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A minimal two-field fluid approach is followed to describe the radio-frequency (RF) wave propagation

in the bounded scrape-off layer plasma of magnetic fusion devices self-consistently with direct current

(DC) biasing of this plasma. The RF and DC parts are coupled by non-linear RF and DC sheath

boundary conditions at both ends of open magnetic field lines. The physical model is studied within a

simplified framework featuring slow wave (SW) only and lateral walls normal to the straight

confinement magnetic field. The possibility is however kept to excite the system by any realistic 2D

RF field map imposed at the outer boundary of the simulation domain. The self-consistent RFþDC

system is solved explicitly in the asymptotic limit when the width of the sheaths gets very large, for

several configurations of the RF excitation and of the target plasma. In the case of 3D parallelepipedic

geometry, semi-analytical results are proposed in terms of asymptotic waveguide eigenmodes that can

easily be implemented numerically. The validity of the asymptotic treatment is discussed and is

illustrated by numerical tests against a quantitative criterion expressed from the simulation parameters.

Iterative improvement of the solution from the asymptotic result is also outlined. Throughout the

resolution, key physical properties of the solution are presented. The radial penetration of the RF

sheath voltages along lateral walls at both ends of the open magnetic field lines can be far deeper than

the skin depth characteristic of the SW evanescence. This is interpreted in terms of sheath-plasma

wave excitation. Therefore, the proper choice of the inner boundary location is discussed as well as

the appropriate boundary conditions to apply there. The asymptotic scaling of various quantities with

the amplitude of the input RF excitation is established. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4750046]

I. INTRODUCTION

The emission of radio-frequency (RF) waves by com-

plex antennae and their damping in the core of magnetized

plasmas have been described for a long time by sophisticated

first principle models in realistic geometry. Comparatively,

the simulation of anomalous RF power losses in the plasma

edge is still less advanced, although the non-linear wave-

plasma interactions in the plasma edge often set the opera-

tional limits of RF heating systems. Peripheral ion cyclotron

range of frequencies (ICRF, 30–100 MHz in present fusion

devices) wave damping is attributed to a DC biasing of the

edge plasma by RF-sheath rectification.1 This non-linear pro-

cess is usually modelled in analogy with a double Langmuir

probe driven by an oscillating RF voltage, estimated as the

field-line-integrated RF field E// parallel to the confinement

magnetic field B0.2 In this exercise, each open flux tube in

the scrape-off layer (SOL) is considered as independent of

its neighbours and E// is generally computed from conven-

tional antenna codes in the absence of sheaths,3,4 i.e., perfect

electric conductors are assumed in direct contact with the

plasma. This procedure, although clearly not self-consistent,

was widely implemented as the only tool able to model real-

istic wave-launching structures.5–15 It was shown to repro-

duce qualitatively some RF-induced SOL modifications

observed around powered antennae.6,8,10,11,16 Yet its quanti-

tative validity is questionable.17 Moreover, contradictions

appeared with recent measurements, e.g., the scaling of recti-

fied DC plasma potential with RF power,18 the radial pene-

tration of the plasma bias,19 or the non-linear generation of

edge DC currents by RF waves.10,20,21 Although no consen-

sus presently exists over an alternative approach, RF-sheath

physics needs improvement towards the first principles.

In this prospect, Sec. II of this paper proposes to describe

the RF wave propagation in the bounded SOL plasma self-

consistently with the DC biasing of the SOL from both ends

of open magnetic field lines. A minimal fluid approach is fol-

lowed, inspired by earlier work on RF plasma discharges22–24

and recently applied to tokamaks.17,25,26 The RF and DC

parts of the model are coupled by non-linear RF and DC

sheath boundary conditions at both ends of open magnetic

field lines. The approach, called SSWICH (self-consistent

sheaths and waves for ion cyclotron heating27) allows interac-

tion between neighbouring flux tubes via the exchange of

a)Author to whom correspondence should be addressed. Electronic mail:

laurent.colas@cea.fr.
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self-consistent RF and DC currents. This paper describes

only a simplified framework, featuring slow wave only and

lateral walls normal to B0. The possibility is kept however to

excite the system by any 2D RF field map imposed at the

outer boundary of the simulation domain, in order to simulate

complex antenna structures.

Despite these simplifications, the problem in all its gen-

erality is of a great complexity. Its self-consistent resolution

with realistic excitation can only be envisaged numerically.

The convergence of the iterative resolution algorithm is not

guaranteed. In any case, it is all the faster as the starting point

is closer to the final solution. Multiple roots were evidenced

in some circumstances.26 In order to gain insight into the

physical behaviour of the full non-linear DCþRF model,

and to provide a good “first guess” for its iterative resolution,

the self-consistent system is solved explicitly in the asymp-

totic limit when the width of the sheaths gets very large. This

simplified regime is reached as the RF power launched by the

ICRF antenna tends to infinity. From a practical point of

view, this is also a critical regime since experimentally the

deleterious plasma-wall interaction related to the sheaths gets

exacerbated at high RF power.18,28–30 Sections III and IV

detail the asymptotic resolution for several configurations of

the excitation and of the target plasma. The way to refine iter-

atively the solution from its asymptotic value is also outlined.

Throughout the resolution, key physical properties of the so-

lution are outlined: the radial propagation of the oscillating

sheath voltages at both ends of the open magnetic field lines

in the SOL; the asymptotic scaling of various quantities with

the amplitude of the input RF excitation (or equivalently with

the launched RF power). The validity of the asymptotic treat-

ment is also discussed: Sec. IV proposes a quantitative crite-

rion as a function of the simulation parameters that is tested

numerically in Sec. V.

II. OUTLINE OF SSWICH MODEL

The proposed SSWICH model is thought as a minimal

self-consistent RFþDC approach able to capture the experi-

mental phenomenology outlined in the Introduction. It is

motivated by a closer proximity to the first principles and the

allowance for DC current circulation in the SOL. The model

involves DC plasma quantities as well as harmonic RF

waves oscillating at the ICRF wave frequency x0. RF and

DC quantities are coupled non-linearly via two processes

representing the sheath physics and implemented as bound-

ary conditions. In many aspects, the RF model is inspired by

Ref. 17. The problem is formulated in a fluid manner so that

the concept of flux tube is less central than in the “standard

approach.”5 The plasma medium is still highly anisotropic in

the parallel direction. But the neighbouring field lines are

coupled via RF and DC current exchanges and if they are

sufficiently long, their two extremities can behave independ-

ently. Being minimal, the model is not fully complete in its

present simplified formulation. No other frequency than 0

and x0 is considered and some transport coefficients remain

phenomenological, contrary to Ref. 19. The RF model incor-

porates only one wave polarization (the slow wave) and the

simulation geometry is restricted to parallelepipedic shape.

Input plasma parameter profiles (density, temperatures) are

prescribed, whereas RF-induced SOL profile modifications

are highly suspected, e.g., density convection due to the dif-

ferential biasing of neighbouring flux tubes.6,16,29,31–33

A. RF part of the model: Full-wave propagation
in bounded 3-dimensional (3D) SOL plasma

The RF part of the model is sketched in Figure 1(a),

where x, y, z denote, respectively, the local radial, poloidal,

and parallel directions of a flattened tokamak. The simula-

tion domain is a 3D collection of straight open field lines

aligned along z in the SOL. For the sake of simplicity paral-

lelepipedic geometry will be considered here, with parallel

(respectively, radial) extension L// (L?). The physical con-

cepts developed are, however, still valid in more complex

3D simulation domains whose boundaries are either parallel

or normal to B0.27 At the RF frequency x0, the SOL plasma

is characterized by a gyrotropic dielectric tensor e(x, x0)34

eðx;x0Þ ¼
e? �ie� 0

þie� e? 0

0 0 e==

2
4

3
5 x

y
z
: (2.1)

Consistently with the cold plasma approximation, the SOL

plasma is supposed to be spatially non-dispersive: the tensor

e(x, x0) may depend on the radial coordinate x and on the

frequency x0 but not on wave vectors, so that the wave equa-

tions can be easily expressed in configuration space rather

than Fourier space. The gyrotropic medium is bi-refringent:

in describing the RF field propagation, two polarizations

need to be distinguished, the fast wave (FW) and the slow

wave (SW). This paper focuses on the behaviour of the RF

field E//(x, y, z, x0) parallel to the confinement magnetic field

B0. In the limit when |e//| is high compared to other dielectric

(a)

(b)

FIG. 1. Radial/toroidal cut through the 3D simulation domain. Outline of (a)

the RF model and (b) the DC model.
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constants and squared refractive indexes, E//(x, y, z, x0) is

entirely due to the SW and is governed by the wave equation

e==D==E== þ e?D?E== þ e==e?k2
0E== ¼ 0: (2.2)

In this expression, k0¼x0/c is the wavevector in vacuum, D
is the Laplace operator, the subscripts // and ? refer to the

local directions parallel and transverse to B0. The high-je//j
ordering used to derive (2.2) is generally valid in tokamak

plasmas for the SW directly excited by RF antennae but will

need discussion in our particular context for RF fields result-

ing from the interaction of the incident SW with the sheaths.

