109 research outputs found

    Reuse of Wasted Bread as Soil Amendment: Bioprocessing, Effects on Alkaline Soil and Escarole (Cichorium endivia) Production

    Get PDF
    In an era characterized by land degradation, climate change, and a growing population, ensuring high‐yield productions with limited resources is of utmost importance. In this context, the use of novel soil amendments and the exploitation of plant growth‐promoting microorganisms potential are considered promising tools for developing a more sustainable primary production. This study aimed at investigating the potential of bread, which represents a large portion of the global food waste, to be used as an organic soil amendment. A bioprocessed wasted bread, obtained by an enzymatic treatment coupled with fermentation, together with unprocessed wasted bread were used as amendments in a pot trial. An integrated analytical plan aimed at assessing i) the modification of the physicochemical properties of a typical Mediterranean alkaline agricultural soil, and ii) the plant growth‐promoting effect on escarole (Cichorium endivia var. Cuartana), used as indicator crop, was carried out. Compared to the unamended soils, the use of biomasses raised the soil organic content (up to 37%) and total nitrogen content (up to 40%). Moreover, the lower pH and the higher organic acid content, especially in bioprocessed wasted bread, determined a major availability of Mn, Fe, and Cu in amended soils. The escaroles from pots amended with raw and bioprocessed bread had a number of leaves, 1.7‐ and 1.4‐fold higher than plants cultivated on unamended pots, respectively, showing no apparent phytotoxicity and thus confirming the possible re‐utilization of such residual biomasses as agriculture amendments

    Influence of chemical and mineralogical soil properties on the adsorption of sulfamethoxazole and diclofenac in Mediterranean soils

    Get PDF
    Abstract Background The irrigation with treated wastewaters can be a way for the introduction of organic contaminants in soils. However, their adsorption onto soils can allow a control of their bioavailability and leaching. The adsorption is influenced by properties of contaminants (water solubility, chemical structure) and soils (organic matter content, pH, mineralogy). This study aimed to investigate the effect of mineralogical composition, organic matter content and others parameters of soils on the adsorption of sulfamethoxazole (SMX) and diclofenac (DCF), two contaminants of emerging concerns (CECs), in real cases (Altamura, Sibari and Noci soils). Results The isotherms data showed that the adsorption of the two CECs closely matched the Freundlich model, even if the DCF could also fit the linear one. The only exception was the adsorption of SMX on the soil of Sibari, for which Langmuir's model fitted better. In all cases, the Kd values were the highest for Altamura soil according mainly to its content of organic carbon. Positive correlations were found between Kd value of DCF and the soil organic carbon and Al oxyhydroxides content, suggesting their roles in its adsorption, while SMX showed only a slight positive correlation with the soil organic carbon content. Finally, between the two CECs studied, DCF was more adsorbed than SMX also because of the lower water solubility of the former. Conclusions The good interaction between DCF and soil organic carbon suggests the organic amendment of soils before the application of treated watewaters. The low adsorption of SMX onto soils suggests greater leaching of this compound which is, therefore, potentially more dangerous than DCF. For this reason, the application of a filtration system with appropriate adsorbent materials before the application of wastewater to soils should be expected. Graphical Abstrac

    Validation of a modified QuEChERS method for the extraction of multiple classes of pharmaceuticals from soils

    Get PDF
    Abstract Background The quick, easy, cheap, effective, rugged, and safe (QuEChERS) method can be employed for multi-residue analyses instead of traditional extraction methods due to its advantages in terms of extraction time and required equipment. A modified version of the QuEChERS method has been developed for quantifying eight pharmaceuticals belonging to different classes in three real soils with different chemical properties. Firstly, the soils have been polluted with all contaminants and the recoveries were determined by liquid chromatography tandem–mass spectrometry. Due to similar recoveries from the three soils, the validation of the method has been carried out only on a soil by determining linearity, recovery, precision, limit of detection (LOD) and limit of quantification (LOQ) values. A matrix-matched calibration for the soil has been adopted in order to avoid the matrix effect and three levels of fortification (50, 100 and 500 µg L−1) were used. Results The recovery of all pharmaceuticals, with the exception of tetracycline, from any soil was between 72 and 113%. In the validation procedure, recoveries of fortified samples ranged from 80 to 99%, the relative standard deviations ranged between 1.2 and 11.8%, and the LOQ between 20 and 36.9 μg kg−1. Conclusion The results of the present study confirmed the validity of the modified QuEChERS method for the extraction of pharmaceuticals from soils in the range 50–500 μg kg−1. Graphical Abstrac

    Synergistic effect of organic and inorganic fertilization on the soil inoculum density of the soilborne pathogens Verticillium dahliae and Phytophthora spp. under open-field conditions

