iv) seamlessly support
existing applications and v) enable RINA to carry IP traffic – RINA as a
transport of the IP layer (Figure 16.6).

Figure 16.6 Major design choices of the IRATI implementation.



16.4 Discussion of Technical Work and Achievements 505

With that goals and requirements in mind, the table displayed above shows
a summary of the pros and cons behind the major design decisions taken
in the IRATI implementation of the RINA architecture: Linux/OS was the
chosen operating system; RINA functionalities were spread between the
user-space and the kernel; C and C++ were chosen as the programming
languages (however, bindings for other languages of the application API can
be generated); the implementation contains multiple user-space daemons and
the kernel infrastructure exploits the use of soft-irqs and tasklets in order to
minimize latency and context switches in the kernel data-path.

Figure 16.7 illustrates the user-kernel split in terms of RINA components
implemented in user-space or the kernel. Looking at the different tasks that
form an IPC Process, the data transfer and data-transfer control ones – which
have stringent performance requirements and execute at every PDU or every
few PDUs – were implemented in the kernel. Layer management functions,
which do not execute so often and can be much more complex, have been
implemented in user-space. Shim IPC Processes have also been implemented
in the kernel, since i) they usually need to access device drivers or similar
functions only available in kernel space; and ii) the complexity of the functions
performed by shim IPC Processes is relatively low.

16.4.2.2 Software architecture overview
The software architecture of the IRATI implementation is show in Figure 16.8.
A more in depth description has been published in [11]. The main components
of IRATI have been divided into four packages:

Figure 16.7 IPC Process split between the user-space and kernel.



506 Recursive InterNetwork Architecture

Figure 16.8 Software architecture of the IRATI RINA implementation.

1. Daemons (rinad). This package contains two types of daemons (OS
Processes that run in the background), implemented in C++.

• IPC Manager Daemon (rinad/src/ipcm). The IPC Manager Dae-
mon is the core of IPC Management in the system, acting both as the
manager of IPC Processes and a broker between applications and
IPC Processes (enforcing access rights, mapping flow allocation or
application registration requests to the right IPC Processes, etc.).

• IPC Process Daemon (rinad/src/ipcp). The IPC Process Daemons
(one per running IPC Process in the system) implement the layer
management components of an IPC Process (enrollment, flow allo-
cation, PDU Forwarding table generation or distributed resource
allocation functions).

2. Librina (librina). The librina package contains all IRATI libraries that
have been introduced to abstract from the user all the kernel interactions
(such as syscalls and Netlink details). Librina provides its functionalities
to user-space RINA programs via scripting language extensions or



16.4 Discussion of Technical Work and Achievements 507

statically/dynamically linkable libraries (i.e. for C/C++ programs). Lib-
rina is more a framework/middleware than a library: it has its own
memory model (explicit, no garbage collection), its execution model
is event-driven and it uses concurrency mechanics (its own threads) to
do part of its work.

3. Kernel components (linux/net/rina). The kernel contains the implemen-
tation of the data transfer/data transfer control components of normal IPC
Processes as well as the implementation of shim DIFs – which usually
need to access functionality only available at the kernel. The Kernel
IPC Manager (KIPCM) manages the lifetime (creation, destruction,
monitoring) of the other component instances in the kernel, as well as its
configuration. It also provides coordination at the boundary between the
different IPC processes.

4. Test applications and tools (rina-tools). This package contains test
applications and tools to test and debug the RINA Prototype. Right now
the rina-tools package contains the rina-echo-time application, which
can work both in “echo” (ping-like behavior between two application
instances) or “performance” mode (iperf-like behaviour).

16.4.2.3 Open source
The IRATI software has been made available as open source. Interested users
and developers can access the code at the IRATI github side [12], which
includes documentation of the project, installation guides and tutorials on
how to perform simple experiments. There is also a mailing list available to
users and developers, in order to facilitate the interaction with the maintainers
of the IRATI implementation.