The RF waves are emitted through an aperture in the

outer metallic chamber wall at the radial boundary x¼ 0.

The RF electric field E is prescribed at this boundary. This

input 2D mapping E//ap(y, z) is typically produced by an

antenna code in the absence of sheaths and excites the whole

RFþDC physical system. As suggested by Figure 1(a), the

physical aperture might not extend over the whole parallel

extension L// of the simulation domain. For the ease of nota-

tion, the whole radial plane x¼ 0 will be denoted “aperture,”

but the two cases whether E//ap is null or not at z¼6L///2

will be distinguished since this affects the sheath excitation.

At the ICRF frequencies, the typical parallel dielectric

constants e// are highly negative even in the tenuous SOL

plasma. Therefore, plane SW are evanescent for all parallel

wave-numbers k// above a critical density corresponding to

e?¼ 0. We suppose that this critical density is reached at the

“main plasma” side of the simulation domain, i.e., e?< 0 at

x¼ L?. Therefore, the SW is assumed totally extinguished

and metallic boundary conditions are enforced E//(x¼ L?, y, z)

¼ 0. These inner boundary conditions, as well as the optimal

choice of the radial depth L?, will be further discussed in

relation with the RF sheath radial penetration.

B. RF Sheath boundary conditions as a propagation
equation for an oscillating sheath voltage

In the immediate vicinity of the ICRF launcher in the

SOL, the so-called “open” magnetic field lines are bounded

by lateral metallic parts, located in z¼6L///2 in the paralle-

lepipedic case. Between the bulk plasma and the metallic

wall, a thin transition layer or sheath is established. Since the

sheath usually has a width d much thinner than the toroidal

extension L// of the simulation domain, its consequence on

the RF field propagation is accounted for via a RF “sheath

boundary condition” (SBC) that replaces the usual metallic

boundary condition. Although they rigorously prevail at the

sheath/plasma interface, the RF-SBCs are applied directly at

the wall. Presently, no SBC is applied at the metallic cham-

ber wall containing the aperture in x¼ 0.

A simple RF-SBC for the RF electric field at the sheath-

plasma interface was proposed in Ref. 17. This concept of

SBC has already been successfully applied in the context

of inductive24 and capacitive35 plasma discharges with un-

magnetized plasma however. Implementing SBCs in the

TOPICA antenna code was also attempted,25 but in vacuum.

Numerical implementation with magnetized plasma was

only achieved recently in still very simple geometry.26 At

the RF frequency, the RF current through the sheath is sup-

posed to be mainly a displacement current. In this frame-

work, the sheath is assimilated to a parallel plate capacitor of

width d, filled with a dielectric material of dielectric constant

esh. This description is motivated since the sheath is a region

depleted of electrons similar to vacuum. Inline with this

view, the width d is of the order of the (local, time averaged)

sheath width. The dielectric constant is of the order of

esh�þ1, while e// in the SOL is highly negative. However in

presence of high power waves, the “real” sheath width is

subject to large amplitude RF oscillations around its mean

value, which may affect the effective sheath capacitance.22,23

Within these simple assumptions, the RF-SBC is linear and

reads17

E
ðplÞ
t ¼ rt

�
dDðplÞ

n =esh

�
¼ rtVrf : (2.3)

Here, E is the RF electric field, D¼ eE is the RF electric dis-

placement. RF quantities are evaluated at the plasma side of

the sheath/plasma interface (superscript (pl)), where D is

continuous and E exhibits a jump because the dielectric ten-

sor e changes abruptly. The subscripts n and t refer, respec-

tively, to the direction locally normal (towards plasma) and

transverse to the wall. The sheath width d is allowed to vary

spatially and its radial/poloidal distribution needs be subse-

quently determined self-consistently from the DC sheath

potential. When the sheath width is null (d¼ 0), the RF-SBC

(2.3) amounts to the usual metallic boundary conditions

Et
(pl)¼ 0. The quantity Vrf¼ dDn

(pl)/esh at the right hand side

(RHS) of Eq. (2.3) physically defines an oscillating RF volt-

age across the sheaths that drives the rectification of the DC

plasma potential. Vrf is null in the absence of sheaths. When

the wall is arbitrarily oriented with respect to B0, it was

proved that Eq. (2.3) couples the FW and the SW at the lat-

eral boundaries of the simulation domain, so that both modes

need to be treated simultaneously to describe the RF sheath

excitation.36 Our restrictive geometry with lateral boundaries

normal to B0 is essentially motivated by a simplified treat-

ment to avoid the FW. Dropping the superscript (pl), the

RF-SBC (2.3) becomes

E?ðx;y; z¼6L===2Þ ¼7r?ðde==E===eshÞ ¼7r?Vrf : (2.4)

The opposite signs for the opposite walls account for the re-

versal of the normal direction n. Within the high-je//j order-

ing already introduced, E//¼ 0 can be assumed for the cold

FW. Thus, for this wave polarization, the simplified RF-SBC

(2.4) amounts to the metallic boundary condition E?¼ 0 and

the FW does not excite RF sheaths in the present model. In

Ref. 37, the same evaluation was performed using the full

field polarization, including 1/je//j contributions to E// from

the FW. It was concluded that for plasma conditions and

wave amplitudes typical in the vicinity of ICRF launchers,

only modest sheath rectification was expected with walls

normal to B0. This evaluation would deserve to be repeated

in more realistic geometry. But within the present paper,

only the SW is supposed to contribute to Vrf and will be kept

below. Conservation of the RF electric displacement in the

SOL plasma is expressed as

092505-3 Colas et al. Phys. Plasmas 19, 092505 (2012)
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divðeEÞ � e?div?E? � ie�ðrotE?Þ== þ e==@==E== ¼ 0: (2.5)

The SW RF field exhibits essentially a transverse magnetic

polarization, so that (rotE?)// � div?E?. Using the simpli-

fied SBC (2.4) allows eliminating E?, yielding a new bound-

ary condition for the SW involving E// only38

e?D?Vrf ¼ e?D?ðe==dE===eshÞ
¼ 6e==@==E==ðx; y; z ¼ 6L===2Þ: (2.6)

In addition to the SW, the RF SBCs (2.6) allow the propa-

gation of an additional wave branch in the SOL plasma.

This sheath-plasma wave (SPW), whose RF electric field

is mainly concentrated near the lateral walls, exists only in

presence of the sheaths and features dispersion properties

quite different from the SW.17 The SPW is essential in the

development of the RF sheaths and will be detailed below.

This new degree of freedom makes it convenient to treat

the RF voltage Vrf as a new unknown independent of E//. In

this prospect, the left hand side of Eq. (2.6) can be

regarded as a transverse propagator for Vrf with a source

term at the RHS. This philosophy will guide our asymp-

totic resolution.

C. DC biasing of the plasma via RF sheath
rectification

1. General model

The DC part of the SSWICH problem is sketched in

Figure 1(b). It is treated in the same way as the RF fields,

i.e., via a partial differential equation for the electrostatic DC

plasma potential VDC(x, y, z) expressing the local balance of

electric charge over the same 3D simulation volume as for

the RF problem.

r==DCD==VDC þ r?DCD?VDC ¼ 0: (2.7)

In this expression, the constants (r//DC, r?DC) describe the

DC plasma conductivity parallel and transverse to B0. r//DC

is the Spitzer DC parallel conductivity. Rigorously, the trans-

verse DC plasma conductivity takes the form of a diffusion

operator r?DCD?VDC only in the case of ion-neutral colli-

sions.39 However, the effective transverse DC conductivity

of tokamak SOL plasmas is far more intense than expected

from ion-neutral collisions alone. Finding its physical nature

is in itself a topic of active research. Many physical proc-

esses were outlined in the literature to account for the obser-

vations: ion viscosity, inertia, or anomalous transport.39,40 It

is outside the scope of the present model to reproduce the

detailed conduction mechanism: here it is represented phe-

nomenologically as an effective perpendicular conductivity

r?DC.

