62 research outputs found

    A dynamical symmetry triad in high-harmonic generation revealed by attosecond recollision control

    Get PDF
    A key element of optical spectroscopy is the link between observable selection rules and the underlying symmetries of an investigated physical system. Typically, selection rules directly relate to the sample properties probed by light, yielding information on crystalline structure or chirality, for example. Considering light-matter coupling more broadly may extend the scope of detectable symmetries, to also include those directly arising from the interaction. In this letter, we experimentally demonstrate an emerging class of symmetries in the electromagnetic field emitted by a strongly driven atomic system. Specifically, generating high-harmonic radiation with attosecond-controlled two-color fields, we find different sets of allowed and forbidden harmonic orders. Generalizing symmetry considerations of circularly polarized high-harmonic generation, we interpret these selection rules as a complete triad of dynamical symmetries. We expect such emergent symmetries also for multi-atomic and condensed-matter systems, encoded in the spectral and spatial features of the radiation field. Notably, the observed phenomenon gives robust access to chiral processes with few-attosecond time precision

    Interlocked attosecond pulse trains in slightly bi-elliptical high harmonic generation

    Get PDF
    The ellipticity of high harmonics driven by bi-chromatic (e.g. w - 2w) fully tuned by varying the polarization of the pump components. In order to start revealing the underlying mechanism of this control, we explore a relatively simple regime of this scheme that still gives rise to full control over the harmonics ellipticities. In this regime, the pumps are only slightly elliptical and the high harmonic radiation consists of two (different) interlocked attosecond pulse trains (APTs). We formulate a semi-analytic model that maps the high harmonic ellipticity to properties of the APTs harmonic decompositions. Utilizing this model, we reconstruct these APTs variables from measurements of the high harmonics ellipticities. This ellipticity-resolved spectroscopy of interlocked APTs may be useful for ultrafast probing of chiral degrees of freedom

    An N-Terminal Extension to UBA5 Adenylation Domain Boosts UFM1 Activation: Isoform-Specific Differences in Ubiquitin-like Protein Activation

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Modification of proteins by the ubiquitin-like protein, UFM1, requires activation of UFM1 by the E1-activating enzyme, UBA5. In humans, UBA5 possesses two isoforms, each comprising an adenylation domain, but only one containing an N-terminal extension. Currently, the role of the N-terminal extension in UFM1 activation is not clear. Here we provide structural and biochemical data on UBA5 N-terminal extension to understand its contribution to UFM1 activation. The crystal structures of the UBA5 long isoform bound to ATP with and without UFM1 show that the N-terminus not only is directly involved in ATP binding but also affects how the adenylation domain interacts with ATP. Surprisingly, in the presence of the N-terminus, UBA5 no longer retains the 1:2 ratio of ATP to UBA5, but rather this becomes a 1:1 ratio. Accordingly, the N-terminus significantly increases the affinity of ATP to UBA5. Finally, the N-terminus, although not directly involved in the E2 binding, stimulates transfer of UFM1 from UBA5 to the E2, UFC1.Marie Curie Career Integration GrantIsrael Science FoundationIsraeli Cancer Associatio

    Structural basis for UFM1 transfer from UBA5 to UFC1

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordData availability: Atomic coordinates and structure factors were deposited in the RCSB PDB (https://www.rcsb.org/) with the accession codes 7NW1, 7NVK, and 7NVJ for UFC1-UBA5 (389–404), UBA5(347-404)-UFC1, and UFC1(Y110A and F121A), respectively. NMR assignments for UFC1 were taken from the BMRB entry 6546. Previously published crystal structures used in this study are available from the RCSB PDB under the accession codes: 3TGD; 1J7D; 1U9A; 1×23; 1Y6L; 4Q5E; 4YII; 1Y8X; 1WZW; 6CYO; 1FZY; 1YLA; 2YBF; 2C4P; 5LBN; 3FN1; 2CYX; 2Z5D; 2F4W; 5BNB; 1YH2; 1YRV; 2Z6P; 2Z6O; 1JBB; 4Q5H; 1WZV; 3RZ3; 2DYT; 6H77. The coordinates of the structural models generated by in silico docking are provided as Supplementary Data 1–3. Source data are provided with this paper.Ufmylation is a post-translational modification essential for regulating key cellular processes. A three-enzyme cascade involving E1, E2 and E3 is required for UFM1 attachment to target proteins. How UBA5 (E1) and UFC1 (E2) cooperatively activate and transfer UFM1 is still unclear. Here, we present the crystal structure of UFC1 bound to the C-terminus of UBA5, revealing how UBA5 interacts with UFC1 via a short linear sequence, not observed in other E1-E2 complexes. We find that UBA5 has a region outside the adenylation domain that is dispensable for UFC1 binding but critical for UFM1 transfer. This region moves next to UFC1’s active site Cys and compensates for a missing loop in UFC1, which exists in other E2s and is needed for the transfer. Overall, our findings advance the understanding of UFM1’s conjugation machinery and may serve as a basis for the development of ufmylation inhibitors.Israel Science FoundationIsrael Cancer Research FundUS-Israel Binational Science Foundatio

