3,839 research outputs found
Pre-determining the location of electromigrated gaps by nonlinear optical imaging
In this paper we describe a nonlinear imaging method employed to spatially
map the occurrence of constrictions occurring on an electrically-stressed gold
nanowire. The approach consists at measuring the influence of a tightly focused
ultrafast pulsed laser on the electronic transport in the nanowire. We found
that structural defects distributed along the nanowire are efficient nonlinear
optical sources of radiation and that the differential conductance is
significantly decreased when the laser is incident on such electrically-induced
morphological changes. This imaging technique is applied to pre-determined the
location of the electrical failure before it occurs.Comment: 3 figure
GRB 110205A: Anatomy of a long gamma-ray burst
The Swift burst GRB 110205A was a very bright burst visible in the Northern
hemisphere. GRB 110205A was intrinsically long and very energetic and it
occurred in a low-density interstellar medium environment, leading to delayed
afterglow emission and a clear temporal separation of the main emitting
components: prompt emission, reverse shock, and forward shock. Our observations
show several remarkable features of GRB 110205A : the detection of prompt
optical emission strongly correlated with the BAT light curve, with no temporal
lag between the two ; the absence of correlation of the X-ray emission compared
to the optical and high energy gamma-ray ones during the prompt phase ; and a
large optical re-brightening after the end of the prompt phase, that we
interpret as a signature of the reverse shock. Beyond the pedagogical value
offered by the excellent multi-wavelength coverage of a GRB with temporally
separated radiating components, we discuss several questions raised by our
observations: the nature of the prompt optical emission and the spectral
evolution of the prompt emission at high-energies (from 0.5 keV to 150 keV) ;
the origin of an X-ray flare at the beginning of the forward shock; and the
modeling of the afterglow, including the reverse shock, in the framework of the
classical fireball model.Comment: 21 pages, 5 figure (all in colors), accepted for publication in Ap
Ultra low energy results and their impact to dark matter and low energy neutrino physics
We present ultra low energy results taken with the novel Spherical
Proportional Counter. The energy threshold has been pushed down to about 25 eV
and single electrons are clearly collected and detected. To reach such
performance low energy calibration systems have been successfully developed: -
A pulsed UV lamp extracting photoelectrons from the inner surface of the
detector - Various radioactive sources allowing low energy peaks through
fluorescence processes. The bench mark result is the observation of a well
resolved peak at 270 eV due to carbon fluorescence which is unique performance
for such large-massive detector. It opens a new window in dark matter and low
energy neutrino search and may allow detection of neutrinos from a nuclear
reactor or from supernova via neutrino-nucleus elastic scatteringComment: 14 pages,16 figure
Spatial Resolution of a Micromegas-TPC Using the Charge Dispersion Signal
The Time Projection Chamber (TPC) for the International Linear Collider will
need to measure about 200 track points with a resolution close to 100 m. A
Micro Pattern Gas Detector (MPGD) readout TPC could achieve the desired
resolution with existing techniques using sub-millimeter width pads at the
expense of a large increase in the detector cost and complexity. We have
recently applied a new MPGD readout concept of charge dispersion to a prototype
GEM-TPC and demonstrated the feasibility of achieving good resolution with pads
similar in width to the ones used for the proportional wire TPC. The charge
dispersion studies were repeated with a Micromegas TPC amplification stage. We
present here our first results on the Micromegas-TPC resolution with charge
dispersion. The TPC resolution with the Micromegas readout is compared to our
earlier GEM results and to the resolution expected from electron statistics and
transverse diffusion in a gaseous TPC.Comment: 5 pages, 8 figures, to appar in the Proceedings of the 2005
International Linear Collider Workshop (LCWS05), Stanford, 18-22 March 200
Orbit determination of Transneptunian objects and Centaurs for the prediction of stellar occultations
The prediction of stellar occultations by Transneptunian objects and Centaurs
is a difficult challenge that requires accuracy both in the occulted star
position as for the object ephemeris. Until now, the most used method of
prediction involving tens of TNOs/Centaurs was to consider a constant offset
for the right ascension and for the declination with respect to a reference
ephemeris. This offset is determined as the difference between the most recent
observations of the TNO and the reference ephemeris. This method can be
successfully applied when the offset remains constant with time. This paper
presents an alternative method of prediction based on a new accurate orbit
determination procedure, which uses all the available positions of the TNO from
the Minor Planet Center database plus sets of new astrometric positions from
unpublished observations. The orbit determination is performed through a
numerical integration procedure (NIMA), in which we develop a specific
weighting scheme. The NIMA method was applied for 51 selected TNOs/Centaurs.
For this purpose, we have performed about 2900 new observations during
2007-2014. Using NIMA, we succeed in predicting the stellar occultations of 10
TNOs and 3 Centaurs between 2013 and 2015. By comparing the NIMA and JPL
ephemerides, we highlighted the variation of the offset between them with time.
Giving examples, we show that the constant offset method could not accurately
predict 6 out of the 13 observed positive occultations successfully predicted
by NIMA. The results indicate that NIMA is capable of efficiently refine the
orbits of these bodies. Finally, we show that the astrometric positions given
by positive occultations can help to further refine the orbit of the TNO and
consequently the future predictions. We also provide the unpublished
observations of the 51 selected TNOs and their ephemeris in a usable format by
the SPICE library.Comment: 12 pages, 9 figures, accepted in A&
Transcutaneous Exercise Oximetry for Patients With Claudication - A Retrospective Review of Approximately 5,000 Consecutive Tests Over 15 Years
BACKGROUND: Exercise transcutaneous oximetry (Ex-tcPO2) is used to argue for the vascular origin of lower limb pain, especially at the proximal level, where the diagnosis of peripheral artery disease can be difficult. This study analyzed the principal indications, mean results, and limitations of Ex-tcPO2, as well as the relationship between the annual number of Ex-tcPO2 tests and internal iliac artery (IIA) revascularizations.Methods and Results:Data from our first 15 years\u27 experience (3,631 patients, 5,080 tests) with Ex-tcPO2 were analyzed retrospectively using the minimal value of the decrease from rest of oxygen pressure (DROP). We had 99.7% of expected DROPresults. The proportion of tests showing isolated proximal unilateral or bilateral ischemia ranged from ~5% to ~20%. A gradual increase with time was observed in both the annual number of Ex-tcPO2 tests (from 0 to ~500 per year) and the annual number of IIA revascularizations performed (from 0 up to 18 per year). At least 85% of patients (77/91) showed function improvement after IIA revascularization.
CONCLUSIONS: Ex-tcPO2 (using DROP) provides an objective argument for exercise-induced ischemia, bilaterally at the distal and/or proximal level. Using Ex-tcPO2 has improved our diagnostic performance and markedly changed our therapeutic decisions, specifically for proximal claudication. The increased number of Ex-tcPO2 tests is associated with an increased number of IIA revascularizations, although a causal relationship was not proven
- …