The formalism outlined in (2.7) allows DC currents to

flow in the bulk plasma. Through this process, a given

sheath gets coupled to its neighbours as well as with the

sheath at the opposite wall along the same field line. This

non-locality was investigated in Refs. 41 and 42 and needs

to be accounted for in order to reproduce the measured

DC currents created by RF sheaths during ion cyclotron

resonance heating (ICRH).10,21 The DC part of model17 is

recovered in the limit (r//DC, r?DC)¼ (0, 0).

To fully specify the DC problem, Eq. (2.7) should be

complemented with appropriate DC sheath boundary condi-

tions for VDC at plasma/sheath interfaces. For the RF prob-

lem, the sheaths were assimilated to parallel-plate capacitors,

i.e., it was implicitly assumed that the RF current through

the sheaths was predominantly a (linear) displacement cur-

rent. When dealing with DC currents, the conduction cur-

rents through the sheaths need to be explicitly accounted for.

Since the sheath exhibits a non-linear I-V characteristic, a

rectification process occurs that couples the RF and DC parts

of our physical model. At both ends of the open flux tubes,

the instantaneous voltage across the sheaths is supposed to

be composed of a DC part and of a RF part oscillating at the

RF frequency x0. No other frequency is considered, contrary

to Ref. 19. At the left sheath

Vlðx; y; z ¼ �L===2; tÞ ¼ VDClðx; yÞ þ Vrf lðx; yÞcosðx0tþ uÞ:
(2.8)

The RF part of the voltage is provided by the solution of

the RF problem: it is the quantity Vrf already introduced in

Eq. (2.3). The walls are assumed electrically grounded, so

that the DC sheath potential VDCl(x, y) is also the local DC

plasma potential used in Eq. (2.7). Associated to the instan-

taneous sheath voltage, the instantaneous conduction cur-

rent into the sheath reads

Ilðx;y;z¼�L===2; tÞ¼ iþð1�expðeðVf �VlðtÞÞ=kTeÞÞ: (2.9)

In this expression, iþ is the local ion saturation current, Te is

the local electron temperature, and Vf is a local floating

potential in the absence of RF waves. This I-V electrical

characteristic was rigorously established for DC sheaths with

normal B0. It is presently extended to a dynamical regime.

More elaborate treatments of the conduction current in RF

sheaths were proposed in the context of un-magnetized RF

plasma reactors.22,23 No equivalent presently exists with

tilted B0, like the Chodura model for DC sheaths.43 The DC

part of Il is obtained by time averaging Eq. (2.9)

hIlðx; y; z ¼ �L===2Þi=iþ

¼ 1� exp eðVf � VDClÞ=kTe

� �
I0ðejVrf lj=kTeÞ: (2.10)

In this expression, h…i means time-average over one RF

period and I0(…) is the modified Bessel function of order 0.

The general DC SBCs state that the local DC current leaving

the bulk plasma is the DC current into the sheath: using

expression (2.10), this requirement yields a non-linear DC

SBC

iþ 1� exp e Vf þ Vbl � VDCÞ=kTe

� �� �� �
¼ ½rDC:$VDC�n ¼ r==DC@==VDCðx; y; z ¼ �L===2Þ: (2.11)

In this expression, we have defined the potential

Vblðx; yÞ ¼ kTe ln I0 ejVrf ljðx; yÞ=kTe

� �� �
=e � 0:

�
(2.12)
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Vbl plays the role of a localized, positive DC bias. Although

the vacuum vessel is electrically grounded, the sheath rectifi-

cation of Vrfl acts in practice as if the DC bias Vbl was

applied at vessel wall. Contrary to conventional biasing

experiments, Vbl can be spatially inhomogeneous over the

lateral walls. In the absence of volume source term in Eq.

(2.7), this RF ! DC coupling uses RF fields E// to drive the

DC biasing from field line extremities.

2. Simplified more local DC biasing model

Due to Eq. (2.7) allowing global DC current exchanges,

the general DC problem is non-local: RF excitation of one

sheath enhances the DC plasma potential in its entire neigh-

bourhood as well as at the opposite side of the open flux

tube. Besides, its DC-SBCs (2.11) make the DC problem

non-linear. Therefore, it can only be solved numerically. In

order to yield analytically tractable solutions, it is simplified

here in the limit of infinite parallel conductivity and negligi-

ble transverse conductivity. Assuming perfect plasma DC

parallel conductivity r//DC suppresses any DC potential drop

along a field line in the bulk plasma. The DC plasma poten-

tial VDC(x, y) is then determined by requiring that the sum of

the parallel DC currents into the two opposite sheaths balan-

ces the transverse DC current across the field line. In the

limit of negligible transverse conductivity r?DC, this trans-

verse DC current is taken null. The final DC current balance

reads

iþ 2� exp eðVf � VDC þ VblÞ=kTe

� ��
� exp eðVf � VDC þ VbrÞ=kTe

� ��
¼ 0: (2.13)

Relation (2.13) is more local in that every flux tube behaves

independently of its neighbours. Yet the parallel conductivity

couples the sheaths at both extremities of a field line. Rela-

tion (2.13) defines the DC plasma potential VDC(x, y) on flux

tube (x, y) as a function of the RF excitations at its two ends.

Namely, VDC(x, y)¼VfþVb(x, y) with a composite bias

Vb(x, y)

eVbðx; yÞ � eðVbl þ VbrÞ=2þ kTeln½cos h½eðVbl � VbrÞ=2kTe��
¼ kTe ln ððI0ðejVrf lj=kTeÞ þ I0ðejVrf rj=kTeÞ

� �
=2�:
(2.14)

D. Second RF-DC coupling: Self-consistent sheath
capacitance

The above models described how the RF part of the

fields influences the DC potentials via sheath rectification. In

turn, the DC potentials act non-linearly on the RF fields

through the self-consistent sheath capacitance that needs to

be introduced into the SBC (2.3) for the RF problem. To keep

the problem simple, it is assumed that despite its high ampli-

tude RF oscillation, the (time-averaged, local) sheath width d
follows the Child-Langmuir law for plane electrodes:44,45

dðx; yÞ ¼ keðeVDC=kTeÞ3=4: (2.15)

In this expression, ke is the electron Debye length. d(x, y) is a
priori inhomogeneous transverse to B0, since the RF fields

(and hence the DC potentials VDC(x, y)) are expected to

evolve radially. The Child-Langmuir law was established for

collision-less DC sheaths. More sophisticated models devel-

oped in the context of capacitive RF plasma devices indicate

that the actual RF sheath width is (50/27)1/2� 1.36 times

larger than predicted by Eq. (2.15), while the effective

dielectric constant in the sheath capacitance is esh� 1.226.22

So the ratio d/esh is approximately correct in the expression

of Vrf. These results are valid for high amplitude collision-

less RF sheaths parallel to B0 in planar geometry, with

immobile ions and inertia-less electrons (xpi � x0 � xpe).

This is enough to deal with tokamak RF sheaths in our

simplified parallepipedic geometry. Other more elaborate

formulae exist in the literature (e.g., Ref. 23) and could pro-

gressively replace the simpler ones. The counterpart is the

generation of harmonic frequencies of x0. In the prospect of

a generalization for our model, expression (2.15) would also

require revision to account for shaped lateral walls (e.g., Ref.

46 for DC sheaths in cylindrical geometry) with oblique inci-

dence of the magnetic field lines.