16.4.3 Experimental evaluation of RINA on the FIRE
infrastructure

16.4.3.1 Experimental evaluation of the shim DIF for hypervisors
In order to assess the possible gains from deploying the shim DIF for
hypervisors in the DC, we measured the performance of the IRATI stack
against the performance of the TCP/IP stack in Linux, when deployed to
support VM networking. The full description of the experiment has been
published in [13]. Note however up front that the IRATI stack is currently
not optimized for performance yet. The tests reported in this section involve
a single physical machine (the host) that acts as a hypervisor for one or two
VMs. We performed two different test scenarios:



508 Recursive InterNetwork Architecture

• Host-to-VM tests; where a benchmarking tool (rina-echo-time for IRATI
tests and netperf for TCP/IP tests) is used to measure the goodput between
a client running in the host and a server running on VM.

• VM-to-VM tests; where a benchmarking tool is used to measure the
goodput between a client running on a VM and a server running on a
different VM.

The measurements were taken on a processing system with two 8 core Intel
E5-2650v2 (2.6 GHz) CPUs and 48 GB RAM. QEMU/KVM was chosen as
the hypervisor, since it is one of the two hypervisors supported by the shim
DIF for hypervisors provided by the IRATI prototype. For the host-to-VM
scenario, three test sessions were executed. The first two tests sessions assess
UDP goodput performance at variable packet size, therefore assessing the
performance of traditional VM networking. The tap device corresponding to
emulated NIC in the VM is bridged to the host stack through a Linux in-kernel
software bridge.

The second test session makes use of a paravirtualized NIC model, the
virtio-net device. Paravirtualized devices don’t correspond to real hardware,
instead they are explicitly designed to be used by virtual machines, in
order to save the hypervisor from the burden of emulating real hardware.
Paravirtualized devices allows for better performances and code reusability.
The only difference between the first and the second test session is the model
of the emulated NIC. In the first session, a NIC belonging to the Intel e1000
family is used, which is implemented in QEMU by emulating the hardware
behaviour (full virtualization) – e.g. NIC PCI registers, DMA, packet rings,
offloadings, etc. Despite being more virtualization-friendly than e1000 (or
other emulated NICs like r8169 or pcnet2000), the guest OS still sees the
virtio-net adapter like a normal ethernet interfaces, with all the complexities
and details involved, e.g. MAC, MTU, TSO, checksum offloading, etc.

The third test session shows the performance of the shim DIF for hyper-
visors. A scenario comparable to the one deployed in the first and second
test sessions involves a shim IPC process for hypervisors on the host and
the corresponding one on the guest. No normal IPC processes are used, the
applications can run directly over the shim DIF. This is a consequence of the
flexibility of RINA, since the application can use the lowest level DIF whose
scope is sufficient to support the intended communication (guest-to-host in
this case) and that provides the required QoS.

The host runs our rina-echo-time application in server mode, while the
guest runs rina-echo-time in client mode. Rina-echo-time is a simple RINA



16.4 Discussion of Technical Work and Achievements 509

benchmarking application, which uses the IPC API to measure goodput. Each
test run consists of the client sending to the server an unidirectional stream of
PDUs of a specified size. Measurements have been taken varying the PDU size.
The current maximum SDU size of the shim DIF for Hypervisors is the page
size (4096 bytes on our machine). We repeated every measurement 20 times.
The result of these goodput measurements for host-to-VM communication
scenario are shown in Figure 16.9 – 95% confidence levels are also depicted,
as well as a third degree polynomial regression line.

The shim DIF for hypervisors outperforms both e1000 and virtio-net NIC
setups, which validates that a simpler and cleaner architecture allows for better
performance, even with an unoptimized prototype. Next, similar goodput
performance measurements were taken on the VM-to-VM scenario. Again,
three test sessions were performed, the first two for traditional VM networking
and the third one for IRATI stack. The setup of the first two sessions is very
similar to corresponding one in the host-to-VM scenario. The VMs are given
an emulated NIC, whose corresponding tap device is bridged to the host stack
through a Linux in-kernel software bridge. Measurements are again performed
with the netperf utlity, with the netperf server running on a VM and the netperf
client running on the on the other VM.

