281 research outputs found

    Translating evidence into practice : ACOs’ use of care plans for patients with complex health needs

    Get PDF
    Background Care plans are an evidence-based strategy, encouraged by the Centers for Medicare and Medicaid Services, and are used to manage the care of patients with complex health needs that have been shown to lead to lower hospital costs and improved patient outcomes. Providers participating in payment reform, such as accountable care organizations, may be more likely to adopt care plans to manage complex patients. Objective To understand how Medicare accountable care organizations (ACOs) use care plans to manage patients with complex clinical needs. Design A qualitative study using semi-structured interviews with Medicare ACOs. Participants Thirty-nine interviews were conducted across 18 Medicare ACOs with executive-level leaders and associated clinical and managerial staff. Approach Development, structure, use, and management of care plans for complex patients at Medicare ACOs. Key Results Most (11) of the interviewed ACOs reported using care plans to manage care of complex patients. All care plans include information about patient history, current medical needs, and future care plans. Beyond the core elements, care plans included elements based on the ACO’s planned use and level of staff and patient engagement with care planning. Most care plans were developed and maintained by care management (not clinical) staff. Conclusions ACOs are using care plans for patients with complex needs, but their use of care plans does not always meet the best practices. In many cases, ACO usage of care plans does not align with prescribed best practices: ACOs are adapting use of care plans to better fit the needs of patients and providers

    Genetic variations in VEGF and VEGFR2 and glioblastoma outcome

    Get PDF
    Vascular endothelial growth factor (VEGF) and its receptors (VEGFR) are central components in the development and progression of glioblastoma. To investigate if genetic variation in VEGF and VEGFR2 is associated with glioblastoma prognosis, we examined blood samples from 154 glioblastoma cases collected in Sweden and Denmark between 2000 and 2004. Seventeen tagging single nucleotide polymorphisms (SNPs) in VEGF and 27 in VEGFR2 were genotyped and analysed, covering 90% of the genetic variability within the genes. In VEGF, we found no SNPs associated with survival. In VEGFR2, we found two SNPs significantly associated to survival, namely rs2071559 and rs12502008. However, these results are likely to be false positives due to multiple testing and could not be confirmed in a separate dataset. Overall, this study provides little evidence that VEGF and VEGFR2 polymorphisms are important for glioblastoma survival

    Net grassland carbon flux over a subambient to superambient CO2 gradient

    Get PDF
    Increasing atmospheric CO2 concentrations may have a profound effect on the structure and function of plant communities. A previously grazed, central Texas grassland was exposed to a 200-µmol mol-1 to 550 µmol mol-1 CO2 gradient from March to mid-December in 1998 and 1999 using two, 60-m long, polyethylene-covered chambers built directly onto the site. One chamber was operated at subambient CO2 concentrations (200-360 µmol mol-1 daytime) and the other was regulated at superambient concentrations (360-550 µmol mol-1). Continuous CO2 gradients were maintained in each chamber by photosynthesis during the day and respiration at night. Net ecosystem CO2 flux and end-of-year biomass were measured in each of 10, 5-m long sections in each chamber. Net CO2 fluxes were maximal in late May (c. day 150) in 1998 and in late August in 1999 (c. day 240). In both years, fluxes were near zero and similar in both chambers at the beginning and end of the growing season. Average daily CO2 flux in 1998 was 13 g CO2 m-2 day-1 in the subambient chamber and 20 g CO2 m-2 day-1 in the superambient chamber; comparable averages were 15 and 26 g CO2 m-2 day-1 in 1999. Flux was positively and linearly correlated with end-of-year above-ground biomass but flux was not linearly correlated with CO2 concentration; a finding likely to be explained by inherent differences in vegetation. Because C3 plants were the dominant functional group, we adjusted average daily flux in each section by dividing the flux by the average percentage C3 cover. Adjusted fluxes were better correlated with CO2 concentration, although scatter remained. Our results indicate that after accounting for vegetation differences, CO2 flux increased linearly with CO2 concentration. This trend was more evident at subambient than superambient CO2 concentrations

    The effects of CO2, climate and land-use on terrestrial carbon balance, 1920-1992: An analysis with four process-based ecosystem models

    Get PDF
    The concurrent effects of increasing atmospheric CO2 concentration, climate variability, and cropland establishment and abandonment on terrestrial carbon storage between 1920 and 1992 were assessed using a standard simulation protocol with four process-based terrestrial biosphere models. Over the long-term(1920–1992), the simulations yielded a time history of terrestrial uptake that is consistent (within the uncertainty) with a long-term analysis based on ice core and atmospheric CO2 data. Up to 1958, three of four analyses indicated a net release of carbon from terrestrial ecosystems to the atmosphere caused by cropland establishment. After 1958, all analyses indicate a net uptake of carbon by terrestrial ecosystems, primarily because of the physiological effects of rapidly rising atmospheric CO2. During the 1980s the simulations indicate that terrestrial ecosystems stored between 0.3 and 1.5 Pg C yr−1, which is within the uncertainty of analysis based on CO2 and O2 budgets. Three of the four models indicated (in accordance with O2 evidence) that the tropics were approximately neutral while a net sink existed in ecosystems north of the tropics. Although all of the models agree that the long-term effect of climate on carbon storage has been small relative to the effects of increasing atmospheric CO2 and land use, the models disagree as to whether climate variability and change in the twentieth century has promoted carbon storage or release. Simulated interannual variability from 1958 generally reproduced the El Niño/Southern Oscillation (ENSO)-scale variability in the atmospheric CO2 increase, but there were substantial differences in the magnitude of interannual variability simulated by the models. The analysis of the ability of the models to simulate the changing amplitude of the seasonal cycle of atmospheric CO2 suggested that the observed trend may be a consequence of CO2 effects, climate variability, land use changes, or a combination of these effects. The next steps for improving the process-based simulation of historical terrestrial carbon include (1) the transfer of insight gained from stand-level process studies to improve the sensitivity of simulated carbon storage responses to changes in CO2 and climate, (2) improvements in the data sets used to drive the models so that they incorporate the timing, extent, and types of major disturbances, (3) the enhancement of the models so that they consider major crop types and management schemes, (4) development of data sets that identify the spatial extent of major crop types and management schemes through time, and (5) the consideration of the effects of anthropogenic nitrogen deposition. The evaluation of the performance of the models in the context of a more complete consideration of the factors influencing historical terrestrial carbon dynamics is important for reducing uncertainties in representing the role of terrestrial ecosystems in future projections of the Earth system