III. ASYMPTOTIC RESOLUTION FOR “WIDE
SHEATHS:” LEADING ORDER SOLUTION FOR E// 6¼ 0
AT LATERAL BOUNDARIES OF ANTENNA APERTURE

A. Motivations and principle of the new method

Despite the simplifications envisaged in this paper, the

SSWICH problem is fairly complex. To compute the SW

fields E// in presence of RF-SBCs, it is necessary to know the

2D (radial/poloidal) spatial distribution d(x, y) of the sheath

widths along lateral boundaries of the simulation domain,

via the RF voltages Vrf in Eq. (2.4). d(x, y) comes from the

DC biasing problem via the Child-Langmuir law (2.15), and

in turn knowing the 2D map E//(x, y) at the lateral boundaries

is necessary to solve the sheath rectification. Therefore, a

“first guess” into the self-consistent loop is valuable.

In order to solve for the RF field, a widespread tech-

nique consists in separating it into a set of toroidal eigenmo-

des.17,36–38 In presence of RF-SBCs, these eigenmodes are

only well defined if parameter K��de===(L==esh) can be

treated as a constant.17 However in realistic situations, the

dielectric tensor has a radial profile, the self-consistent

sheaths can adopt different widths at the two lateral bounda-

ries, and the 2D map d(x, y) is generally inhomogeneous

over similar spatial scale-lengths as the RF field. Reference

17 explored the issue of spatially varying sheath widths,

when the concept of eigenmode gets blurred. But this study

was restricted to one “mode” in a weakly inhomogeneous

limit (“small” radial gradient of K, no mode coupling, etc.).

Besides, eigenmodes can hardly be generalized to more com-

plex geometries than parallelepipedic (e.g., Ref. 27). These

difficulties motivated an alternative method to find a first

guess for the self-consistent solution of the RFþDC prob-

lem in realistic situations without relying on RF field

eigenmodes. The general method is valid whatever the 2D

input RF field map, in presence of a radial profile for the

plasma parameters, and with no assumption a priori about

the self-consistent 2D sheath widths distribution d(x, y) that
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emerges as an output. The counterpart is a restricted validity

domain.

For the purpose of RF sheath assessment in tokamak

environment, a critical situation arises when the DC biasing

gets very intense. From Child-Langmuir law (2.15), the

sheath widths d then grow very large. In this “wide sheath

regime,” it was early noticed that the RF SBCs (2.4) or (2.6)

get simplified, some physical quantities becoming nearly in-

dependent of d.17,38 The principle is then to split the fields in

the problem (e.g., Vrf) into successive approximations

Vrfðx; y; zÞ ¼ Vrf
ð0Þðx; y; zÞ þ Vrf

ð1Þðx; y; zÞ þ…: (3.1)

With at the lateral boundaries

V
ð1Þ
rf ðx;y;z¼6L===2Þ¼ kcrit

dðx;yÞVrf corðx;y;z¼6L===2Þ: (3.2)

In this formula, kcrit is a characteristic length that will be

determined below from the parameters of the model. Under

this form, the problem formally exhibits a non-dimensional

parameter kcrit/d(x, y) that will be assumed small in the “wide

sheath regime.” The asymptotic treatment mainly consists in

solving RF-SBCs (2.3) or (2.6) in perturbations with respect

to this small parameter. Since from the RF viewpoint the

sheath is assimilated to a capacitance, the asymptotic

approach is also valid if the lateral walls are covered with a

thick layer of dielectric material,47 as was experimented in

several tokamaks.18,48 However in presence of a dielectric

wall, the DC SBCs (2.11) need to be revised so that no DC

current crosses the sheaths. Formally, the small parameter

kcrit/d(x, y) depends on space so that sheaths need in principle

to be wide everywhere for the expansion to converge. The

validity of the approximations made will be discussed more

deeply below.

Section III describes a self-consistent non-linear resolu-

tion of the RFþDC SSWICH problem at the leading order in

the asymptotic expansion when the 2D RF field E//ap(y, z)
applied at the aperture exhibits a non-zero value at the lateral

sides of the simulation domain z¼6L///2. Section IV will per-

form the same exercise at the next order when the E//ap(y, z) is

null at both lateral sides.

B. Radial penetration of RF voltages along lateral
walls

At the leading order in the small parameter kcrit/d(x, y),

the RF-SBCs (2.6) read at both sides of the simulation

domain

D?
�
e==dE

ð0Þ
== =esh

�
¼ D?V

ð0Þ
rf ¼ 0: (3.3)

At the inner radial boundary x¼ L?, the metallic boundary

conditions impose

Vrf
ð0Þðx ¼ L?; y; z ¼ 6L===2Þ ¼ 0: (3.4)

The two above equations are still valid in the presence of a

radially inhomogeneous dielectric tensor. They allow solving

for Vrf
(0)(x, y, z¼6L///2) along the lateral boundaries from

the RF voltages at the aperture, without knowing a priori the

self-consistent 2D spatial distribution of d(x, y). We proceed

by splitting Vrf
(0) into a set of harmonic components oscillat-

ing as exp(ikyy) in the direction y, assumed periodic in a flat-

tened tokamak. The solution for the Fourier component

Vrf
(0)(x, ky) takes the form

V
ð0Þ
rf ðx;kyÞ¼V

ð0Þ
rf ð0;kyÞsinh

�
kyðL?� xÞ

�
=sinhðkyL?Þ: (3.5)

The penetration depth of the RF voltages can be estimated as

min(L?,1/jkyj) and can, therefore, be far larger than the

plasma skin depth kskin� c/xpe characteristic of the SW eva-

nescence. The reason is that this penetration is not governed

by the SW equation (2.2) but by the asymptotic RF SBC

(3.3). From Ref. 17 in the asymptotic limit kcrit/d! 0, Eq.

(3.3) describes the direct excitation of the SPW by the near

RF voltage at the antenna aperture. Equation (3.3) shows

that the asymptotic SPW equation applies with less restric-

tion to Vrf
(0) than to E//, for which homogeneous d would be

needed. The radial penetration of the RF voltages calls for

further discussion of the metallic boundary conditions at the

inner limit of the simulation volume, as well as of a proper

physical choice of the radial depth L?. Initially the inner

plasma boundary was placed radially well beyond kskin, so

that it plays no role with respect to the SW. If kyL?	 1, the

radial location L? neither plays any role for the SPW and L?
can be chosen with some latitude. If kyL?� 1, the SPW can

propagate inward in the SOL plasma as long as lateral mate-

rial boundaries are present. However, the SPW cannot propa-

gate further in the free plasma in the absence of lateral walls.

Given the very simple parallelepipedic geometry considered

in this paper, a physically logical choice for L? is then the

inner radial limit of the material objects surrounding the RF

antenna (side limiters,27 blanket shielding modules,49…).

More clever choices can be envisaged in more complex geo-

metries with material objects protruding inside a parallelepi-

pedic domain (e.g., Ref. 27).

C. Self-consistent leading order RF 1 DC problem

The leading-order RF voltages at the antenna aperture

need now to be determined self-consistently, taking into

account the DC part of the SSWICH problem. Although the

most general DC biasing model could be employed numeri-

cally, we proceed here with the simplified version in the limit

(r//DC, r?DC)¼ (1, 0). Vrf
(0)(x¼ 0, y) is then determined

from the coupled algebraic equations (2.14) and (2.15), using

as input the RF field values E//l¼E//ap(y,z¼�L///2) and E//r

¼E//ap(y,z¼þ L///2) prescribed at the lateral sides of the

aperture. We are mainly interested in the case ejVrflj/kTe	 1,

ejVrfrj/kTe 	 1 when the DC plasma potential is highly

enhanced compared to its value without RF waves. In this

limit, the system can be solved explicitly and yields

eVrf l

kTe

����
����¼ eke

kTe

je==j
esh

� 	4

E3
==mjE==lj;

eVrf r

kTe

����
����¼ eke

kTe

je==j
esh

� 	4

E3
==mjE==rj:

(3.6)

With E//m � max(jE//lj, jE//rj),
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eVDC

kTe
¼ eke

kTe

je==jE==m

esh

� 	4

; (3.7)

d
ke
¼ eke

kTe

je==jE==m

esh

� 	3

: (3.8)

The coordinates (x¼ 0, y) are implicit in the above formulae.

From these results, both sides of the aperture get coupled in

the self-consistent RFþDC problem. Besides, at the leading

order of the asymptotic expansion, the self-consistent DC

plasma potentials scale like the power four of the amplitude

of the RF field at the sides of the aperture. Raising E//ap is

equivalent to increasing the RF power PRF launched by the

ICRF antenna, with E//ap / PRF
1/2. Therefore, a parametric

scaling as PRF
2 is predicted for the leading order contribution

to the sheath voltages.