In the case of the IRATI tests, point-to-point connectivity between host
and VM is provided by the shim DIF for hypervisors. A normal DIF is

Figure 16.9 VM to Host goodput experiment results.



510 Recursive InterNetwork Architecture

overlayed on these shim DIFs to provide connectivity between the two VMs.
Tests are performed again with the rina-echo-time application, using a flow
that provides flow control without retransmission control. Flow control is
used so that receiver’s resources are not abused. In TCP/IP, this kind of
functionality – flow control without retransmission control – is not available.
Hence we chose again UDP to perform the tests for the traditional networking
solution, since its functionality is most similar. The result of these tests sessions
are depicted in Figure 16.10. Full virtualization again performs poorly. The
paravirtualized solution currently slightly outperforms the unoptimized IRATI
stack. However, the IRATI prototype can still be optimized.

16.4.3.2 Evaluation of the link-state routing policy
The physical connectivity graph that we used for this experiment is shown in
Figure 16.11. For each physical link, an instance of the shim DIF for 802.1Q
was instantiated, after assigning a unique VLAN id to each link. A normal
DIF was stacked on top of these shim DIFs. In this way, we show that routing
works in a 1-DIF, a basic scenario. We performed tests with rina echo-time,
an application that calculates the Round Trip Time (RTT) like the well-known
ping tool. It calculates the time it takes for a client to send an SDU to the server
and receive the same SDU back again. The server was running on node M.
On every other node we ran the client and performed the test 50 times. The
size of the SDU that was used was 64 bytes. We ran the application on top of
a normal DIF, which runs on top of the shim DIF over 802.1Q.

Figure 16.10 Host to Host goodput experiment results.



16.4 Discussion of Technical Work and Achievements 511

Figure 16.11 Physical connectivity graph for the routing experiments.

We did the experiment first with kernel-space debugging logs enabled,
then we repeated the experiment with the debugging logs disabled (as these
significantly stress the system) to get more accurate performance-oriented
results. The results of the experiments can be seen in Figure 16.12. The data
points on top represent the experiment with the kernel with logs enabled,
while the data points at the bottom are the results of the experiment with the
logs disabled. The further the distance from server M, e.g. the more hops
needed to reach M, the longer the round trip time. In the case of a kernel with
logs disabled, it takes 504.94 ± 68.10 μs to send and receive the same SDU
again on node N, where no forwarding of SDUs was needed. Per extra node
needed to forward the SDU, about 250 μs is added. Some nodes have the same
distance to M, but their average round trip times differ somewhat from each
other. In conclusion, the basic operation of the link-state routing policy has
been verified.



512 Recursive InterNetwork Architecture

Figure 16.12 Results of the link-state routing experiments.

16.4.3.3 Performance evaluation on the iMinds OFELIA island
We carried out experiments to measure the performance of the phase 2
prototype. We executed them on the iLab.t Virtual wall, which is a controlled
environment. The experiment depicted in Figure 16.13 was used to measure the
performance. The complete results of these experiments have been published
in [14].

The RINAperf client/server application is a RINA-native performance-
measurement tool, measuring the available goodput between two application
processes. We realised goodput measurements in the following 3 scenarios:

• The first scenario (Shim DIF + Application Process) runs the RINAperf
application directly over the shim IPC process for 802.1Q. This scenario
should be the fastest, but offers the least functionality.

• The second scenario (Shim DIF + Normal DIF A + Application Process)
builds upon the first one by stacking a normal DIF on top of the shim IPC
process for 802.1Q.Alot of functionality becomes immediately available
since it is provided by the normal DIF (e.g. multihoming, QoS). This is a
scenario that would be typically found in Local Area Networks (LANs),
where the scope is the network.

• The third scenario (Shim DIF + Normal DIF A + Normal DIF B +
Application Process) stacks another normal DIF on top of the previous.
This scenario is added to show the influence of stacking multiple DIFs
on top of each other and would the one be used in an internetwork:
connecting together different networks.