    Impacts of large-scale climatic disturbances on the terrestrial carbon cycle

    Get PDF
    BACKGROUND: The amount of carbon dioxide in the atmosphere steadily increases as a consequence of anthropogenic emissions but with large interannual variability caused by the terrestrial biosphere. These variations in the CO(2 )growth rate are caused by large-scale climate anomalies but the relative contributions of vegetation growth and soil decomposition is uncertain. We use a biogeochemical model of the terrestrial biosphere to differentiate the effects of temperature and precipitation on net primary production (NPP) and heterotrophic respiration (Rh) during the two largest anomalies in atmospheric CO(2 )increase during the last 25 years. One of these, the smallest atmospheric year-to-year increase (largest land carbon uptake) in that period, was caused by global cooling in 1992/93 after the Pinatubo volcanic eruption. The other, the largest atmospheric increase on record (largest land carbon release), was caused by the strong El Niño event of 1997/98. RESULTS: We find that the LPJ model correctly simulates the magnitude of terrestrial modulation of atmospheric carbon anomalies for these two extreme disturbances. The response of soil respiration to changes in temperature and precipitation explains most of the modelled anomalous CO(2 )flux. CONCLUSION: Observed and modelled NEE anomalies are in good agreement, therefore we suggest that the temporal variability of heterotrophic respiration produced by our model is reasonably realistic. We therefore conclude that during the last 25 years the two largest disturbances of the global carbon cycle were strongly controlled by soil processes rather then the response of vegetation to these large-scale climatic events

    Mobile phone use and risk of acoustic neuroma: results of the Interphone case–control study in five North European countries

    Get PDF
    There is public concern that use of mobile phones could increase the risk of brain tumours. If such an effect exists, acoustic neuroma would be of particular concern because of the proximity of the acoustic nerve to the handset. We conducted, to a shared protocol, six population-based case–control studies in four Nordic countries and the UK to assess the risk of acoustic neuroma in relation to mobile phone use. Data were collected by personal interview from 678 cases of acoustic neuroma and 3553 controls. The risk of acoustic neuroma in relation to regular mobile phone use in the pooled data set was not raised (odds ratio (OR)=0.9, 95% confidence interval (CI): 0.7–1.1). There was no association of risk with duration of use, lifetime cumulative hours of use or number of calls, for phone use overall or for analogue or digital phones separately. Risk of a tumour on the same side of the head as reported phone use was raised for use for 10 years or longer (OR=1.8, 95% CI: 1.1–3.1). The study suggests that there is no substantial risk of acoustic neuroma in the first decade after starting mobile phone use. However, an increase in risk after longer term use or after a longer lag period could not be ruled out

    British Journal of Cancer advance online publication

    Get PDF
    There is public concern that use of mobile phones could increase the risk of brain tumours. If such an effect exists, acoustic neuroma would be of particular concern because of the proximity of the acoustic nerve to the handset. We conducted, to a shared protocol, six population-based case -control studies in four Nordic countries and the UK to assess the risk of acoustic neuroma in relation to mobile phone use. Data were collected by personal interview from 678 cases of acoustic neuroma and 3553 controls. The risk of acoustic neuroma in relation to regular mobile phone use in the pooled data set was not raised (odds ratio (OR) ¼ 0.9, 95% confidence interval (CI): 0.7 -1.1). There was no association of risk with duration of use, lifetime cumulative hours of use or number of calls, for phone use overall or for analogue or digital phones separately. Risk of a tumour on the same side of the head as reported phone use was raised for use for 10 years or longer (OR ¼ 1.8, 95% CI: 1.1 -3.1). The study suggests that there is no substantial risk of acoustic neuroma in the first decade after starting mobile phone use. However, an increase in risk after longer term use or after a longer lag period could not be ruled out

    British Journal of Cancer advance online publication

    Get PDF
    There is public concern that use of mobile phones could increase the risk of brain tumours. If such an effect exists, acoustic neuroma would be of particular concern because of the proximity of the acoustic nerve to the handset. We conducted, to a shared protocol, six population-based case -control studies in four Nordic countries and the UK to assess the risk of acoustic neuroma in relation to mobile phone use. Data were collected by personal interview from 678 cases of acoustic neuroma and 3553 controls. The risk of acoustic neuroma in relation to regular mobile phone use in the pooled data set was not raised (odds ratio (OR) ¼ 0.9, 95% confidence interval (CI): 0.7 -1.1). There was no association of risk with duration of use, lifetime cumulative hours of use or number of calls, for phone use overall or for analogue or digital phones separately. Risk of a tumour on the same side of the head as reported phone use was raised for use for 10 years or longer (OR ¼ 1.8, 95% CI: 1.1 -3.1). The study suggests that there is no substantial risk of acoustic neuroma in the first decade after starting mobile phone use. However, an increase in risk after longer term use or after a longer lag period could not be ruled out
    corecore