RF voltages Vrfl
(0)(x, y) and Vrfr

(0)(x, y) have now been

fully determined, making it possible to completely solve the

DC problem and to deduce the self-consistent 2D distribu-

tion of sheath widths dl(x, y) and dr(x, y) at both extremities

of every flux tube using Eq. (2.15). Finally, the leading order

RF electric field E//
(0)(x, y, z) is solved from the SW equation

(2.2) complemented with the Dirichlet boundary conditions.

E
ð0Þ
== ðx¼ 0;y; zÞ ¼ E==apðy;zÞ; E

ð0Þ
== ðx¼ L?;y;zÞ ¼ 0;

E
ð0Þ
== x;y;z¼�

L==
2


 �
¼

eshV
ð0Þ
rf l ðx;yÞ

e==ðxÞdlðx;yÞ
;

E
ð0Þ
== x;y; z¼þ

L==
2


 �
¼

eshV
ð0Þ
rf r ðx;yÞ

e==ðxÞdrðx;yÞ
: (3.9)

E//
(0) cannot generally be decomposed into eigenmodes, due

to the lateral BCs with spatially inhomogeneous sheath

widths. These BCs can be interpreted as if part of the RF field

was excited from the lateral sides of the flux tubes and propa-

gates in the parallel direction. Equation (3.9) also suggests

that the self-consistent Vrf
(0), d, and lateral E//

(0) are spatially

inhomogeneous with similar scale-lengths. From the scaling

considerations in Eqs. (3.6) and (3.8), E//
(0) is proportional to

the magnitude E//ap of the RF excitation at the aperture. The

fact that Vrfl
(0) and Vrfr

(0) grow faster than E//
(0) with increas-

ing E//ap justifies a-posteriori dropping the right hand side

term in Eq. (2.6) at the leading order. From the above discus-

sion of RF voltage penetration, E//
(0) at the lateral sides can

exhibit rather large wavelengths in the radial direction. In

these conditions, the SW equation (2.2) becomes question-

able, as it was developed using the ordering k?	 k0je?j. The

validity of Eq. (2.2) was discussed in Ref. 36, as well as pos-

sible alternative SW equations. It is outside the scope of the

present paper to apply these alternative equations.

D. Iterative solution refinement

The RF þ DC SSWICH problem was solved self-

consistently at the leading order in the asymptotic expansion

(3.1). This asymptotic approximation can then be used as the

starting point of an iterative numerical refinement of the so-

lution according to the following scheme:

(1) Solve for oscillating voltages at step n from the sheath

BCs (2.6)

D?V
ðnÞ
rf l ðx; yÞ ¼ 6

e==ðxÞ
e?ðxÞ

@==E
ðn�1Þ
== ðx; y; z ¼ 6L===2Þ: (3.10)

Consistently with the asymptotic ordering (3.1), the RHS

of Eq. (3.10) at step n uses the lateral RF fields obtained

at step n-1.

(2) Solve the DC problem at step n from the RF voltages at

step n and update the sheath widths from Child Lang-

muir law.

(3) Deduce the RF field map E//
(n) at step n from the SW

equation in the simulation volume using the lateral

boundary conditions (3.9) updated at step n.

This can be regarded as a 3-fluid formulation of the original

RF þ DC model, where the quantity Vrf is treated as inde-

pendent of E// and accounts for the new degrees of freedom

(the SPWs) introduced by the RF-SBCs. The method can be

implemented numerically on more complex simulation

domains than parallelepipedic, as long as side boundaries are

kept normal to B0 (e.g., Ref. 27). The convergence of this

iterative procedure remains an open issue in the general

case. However within the asymptotic framework, this

amounts to a set of successive small corrections. Section IV

applies this procedure at the first order.

IV. ASYMPTOTIC RESOLUTION FOR “WIDE
SHEATHS:” FIRST ORDER SOLUTION WHEN E// 5 0
AT LATERAL BOUNDARIES OF ANTENNA APERTURE

In many situations of physical interest, the lateral

walls are located toroidally far away from the extremities

of the physical aperture (see Figure 1). In the case of

recessed antennae, this physical aperture is surrounded by

a perfect metallic wall, where E//ap(y, z)¼ 0 is prescribed.4

A similar situation would arise if the RFþDC system was

excited by current straps in the simulation volume instead

of a prescribed field map at the outer boundary: In this

case, the entire outer wall would be metallic. Section III

showed that when E//ap(x¼ 0, y, z¼6L///2)¼ 0, no RF

sheath voltage develops at the leading order in the asymp-

totic expansion of the self-consistent RFþDC model. In

this situation, the first order is the lowest relevant one and

is treated below.

A. RF sheath voltages at first order

From Sec. III, in the particular case when E//ap

(y, z¼6L///2) ¼ 0, the three spatial coordinates get separa-

ble in E//
(0)(x, y, z) and the spectral component E//

(0)(x, ky, z)

takes the form

E
ð0Þ
== ðx;ky;zÞ¼

X1
n¼1

EnðkyÞsin k==nðzþL===2Þ
� �

Fnðx;kyÞ; (4.1)

with k//n � np/L//. The eigenmodes in Eq. (4.1) are the as-

ymptotic limits of similar SW modes as in Ref. 38. In our

context, however, harmonic poloidal variation was added,
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the inner BCs were changed, and inhomogeneous plasma

was allowed. As d!1, the eigenmodes become independ-

ent of K and can be used without restriction. The spectral

coefficients En(ky) are obtained by projection of the input RF

field map onto the eigenmodes. In the general case, the radial

structure function Fn(x, ky) is solution of the SW equation

(2.2) with simple BCs.

@2
xxFnðx; kyÞ ¼ ½e==ðxÞk2

0 � k2
==ne==ðxÞ=e?ðxÞ � k2

y �Fnðx; kyÞ;
Fnð0; kyÞ ¼ 1; FnðL?; kyÞ ¼ 0: (4.2)

For homogeneous plasmas, this simplifies into

Fnðx; kyÞ ¼ sin h
�

kxnðL? � xÞ
�
=sin hðkxnL?Þ;

k2
xn � k2

y ¼ k2
?n ¼ �e==ðk2

0 � k2
==n=e?Þ: (4.3)

The asymptotic SW eigenmodes do not however contribute

to Vrf
(0). Vrf

(1) therefore needs to be determined from Eq.

(2.6) expanded at the first order

D?V
ð1Þ
rf ¼ 6

e==ðxÞ
e?ðxÞ

@==E
ð0Þ
== ðx; y; z ¼ 6L===2Þ;

V
ð1Þ
rf ðx ¼ 0; y; zÞ ¼ V

ð1Þ
rf ðx ¼ L?; y; zÞ ¼ 0: (4.4)

The first order problem (4.4) is valid in presence of inhomo-

geneous plasma and can be evaluated explicitly without prior

knowledge of the self-consistent 2D spatial distribution

d(x, y). The Fourier component Vrfl
(1)(x, ky) can be expressed

as the convolution of the spectral RHS source term with a

Green’s function

V
ð1Þ
rf l ðx; kyÞ ¼

ðL?

0

e==ðx0Þ
e?ðx0Þ

@==E
ð0Þ
==

ky
x0; ky; z ¼ �

L==
2


 �

� Gðkyx; kyx0; kyL?Þdx0: (4.5)

The Green’s function G(X, X0, X1) is solution of the normal-

ized problem (4.4) with a Dirac source term

GðX;X0;X1Þ ¼
sin hðXminÞsin hðX1 � XmaxÞ

sin hðX1Þ
;

Xmin ¼ minðX;X0Þ; Xmax ¼ maxðX;X0Þ: (4.6)

Since Vrf
(1) depends linearly on E//

(0), the RF voltage is the

sum of contributions by each asymptotic SW mode via
convolution (4.5). For homogeneous plasmas, Eq. (4.5)

involves

ðL?

0

Gðkyx;kyx0;kyL?ÞFnðx0;kyÞdx0

¼
ðL?