16.4 Discussion of Technical Work and Achievements 513

Figure 16.13 Scenario for the performance evaluation of prototype 2.

We executed experiments on 2 nodes from the iMinds OFELIA island iLab.t
virtual wall aggregate. We used the RINAperf application to measure the
maximum achievable goodput between two application processes given a
certain SDU size. In all our experiments, we set the RINAperf timeout to 10
seconds and each one is repeated for different SDU sizes, ranging from 1 byte
to the maximum SDU size for that scenario. The obtained goodput when these
experiments were repeated in July can be seen in Figure 16.14. The values
represent the mean of the goodputs obtained, together with their respective 95
percent confidence intervals (50 samples per interval).

As can be seen from Figure 16.14, the goodput increases as the SDU
size increases, which is of course to be expected as the per-packet processing
overhead due to the PCI headers is amortised over more bytes. The maximum
throughput on the link when measured with iperf is 970 Mbit/s. Adding
additional normal DIFs decreases the goodput, because of the extra processing



514 Recursive InterNetwork Architecture

Figure 16.14 Performance evaluation results.

overhead and decreased maximum packet size. Tests executed with v0.8.0
at the maximum MTU allowed by the system recorded the mean goodput
achieved as 907:67 ± 1:45 Mbit/s for scenario 1, 902:09 ± 9:32 Mbit/s
for scenario 2, and 891:05 ± 6:91 Mbit/s for scenario 3. So each additional



16.4 Discussion of Technical Work and Achievements 515

normal DIF incurred only a small performance penalty, and the overall goodput
achieved was very close to line rate.

16.4.3.4 Validation of location-independence
First, the rina-echo-time server application registers with normal.DIF at Sys-
tem 3 (Figure 16.15). The “rina-echo-time” client application at System 1 allo-
cates a flow to the server application, using theApplication Name, sends a cou-
ple of SDUs and terminates. After that the rina-echo-time server at System 3
terminates, and an instance of the same application is registered at Sys tem 2.
Then, the client application process at System 1 again allocates a flow to
the server application process, sends a couple of SDUs and terminates again.
Note that the application does not need any state updates. The DIF internally
updates its Application-Name-to-IPC-Process address mappings in order to
forward the flow allocation request to the right IPC process in both scenarios.

This section validated the location independence of Application Names
and decoupling of connections and flows in the RINA architecture and the
IRATI implementation. It shows correct operation when an application moves
from on host (or, more accurately, from one IPCP process) to another. The
directory of the underlying DIF is correctly updated, and the client application
can reach the server application transparently without knowing it has moved
location. This experiment illustrates one of the huge benefits RINA has
with regards to application mobility due to it’s location-independent naming
scheme.

Figure 16.15 Experimental setup for application-location independence.



516 Recursive InterNetwork Architecture

16.4.4 Feedback to the OFELIA Facility

16.4.4.1 IRATI VM image and XEN servers
Many of the modules of the RINA stack are located in kernel space. Since the
Linux kernel versions used by the IRATI software are not always the same
available in OFELIAresources, the VMs used for IRATI experimentation need
to be upgraded in order to support the deployment of the RINA prototype. The
VMs in OFELIA use the same unmodified kernel that the host server uses.
This constraint was completely blocking for IRATI purposes, as previously
exposed. Nevertheless, OCF (OFELIA Control Framework) is capable of
supporting almost any kind of images to create VMs, using any of the described
virtualization mechanisms. In order to address IRATI’s requirements it was
decided to create a new VM image based on IRATI’s reference machine. This
image has been installed on the servers of the I2CAT Island, and in later
phases of the project it will be spread over the rest of the islands for the
inter-island experiments. The new image template was updated to support
OFELIA’s authentication and access control features: authentication modules
that allow users whose credentials are stored at the OFELIA LDAP directory
direct access to the VM using SSH were added to the VM.