    Observational multi-centre, prospective study to characterize novel pathogen-and host-related factors in hospitalized patients with lower respiratory tract infections and/or sepsis - the "TAILORED-Treatment" study

    Get PDF
    Background: The emergence and spread of antibiotic resistant micro-organisms is a global concern, which is largely attributable to inaccurate prescribing of antibiotics to patients presenting with non-bacterial infections. The use of 'omics' technologies for discovery of novel infection related biomarkers combined with novel treatment algorithms offers possibilities for rapidly distinguishing between bacterial and viral infections. This distinction can be particularly important for patients suffering from lower respiratory tract infections (LRTI) and/or sepsis as they represent a significant burden to healthcare systems. Here we present the study details of the TAILORED-Treatment study, an observational, prospective, multi-centre study aiming to generate a multi-parametric model, combining host and pathogen data, for distinguishing between bacterial and viral aetiologies in children and adults with LRTI and/or sepsis. Methods: A total number of 1200 paediatric and adult patients aged 1month and older with LRTI and/or sepsis or a non-infectious disease are recruited from Emergency Departments and hospital wards of seven Dutch and Israeli medical centres. A panel of three experienced physicians adjudicate a reference standard diagnosis for all patients (i.e., bacterial or viral infection) using all available clinical and laboratory information, including a 28-day follow-up assessment. Nasal swabs and blood samples are collected for multi-omics investigations including host RNA and protein biomarkers, nasal microbiota profiling, host genomic profiling and bacterial proteomics. Simplified data is entered into a custom-built database in order to develop a multi-parametric model and diagnostic tools fo

    Natural SUSY Predicts: Higgs Couplings

    Get PDF
    We study Higgs production and decays in the context of natural SUSY, allowing for an extended Higgs sector to account for a 125 GeV lightest Higgs boson. Under broad assumptions, Higgs observables at the LHC depend on at most four free parameters with restricted numerical ranges. Two parameters suffice to describe MSSM particle loops. The MSSM loop contribution to the diphoton rate is constrained from above by direct stop and chargino searches and by electroweak precision tests. Naturalness, in particular in demanding that rare B decays remain consistent with experiment without fine-tuned cancellations, provides a lower (upper) bound to the stop contribution to the Higgs-gluon coupling (Higgs mass). Two parameters suffice to describe Higgs mixing, even in the presence of loop induced non-holomorphic Yukawa couplings. Generic classes of MSSM extensions, that address the fine-tuning problem, predict sizable modifications to the effective bottom Yukawa, yb. Non-decoupling gauge extensions enhance yb, while a heavy SM singlet reduces yb. A factor of 4-6 enhancement in the diphoton rate at the LHC, compared to the SM prediction, can be accommodated. The ratio of the enhancements in the diphoton vs. the WW and ZZ channels cannot exceed 1.4. The h to bbbar rate in associated production cannot exceed the SM rate by more than 50%.Comment: 31 pages, 11 figure

    The neutron and its role in cosmology and particle physics

    Full text link
    Experiments with cold and ultracold neutrons have reached a level of precision such that problems far beyond the scale of the present Standard Model of particle physics become accessible to experimental investigation. Due to the close links between particle physics and cosmology, these studies also permit a deep look into the very first instances of our universe. First addressed in this article, both in theory and experiment, is the problem of baryogenesis ... The question how baryogenesis could have happened is open to experimental tests, and it turns out that this problem can be curbed by the very stringent limits on an electric dipole moment of the neutron, a quantity that also has deep implications for particle physics. Then we discuss the recent spectacular observation of neutron quantization in the earth's gravitational field and of resonance transitions between such gravitational energy states. These measurements, together with new evaluations of neutron scattering data, set new constraints on deviations from Newton's gravitational law at the picometer scale. Such deviations are predicted in modern theories with extra-dimensions that propose unification of the Planck scale with the scale of the Standard Model ... Another main topic is the weak-interaction parameters in various fields of physics and astrophysics that must all be derived from measured neutron decay data. Up to now, about 10 different neutron decay observables have been measured, much more than needed in the electroweak Standard Model. This allows various precise tests for new physics beyond the Standard Model, competing with or surpassing similar tests at high-energy. The review ends with a discussion of neutron and nuclear data required in the synthesis of the elements during the "first three minutes" and later on in stellar nucleosynthesis.Comment: 91 pages, 30 figures, accepted by Reviews of Modern Physic
    corecore