0

Gðkyx;kyx0;kyL?Þ
sinh kxnðL?�x0Þð Þ

sinhðkxnL?Þ
dx0 ¼…

…¼ ky

k2
?n

sinh kyðL?�xÞ
� �

sinhðkyL?Þ
� sinh kxnðL?�xÞð Þ

sinhðkxnL?Þ

� 	
: (4.7)

Using the property @==sin k==nðzþ L===2Þ
� �� �

z¼�L===2
¼ k==n,

one deduces

V
ð1Þ
rf l ðx; kyÞ ¼

X1
n¼1

Vrfl nðx; kyÞ;

Vrfl nðx; kyÞ ¼
k==nEnðkyÞ
k2
==n � k2

0e?
S kxx; kxL?;

ky

kx


 �
: (4.8)

Similarly at the other side of the simulation domain

Vrfrnðx; kyÞ ¼ ð�1Þnþ1Vrflnðx; kyÞ. The radial dependence of

Vrf for homogeneous plasmas is given by the shape function

S(X, X1, Ky)

SðX;X1;KyÞ ¼
sin h KyðX1 � XÞ

� �
sin hðKyX1Þ

� sin hðX1 � XÞ
sin hðX1Þ

� 	
; (4.9)

with the normalized coordinates X � kxnx, X1 � kxnL?, and

Ky � ky/kxn. This function is plotted versus X in Figures 2 for

several values of X1 and Ky. Although the SW eigenmodes

for E//
(0) are extinguished radially within one skin depth from
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FIG. 2. Radial shape function S(X, X1, Ky) versus normalized coordinate X¼ kxnx for several values of X1¼ kxnL? and (a) Ky¼ 0; (b) Ky¼ 1/4.
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the SW cut-off layer, Vrf
(1) can extend radially well beyond

X¼ 1. When KyX1� 1 (Figure 2(a)), the sheath voltages are

able to reach the inner boundary and a linear radial decay is

found. Conversely for KyX1	 1 (Figure 2(b)), exponential

radial decay is found. The penetration depth of Vrf
(1) can be

estimated as min(L?,1/|ky|). From Eq. (4.4), this radial

behaviour can be interpreted as mode coupling of the leading

order SW electric field E//
(0) to the first order SPW Vrf

(1) via
the RF sheaths.

B. Self-consistent first order RF 1 DC problem

Vrf
(1)(x, y) being determined, the DC biasing problem

can be solved at the first order in the asymptotic expansion

to evaluate VDC
(1)(x, y, z). To proceed, we use again formula

(2.14) in the limit (r//DC, r?DC) ! (1, 0). We are mainly

interested in the case ejVrflj/kTe 	 1, ejVrfrj/kTe 	 1, when

the DC plasma potential is far larger than kTe/e. In this limit,

VDC
ð1Þðx; y; zÞ � max

�
jVrf l

ð1Þðx; yÞj; jVrf r
ð1Þðx; yÞj

�
: (4.10)

From this formula, the DC plasma potentials are expected to

exhibit a similar radial extension as the RF sheath voltages.

When the magnitude E//ap of the aperture RF field is

increased, Vrf
(1) / E//ap and VDC

(1) / E//ap. The self-

consistent 2D distribution d(x,y) can be subsequently

deduced from Eq. (2.15). It scales as E//ap
3/4. Finally, the first

order corrections to the RF field can be evaluated, incorpo-

rating the nonlinearity due to the sheaths. E//
(1)(x,y,z) is gov-

erned by the SW equation (2.2) using Dirichlet BCs similar

to Eq. (3.9), but with E//
(1)¼ 0 at the two radial boundaries.

Consequently in a similar way as E//
(0) was decomposed into

a discrete set of toroidal harmonic components, E//
(1) can be

decomposed into radial harmonic components. The Fourier

component E//
(1)(x,ky,z) takes the form

E
ð1Þ
== ðx;ky;zÞ¼

X1
m¼1

CmðkyÞsinðkxmxÞ
coshðk==mzÞ

coshðk==mL==m=2Þ

þSmðkyÞsinðkxmxÞ
sinhðk==mzÞ

sinhðk==mL==m=2Þ ; (4.11)

with kxm¼mp/L? and k2
==m ¼ �e?½k2

0 � ðk2
xm þ k2

yÞ=e==� �
�e?k2

0. From this expression, one can anticipate that E//
(1)

will only be present within a toroidal distance of 1/k0je?j1/2

from the lateral boundaries. Another consequence of

Eq. (4.11) is that the self-consistent total RF field E//
(0)

þE//
(1) cannot be split into eigenmodes. E//

(1) scales asymp-

totically as Vrf
(1)/d/E//ap

1/4, while E//
(0) / E//ap

1. So the

self-consistent asymptotic treatment becomes all the more

accurate as the amplitude of the RF excitation (or equiva-

lently the launched RF power) is increased.

C. Finite sheath width effects on the SPW

In order to discuss the validity of the asymptotic treat-

ment, we would like here to assess how the finite d affects

the SPW. For this purpose, we follow Ref. 38: in this subsec-

tion d is assumed known and homogeneous over the lateral

boundaries. We then seek the SPW under the form of two

plasma modes with symmetric and antisymmetric toroidal

parity.

E==ðx;ky;zÞ¼E==even

coshðk==evenzÞ
coshðk==evenL===2Þ

sinh
�

kxevenðL?�xÞ
�

sinhðkxevenL?Þ
:

(4.12)

The odd mode is similar, with sinh(k//oddz) instead of cosh

(k//evenz). The SPW verifies the full RF-SBC (2.6) on both

sides of the simulation domain together with the SW equa-

tion (2.2). These constraints lead to a compatibility equation

for k//. For the even SPW mode17

e==d

esh
½k2

0e? þ k2
==even� ¼ �k==eventan h

k==evenL==
2


 �
: (4.13)

A similar equation holds for the odd mode with coth(…)

instead of tanh(…). Equation (4.13) possesses a real solution

for k//. It is now solved to the leading order as d!1.

k==even
2¼ k==odd

2¼ k==1
2¼�k0

2e?;kxeven¼ kxodd¼ ky: (4.14)

These asymptotic relations do not depend on d. They corre-

spond to the leading order RF-SBC (3.3) that was obtained

without a-priori assumption about the sheath width spatial

distribution. Substituting k//¼ (k//1þ dk//) into Eq. (4.13),

the first order correction dk// to k//1 is

dk==even ¼ �
esh

2e==d
tan h

k==1L==
2


 �
;

dk==odd ¼ �
esh

2e==d
cot h

k==1L==
2


 �
: (4.15)

And the associated corrections to the squared radial wave-

vector are

dk2
xeven ¼

k==1esh

de?
tan h

k==1L==
2


 �
;

dk2
xodd ¼

k==1esh

de?
cot h

k==1L==
2


 �
: (4.16)

For e?< 0, jdkxodd
2j> jdkxeven

2j. The first order corrections

(4.16) to the SPW eigenmode (4.13) remain negligible at

both lateral sides of the simulation domain as long as

jkxeven� kyjL?� 1, jkxodd� kyjL?� 1. This requirement

yields a simple criterion

kcrit

d
¼ esh

e1=2
?

k0L2
?

d
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þ k2

y L2
?

q coth
k==1L==

2


 ��������

�������
� 1: (4.17)

In the self-consistent RF þ DC approach, a typical value of

the self-consistent inverse sheath widths 1/d should be used

in the validity criterion, for example, their average over the

simulation volume. Formula (4.17) provides a possible defi-

nition for the critical length kcrit that will subsequently be

tested numerically.
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V. NUMERICAL TESTS OF ASYMPTOTIC RF THEORY

This part aims at assessing numerically the RF part of

the SSWICH problem and its asymptotic treatment for

wide sheaths. Tests were performed in a 2D (radial/paral-

lel) rectangular domain similar to Figure 1, assuming

constant values or harmonic oscillations as exp(ikyy) in

direction y (poloidal in a tokamak). A code solves the RF

problem (2.2) with metallic boundary conditions at the

inner radial boundary, prescribed RF field at the aperture,

and the exact RF SBCs (2.6) at the lateral sides. Homoge-

neous plasma is assumed. The RF problem is discretized on

a homogeneous 2D rectangular grid according to a finite

difference scheme precise up to the second order in the spa-

tial steps in both directions. Since we do not test the whole

self-consistent RF þ DC treatment, the sheath widths radial

distributions dl(x) and dr(x) are prescribed throughout

Sec. V but can vary with x. The numerical tests can be

regarded as the effect on the RF wave of a coating on the

lateral metallic walls with a specified spatially inhomoge-

neous thickness of dielectric material, in relation with real-

istic experiments.18,48

A. RF simulations with E// 6¼ 0 at the sides of aperture

The reference RF simulation is performed with the

following parameters representative of a high-density SOL

near the ITER wall (magnetic field 3.93 T, electron

density 5.25 � 1018 m�3, 50/50% D-T mix, RF frequency

f0¼ 47.5 MHz):49 e//¼�190 000; e?¼�63.4; esh¼ 1.0;

k0¼ 0.9955 m�1; ky¼0.0 m�1; L//¼ 3.0 m; L?¼ 3 cm. dl(x)

¼ dr(x) ¼ d¼ 1 mm constant with x. The system is excited

with a flat unit RF field map

E==apðzÞ ¼ 1 V=m: (5.1)

The RF excitation is non-zero at both sides of the aperture,

so that the leading order asymptotic theory should apply.