Finally, to fully integrate the new image template in the OFELIA testbed,
some additions in the OCF, were required. The development done was
integrated in OCF v0.7 and can be visualized in Figure 16.16. The following
paragraph describes the main additions performed to the OCF:

• The Expedient web UI was modified to allow the creation of IRATI VMs.
• The VirtualizationAggregate Manager (VTAM) was modified to support

the new VM.
• The OFELIA XEN Agent (OXA) running in the XEN servers was

modified in order to handle the automatic creation and modification of
HVM virtualized machines to provide them with IP addresses and ssh
credentials in order to be accessible by the testbed users.

16.4.4.2 VLAN translator box
The iLab.t virtual wall emulab infrastructure uses Virtual LANs (VLANs) in
the central Force10 hub switch to separate traffic between different experi
ments. The central switch does not support double tagging (802.1ad), so
802.1Q VLAN-tagged frames cannot be used inside an experiment in this
testbed environment (all frames with Ethertype 0x8100 are dropped by the
central switch). The shim DIF over Ethernet uses a VLAN tag as DIF name,
so we patched the Linux kernel and Network Interface Controller (NIC)



16.4 Discussion of Technical Work and Achievements 517

Figure 16.16 Creation of an IRATI VM with the OFELIA Control Framework.

device drivers of the physical machines to be used as RINA hosts. They use
ethertype 0x7100 instead of 0x8100 for 802.1Q traffic, allowing transparent
use of VLAN tags. In order to allow seamless operation within OFELIA, a
translation needs to be done for traffic entering and leaving the iMinds virtual
wall island. In order to translate the ethertype, we decided to implement a
Linux Loadable Kernel Module (LKM) from scratch to do the translation.
During this implementation it was found that the current kernel always untags
incoming packets, stripping the VLAN header from the packet data and storing
the VLAN header implicitly in a separate vlan tci field inside the socket buffer
struct.



518 Recursive InterNetwork Architecture

Figure 16.17 VLAN box in the OFELIA testbed.

The Linux LKM re-inserts the VLAN header (changing the ethertype to
0x7100) before sending the packet as “untagged” traffic. A server running
this Linux kernel module is now integrated into the OFELIA infrastructure
at iMinds. It may also be integrated into the infrastructure for Fed4FIRE.
Some VMs in OFELIA do not support 1504 byte frames, so the Maximum
Transmission Unit (MTU) will have to be reduced by 4 bytes to allow the
VLAN header to be correctly inserted. This is not necessary between machines
in the virtual wall.

Figure 16.17 shows (on top) the normal configuration for a virtual wall
experiment. These use untagged traffic, and a managed switch is used to tag
the traffic with the OFELIA-compatible VLAN tag, aggregate all traffic, and
forward it over a 10 Gbit/s fiber to the central OFELIA switch (and vice versa
for traffic coming from OFELIA). For traffic that is tagged (as explained, with
a 0x7100 ethertype), the ethertype is translated to a normal 802.1Q 0x8100
one by the translator box, and then offered to either the managed switch for
aggregation, or directly to a free port on the OFELIA switch.

16.5 Conclusions

In spite of being a small and relatively short research project, the impact
of the work performed within the FP7 IRATI project is producing a long
lasting impact. First of all IRATI produced the first kernel-based RINA



References 519

implementation for the Linux/OS that can be overlaid on top of Ethernet,
TCP/UDP, and shared memory mechanisms for Guest to Host communication
in a Virtualized environment. Open sourcing this implementation has reduced
the barriers of entry to researchers and innovators wanting to experiment
with RINA. Second, initial experimental results of the RINA prototype
over the FIRE testbeds have shown some of the RINA benefits in practice.
Third, the IRATI project allowed the creation of a core group of European
partners with expertise in RINA design and implementation. Last but not
least, the dissemination and outreach activities of the project contributed to
better position RINA in the radars of the industry, academia, funding bodies
and Standard Development Organisations.