The parallel direction is divided into 257 space steps, while

301 steps are taken in the radial direction. This discretization

resolves spatially all the characteristic parallel and radial

scalelengths for both the SW and the SPW.

Figure 3(a) displays the 2D map for the simulated RF

field E// accounting for the full RF-SBC. The antenna aper-

ture is located in x¼ 0 at the bottom of the map. Two field

structures are clearly visible. Far from the lateral boundaries

of the system, the RF field map adopts the flat toroidal shape

of the RF excitation, with a radial evanescence over the char-

acteristic skin depth kskin� c/xpe� 2 mm. This structure is

expected from a SW field. On both sides of the domain, lat-

eral wings develop, extending over the whole radial length

of the simulation with amplitude similar to the excitation

field. This structure is expected from a SPW due to the finite

sheath width. It was checked that the wings completely dis-

appear when the sheaths are suppressed. Figure 3(b) plots E//

along several toroidal cross-sections through the simulated

map. Far from the aperture, the RF field mainly exists near

the lateral boundaries, with a toroidal extension of order

1/k//1 � 12.5 cm characteristic of the SPW (see formula

4.14). The dashed line sketches the toroidal structure of the

asymptotic even SPW eigenmode as cosh(k//1z). E// decays

toroidally along the dashed line and saturates near z¼ 0 at a

level corresponding to the evanescent SW, i.e., this back-

ground level decreases radially as exp(�x/kskin).

The specific role of the sheath width on the lateral wings

indentified in Figure 3 is investigated in Figures 4 and 5. The

lateral value of the RF electric field E//(x,z¼�L///2) was

plotted versus x over a series of simulations with the same

parameters as the reference case, except the sheath width d.

When the profile d(x) is flat, whatever its (large) value, the

RF electric field decays linearly along the radial direction.

Figure 4 also displays simulations with the sheath width d(x)

varying radially between half and twice the reference value,

according to several profiles. Figure 4 shows that the RF field

profile adjusts itself so that the product d(x)E//(x,z¼�L///2)

(and hence the RF voltage Vrfl(x)) decays linearly along the

lateral boundary, consistent with formula (3.5).

In Figure 5(a), the lateral electric field was plotted ver-

sus x over a scan of the homogeneous sheath width d. The

(a) (b)

FIG. 3. RF field maps for the reference simulation. (a) 2D map (linear scale); (b) Selection of 1D radial cuts through the 2D map for several values of x. E// is

normalized to its lateral value and is plotted in logarithmic scale.

092505-10 Colas et al. Phys. Plasmas 19, 092505 (2012)

Downloaded 03 Oct 2012 to 194.81.223.66. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



radial profiles adopt a characteristic shape of the type

sin(kx(L?� x))/sin(kxL?). As d increases, kx tends to 0 and

E//(x,L///2) progressively converges toward a linear profile.

Multiplying the lateral electric field with e//d/esh, one finds

the RF voltage Vrf(x). Figure 5(b) plots the relative differ-

ence DVrf/Vrf¼ j1�Vrf
(0)(x)/Vrf(x)j between the numerical

value of Vrf(x) and the asymptotic approximation Vrf
(0)(x)

from Eq. (3.5), showing more clearly the asymptotic conver-

gence: DVrf/Vrf roughly scales as 1/d.

The parametric behaviour of DVrf/Vrf was investigated

more systematically in Figure 6. In a similar way as in Figure 5,

the following parameters were scanned individually:

• Sheath width d, with constant or parabolic radial distribu-

tion (see Figure 4)
• Radial extension L? of the simulation domain
• Poloidal wavevector ky

• RF frequency (or equivalently k0, keeping constant e// and

e?)

• Perpendicular dielectric constant e? (keeping constant k0

and e//).

The precision of the asymptotic treatment is quantified

by the maximum of DVrf/Vrf over the radial extension of the

lateral walls. Figure 6 shows that the ratio kcrit/d defined by

formula (4.17) using a radially averaged 1/d(x) is generally

well representative of the deviation from the asymptotic

theory. Some simulations were, however, outside this trend.

Three main reasons were found:

• Either the asymptotic theory was predicted invalid (kcrit/

d> 1).
• Or the radial resolution Dx of the finite difference code

was not sufficient to describe the radial evanescence of the

SW and of the SPW (kyDx> 1).
• Or the toroidal resolution Dz of the finite difference code

was not sufficient to describe the toroidal decay of the

SPW (k0je?j1/2Dz> 1).

B. RF simulations with E// 5 0 at the sides of aperture

A new reference RF simulation was performed with

E//¼ 0 at the sides of aperture. It shares the same parameters

as the previous reference case, including the 2D discretiza-

tion of the spatial domain. The system is now excited with

the RF field map

E==apðzÞ ¼ sin
�
pðz=L== þ 1=2Þ

�
: (5.2)

The RF field is null at both sides of the aperture, so that

Vrf
(0)¼ 0 and the first order asymptotic theory should apply.

From Eq. (4.1), the excitation corresponds to the first asymp-

totic SW eigenmode of the waveguide, with unit amplitude.

Figure 7(a) displays the 2D map for the simulated E//

and exhibits two structures. Far from the lateral boundaries

of the system, the RF field map adopts the toroidal shape of

the excitation RF field, with a radial evanescence over the

characteristic skin depth kskin� c/xpe� 2 mm. This structure

is expected from the leading order SW field E//
(0) in the

FIG. 4. Radial profile of the RF electric field at the left boundary of the sim-

ulation domain, for several values of the sheath width profile applied at both

sides of the simulation.

(a) (b)

FIG. 5. (a) Lateral RF electric field versus x, for several sheath widths d with flat profile. (b) Relative difference DVrf/Vrf¼ j1�Vrf
(0)(x)/Vrf(x)j of RF voltage

Vrf(x) with the asymptotic value Vrf
(0)(x) from formula (3.5), versus x, for several values of d.
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asymptotic expansion. Although largely dominant, E//
(0)

would produce no RF oscillations of the sheaths if taken

alone, because its value at the lateral boundaries is strictly 0.

On both sides of the domain small amplitude wings develop

that are attributed to the first order corrections E//
(1). In

Figure 7(b), the leading order RF field E//
(0) from formula

(4.1) was subtracted from the simulated E//, showing more

clearly the corrections. They mainly exist near the lateral

boundaries, with a toroidal extension of order 1/k//1
� 12.5 cm. They extend radially up to the inner boundary.

These two properties are characteristic of the asymptotic

SPW. Corrections have a typical amplitude 10�4 lower than

the RF excitation. But their non-zero value at the lateral

boundaries is essential to excite RF sheaths. The large ratio

of amplitudes between the successive approximations to the

RF field is the main motivation for our asymptotic approach.

In Figure 8, the lateral electric field E//(x,z¼�L///2) was

plotted versus x over a series of simulations with the same

parameters as the reference case, except the sheath width

d(x). When d is doubled, the computed field is roughly

halved, with the same radial profile. Figure 8 also displays

simulations with the sheath width d(x) varying radially

between half and twice the reference value, according to sev-

eral profiles. Figure 8 shows that as d(x) changes the profile

E//(x,z¼�L///2) adjusts itself so that the product

d(x)E//(x,z¼�L///2) (and hence the RF voltage Vrfl(x)) keeps

the same value as in the reference simulation. This behaviour

is consistent with the first order asymptotic formula (4.8) and

is essential in view of self-consistent computations with

more realistic input RF field maps: the asymptotic Vrf(x) can

be calculated without knowing a priori the self-consistent

spatial distribution d(x).