All these efforts have crystallized in the funding of three EC research
projects which directly exploited FP7 IRATI results, in particular the open
source RINAimplementation: i) IRINA[15] studied the applicability of RINA
in National Research Education Networks and GEANT; ii) PRISTINE [16]
is working on bringing programmability to the IRATI implementation and
studying/experimenting with policies in the areas of congestion control,
resource allocation, routing, security and network management, and ARC-
FIRE [17] is investigating the benefits of applying RINA to the design
of converged operator networks and hardening the IRATI implementation
to enable large-scale experiments on FIRE+ testbeds. Moreover, RINA is
being considered for standardisation in the context of ETSI’s Next Gen-
eration Protocols ISG [18] and ISO’s SC6 Working Group 7 on Future
Networks [19].

References

[1] J. Day, “Patters in Network Architecture: A Return to Fundamentals”.
Prentice Hall, 2008.

[2] J. Day, I. Matta, and K. Mattar. 2008. “Networking is IPC: a guiding
principle to a better Internet”. In Proceedings of the 2008 ACM CoNEXT
Conference (CoNEXT ’08).

[3] J. Day. “About layers: more or less”. PSOC Tutorial, available online at
http://pouzinsociety.org

[4] V. Maffione, F. Salvestrini, E. Grasa, L. Bergesio, and M. Tarzan,
“A Software Development Kit to exploit RINA programmability”. IEEE
ICC 2016, Next Generation Networking and Internet Symposium.



520 Recursive InterNetwork Architecture

[5] R. W. Watson. “Timer-based mechanisms in reliable transport protocol
connection management”. Book in innovations in Networking, pages
296–305. Artech House Inc.

[6] FP7 OFELIA Project website. Available online at http://www.
fp7-ofelia.eu

[7] The IRATI consortium. “Specification of a Shim DIF over 802.1Q
layers”, available as part of IRATI’s D2.3: http://irati.eu/deliverables-2/

[8] The IRATI consortium. “Specificafion of a Shim DIF for Hypervisors”,
available as part of IRATI’s D2.3: http://irati.eu/deliverables-2/

[9] The IRATI consortium. “Specification of a Link-State based routing
policy for the PDU Forwarding Table Generator”; available as part of
IRATI’s D2.4.: http://irati.eu/deliverables-2/

[10] J. Day, E. Trouva, E. Grasa, P. Phelan, M. P. de Leon, S. Bunch, I. Matta,
L. T. Chitkushev, and L. Pouzin, “Bounding the Router Table Size in an
ISP Network Using RINA,” Network of the Future (NOF), 2011.

[11] S. Vrijders, D. Staessens, D. Colle, F. Salvestrini, E. Grasa, M. Tarzan and
L. Bergesio “Prototyping the Recursive Internetwork Architecture: The
IRATI Project Approach”, IEEE Network, Vol. 28, no. 2, March 2014.

[12] IRATI open source RINA implementation. Available online at
https://github.com/IRATI/stack

[13] S. Vrijders, V. Maffione, D. Staessens, F. Salvestrini, M. Biancani,
E. Grasa, D. Colle, M. Pickavet, J. Barron, J. Day, and L. Chitkushev
‘Reducing the complexity of Virtual Machine Networking’. IEEE
Communications Magazine, Vol. 54. No. 4, pp. 152–158, April 2016.

[14] S. Vrijders, D. Staessens, D. Colle, F. Salvestrini, V. Maffione,
L. Bergesio, M. Tarzan, B. Gaston, E. Grasa; “Experimental evaluation
of a Recursive InterNetwork Architecture prototype”, IEEE Globecom
2014, Austin, Texas.

[15] IRINA Project website. Available online at http://www.geant.org/
Projects/GEANT Project GN4/Pages/Home.aspx#IRINA

[16] FP7 PRISTINE Project website. Available online at http://ict-pristine.eu
[17] H2020ARCFIRE Project website.Available online at http://ict-arcfire.eu
[18] ETSI NGP ISG website. Available online at http://www.etsi.org/tech

nologies-clusters/technologies/next-generation-protocols
[19] ISO SC6 website. Available online at http://www.iso.org/iso/iso techni

cal committee.html%3Fcommid%3D45072