FIG. 6. Relative difference between the numerical RF voltages Vrf(x) and

leading order asymptotic value Vrf
(0)(x) from formula (3.5), versus the ratio

kcrit/d defined by formula (4.17). The maximum value of DVrf/

Vrf¼ |1�Vrf
(0)(x)/Vrf(x)| over the radial extension of the simulation domain

was retained.

(a) (b)

FIG. 7. 2D RF field maps for the new reference simulation. (a) Absolute value of total RF field (log scale); (b) correction to leading order RF field (linear

scale).

FIG. 8. Radial profile of the RF electric field at the left boundary of the sim-

ulation domain, for several values of the sheath width profile applied at both

sides of the simulation.
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The deviation of the RF voltages Vrf(x) from their first

order approximation Vrf
(1)(x) from formula (4.8) was investi-

gated systematically in Figure 9. kcrit/d from formula (4.17)

is generally a good indicator for the deviation from the as-

ymptotic theory. Some simulations were however outside

this trend, for the same numerical reasons as previously. To

correctly estimate the sheath voltages, a precise estimate of

E//
(1) is necessary. But since over most of the simulation do-

main jE//
(1)j� jE//

(0)j, any numerical approach that does not

separate the successive asymptotic contributions needs to be

extremely accurate to produce reliable results (all the more

accurate as kcrit/d gets large). The practical consequence is a

poor convergence of the full RF þ DC simulations for high

RF power injected. On the contrary, the asymptotic approach

gets more precise as the self-consistent d get large, and there-

fore usefully complements more “usual” methods for high

RF power simulations.

VI. CONCLUSIONS AND PROSPECTS

Motivated by a closer proximity to the first principles

and the allowance for DC current circulation in the SOL

plasma of magnetic fusion devices, this paper described the

ICRF wave propagation self-consistently with the DC bias-

ing of open magnetic field lines within a minimal fluid

approach. The RF and DC parts were coupled by non-linear

SBCs at both ends of open field lines. Only a simplified

framework was described, featuring slow wave (SW) only

and walls normal to B0.

In order to gain insight into the non-linear physics of the

full DC þ RF model and to provide a first guess for the itera-

tive resolution algorithms, the self-consistent system was

solved explicitly in the asymptotic limit when the sheath

widths get very large, for any 2D input RF field excitation,

in presence of a radial profile for the plasma parameters.

Within a perturbative development of the RF SBCs up to

lowest relevant order depending on the input field map, the

propagation of oscillating sheath voltages Vrf(x,y) along the

lateral walls amounts to a linear problem that can be solved

without prior knowledge of the self-consistent radial/poloidal

distribution of the sheath widths d(x,y). Consistent with this

result, it was found numerically that for given d(x), the lat-

eral RF field profile E//(x) adjusts itself so that the product

d(x)E//(x) converges asymptotically to a known function of x.

In the first order case, the RF voltages were deduced from

the parallel derivative of the leading order RF electric field,

through its convolution with a simple Green’s function. In

parallelepipedic geometry, semi-analytical results were pro-

posed in terms of asymptotic SW eigenmodes that could eas-

ily be implemented numerically without restriction on d(x,y).

Throughout the resolution, basic physical properties of

the asymptotic solution were outlined. It was shown that the

RF voltages could propagate radially along the lateral boun-

daries much further away than the skin depth c/xpe charac-

teristic of the SW evanescence. This has potentially

important impact for RF plant operation, for the design of

future antennae and interaction with high-Z metallic plasma

facing components. This conclusion is qualitatively similar

to Ref. 38. But the details of the radial distributions differ in

the two papers, due to the different assumptions made. We

believe that if radiation conditions are applied in the present

model while sheath widths get large in Ref. 38, the radial

profiles of Vrf(x) in the two papers converge to a common so-

lution. Since Vrf(x) / E//(x)d(x) and d(x) is different in the

two models, then the field maps E//(x) will differ at the lateral

boundaries. Well beyond the skin depth, several regimes of

radial propagation were identified depending on kyL?, the

product of the poloidal wave-vector by the radial extension

of the bounded SOL. Associated with the RF voltages, RF

electric fields developed along the lateral walls of the SOL

plasma, with a toroidal extension of the order of 1/(k0je?j1/2)

away from the lateral boundaries. These characteristics were

illustrated by RF simulations and were ascribed to the disper-

sion properties of the SPW, a new wave branch introduced

by the RF-SBCs. In the “wide sheaths” limit, the RF voltage

development amounts to the excitation and propagation of

the SPW, either directly at the antenna aperture (leading

order) or via mode coupling from the SW (first order). For

easier iterations, Vrf was therefore treated as independent of

E// in a 3-field re-formulation of the RF þ DC problem.

The SPW radial penetration led to re-discuss the choice

of the boundary conditions at the inner plasma side of the

simulation volume. It was proposed to choose the radial

extension L? as the radial penetration depth of the material

objects surrounding the RF antenna, since the SPW cannot

propagate in the absence of lateral material boundaries.

More clever choices can be envisaged in more complex geo-

metries featuring protruding objects in a parallelepipedic

box.27 The scalar wave equation (2.2) was also questioned,

since it applies only to short-wavelength modes with the

ordering jk?2j 	 k0
2je?j.34,36 Equation (2.2) can only be

assessed within a broader approach incorporating all the RF

field polarizations. Therefore, this was left for further study.

In the self-consistent RF þ DC model, the asymptotic

scaling of various physical quantities with the amplitude

E//ap of the input RF excitation (or equivalently with the

launched RF power PRF / E//ap
2) was also studied,

FIG. 9. Relative difference of the numerical RF voltages Vrf(x) with first

order asymptotic value Vrf
(1)(x) from formula (4.8) versus the ratio kcrit/d

defined by formula (4.17). The maximum value of DVrf/Vrf¼ j1�Vrf
(1)(x)/

Vrf(x)j over x was retained.
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depending on the lowest relevant order in the asymptotic

expansion. This parametric dependence is valuable for

design and experimental studies. In particular, the RF-

induced heat loads in the RF antenna vicinity were inferred

experimentally to scale as E//ap
1,29,30 consistent with the first

order theory. The particular simulation showed in Ref. 38

also scales asymptotically as our first order theory. The scal-

ing suggests that the asymptotic approach should apply

above some value of the launched RF power. To discuss

more deeply this validity, a quantitative indicator was exhib-

ited as a function of the main model parameters and tested

against 2D RF simulations with prescribed radial profiles of

the sheath width.

Within its domain of validity, the asymptotic solution

can be applied for RF sheath assessment using at the aperture

realistic 2D (toroidal/poloidal) maps of the parallel RF field

from antenna codes.3,4 Alternatively, the RF þ DC system

could be excited via current straps inside the simulation do-

main, while metallic conditions or SBCs are enforced at the

outer wall. This case is similar to the first order theory. The

principle of a subsequent iterative refinement of the solution

from the asymptotic results was sketched. It remains how-

ever to be experimented, with, e.g., the goal of “selecting” a

specific solution out of potential multiple roots for the non-

linear coupled RF þ DC problem.26,38 The convergence of

this iterative scheme remains an open issue. Although it was

presented in a simplified parallelepipedic geometry, the as-

ymptotic method can be implemented numerically in its

present form on more complex 3D simulation domains as

long as lateral boundaries are kept normal to B0. This imple-

mentation has started, with the goal of simulating sheaths on

Tore Supra antenna side limiters and understanding the ex-

perimental behaviour of a new type of Faraday screen.27

The asymptotic principle presented here is general and

could a priori be generalized to more complex cases through

a perturbative treatment of the more general RF-SBC (2.3).

Within the SSWICH project, a more realistic self-consistent

description of the RF physics in the plasma edge could there-

fore be envisaged, by progressively incorporating full RF

field polarization, shaped wall, excitation by straps, perfectly

matched layers at the inner boundary,50 more realistic mod-

els of DC plasma conductivity, or RF-induced density

modification.
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