    Get PDF
    Abstract Background The increasing demand of food causes an excessive exploitation of agricultural lands, often inducing phenomena of soil sickness accompanied by the development of soilborne diseases. The use of residual biomasses together with inorganic fertilizers can be considered a good agricultural practice for controlling the inoculum density of soilborne phytopathogens since soil conditioners can release inorganic nitrogen, polyphenols and fatty acids that, especially in vitro, have demonstrated various degree of suppressiveness against such pathogens. Further, soil organic amendments can also modify the population of soil culturable bacteria and fungi that, in turn, can affect the soilborne diseases in several ways. With this study, the authors aim to evaluate the impact of the synergistic application of different biomasses and inorganic fertilizers on the soil inoculum density of Verticillium dahliae and Phytophthora spp. during two potato cycles under open-field conditions. The biomasses used for the fertilization of the potato crop were olive pomace residues (OPR), composts from municipal solid wastes (CMW), spent mushroom compost (SMC), and livestock manure-based compost (BRX). Results The inoculum density of Verticillium dahliae appeared inhibited by BRX due to its low C/N ratio that caused a quicker release of inorganic nitrogen with respect to the others soil conditioners. In contrast, OPR was conducive to the aforementioned soilborne pathogen since that biomass was characterized by a very high percentage of unsaturated fatty acids that, rather, stimulate the inoculum density of V. dahliae. Finally, polyphenols did not influence the same pathogen because they apparently turned into no toxic compounds very quickly. The inoculum density of Phytophthora spp. was reduced equally by all the biomasses used in combination with the inorganic fertilizers, regardless of their composition and quantity, mainly because of the development of general microbial suppression. Therefore, the chemical characteristics of the soil conditioners apparently did not affect the inoculum density of Phytophthora spp. Conclusions The results of this work underline the behavioral diversity of the different pathogens towards the different means adopted. Phytophthora spp. are sensitive to any kind of biomasses combined with inorganic fertilizers while the inoculum density of Verticillium dahliae should be reduced using soil conditioners characterized by low C/N ratio and low quantity of unsaturated fatty acids

    Potential of native and bioprocessed brewers' spent grains as organic soil amendments

    Get PDF
    IntroductionThe use of novel soil amendments and the exploitation of plant growth-promoting microorganisms are considered promising tools for developing a more sustainable agriculture in times when ensuring high-yield productions with limited resources is essential. MethodsIn this study, the potential of brewers' spent grain (BSG), the major by-product of the brewing industry, as organic soil amendment, was investigated. Bioprocessed BSG, obtained by an enzymatic treatment coupled with fermentation, together with native BSG, were used as amendments in a pot-trial. An integrated analytical approach aimed at assessing the modification of the physicochemical properties of a typical Mediterranean alkaline agricultural soil, and the plant growth-promoting effect on escarole (Cichorium endivia var. Cuartana), was carried out. ResultsThe use of biomasses led to soil organic content and total nitrogen content up to 72 and 42% higher, compared to the unamended soils. Moreover, the lower pH and the higher organic acids content doubled phosphorus availability. Although the number of leaves per plant in escaroles from pots amended with native and bioprocessed BSG did not show any difference compared to plants cultivated on unamended pots, the average fresh weight per escarole head, was higher in pots amended with bioprocessed BSG. DiscussionHence, the results collected so far encourage BSG application for agricultural purpose, while solving the problem of disposing of such abundant side stream.Peer reviewe

    Paleopathological Approach to the Study of a Christian Relic: The Case of the Blessed Maria Lorenza Longo

    Get PDF
    The Blessed Maria Lorenza Longo, founder of the hospital of Santa Maria del Popolo degli Incurabili and the Order of the Capuchin Poor Clares in Naples, Italy, died on 21 October 1539 and was recently beatified on 9 October 2021. The relic, a fully skeletonized cranium, underwent visual and radiological inspection. The biological profile supports the at¬tribution of female sex of the relic, whereas the age at death is estimated to be younger than that reported by historians. A paleopathological survey was conducted to evaluate the historical reports of poisoning or rheumatoid arthritis affecting Maria Longo. Given the limited skeletal data, it was not possible to confirm the presence of these claims. No obvious in¬dicators of dietary deficiencies were observed, and the tertiary syphilis hypothesized by textual sources was excluded. Postmortem alterations of the relic were clearly visible on the superior aspect of the cranium and testified to the worship of the relic

    Interventional Radiological Management and Prevention of Complications after Pancreatic Surgery: Drainage, Embolization and Islet Auto-Transplantation

    Get PDF
    Pancreatic surgery still remains burdened by high levels of morbidity and mortality with a relevant incidence of complications, even in high volume centers. This review highlights the interventional radiological management of complications after pancreatic surgery. The current literature regarding the percutaneous drainage of fluid collections due to pancreatic fistulas, percutaneous transhepatic biliary drainage due to biliary leaks and transcatheter embolization (or stent–graft) due to arterial bleeding is analyzed. Moreover, also, percutaneous intra-portal islet auto-transplantation for the prevention of pancreatogenic diabetes in case of extended pancreatic resection is also examined. Moreover, a topic not usually treated in other similar reviewsas percutaneous intra-portal islet autotransplantation for the prevention of pancreatogenic diabetes in case of extended pancreatic resection is also one of our areas of focus. In islet auto-transplantation, the patient is simultaneously donor and recipient. Differently from islet allo-transplantation, it does not require immunosuppression, has no risk of rejection and is usually efficient with a small number of transplanted islets

    Smouldering fire signatures in peat and their implications for palaeoenvironmental reconstructions

    Get PDF
    AbstractPeatland ecosystems are valued as natural archives of past climatic and vegetation changes and as such their study is essential for palaeoenvironmental reconstructions over millennia. Fires in peatlands are dominated by smouldering combustion which is the self-sustained, slow, low temperature, flameless form of burning. Most studies on peat fires to date have focused on ignition conditions, C losses or atmospheric emissions, but there is a significant gap in the understanding of the evolution of organic matter (OM) following smouldering. A key feature of smouldering fires is that they consume most of the pyrogenic char produced. Consequently, it may be that most smouldering fires are simply not visible using standard palaeontological techniques. Here we present the possibility of identifying palaeofires by following their physical and chemical signature along a peat profile. We have undertaken laboratory experiments on Sphagnum peat columns and measured physical, chemical and spectroscopic changes of OM features induced by smouldering on samples of varying moisture content. We reveal that there is a higher production of aromatic and condensed molecules, an increase of the total N and a decrease of the C/N ratio, besides significant variations of pH, electrical conductivity and ash content. Several of these changes have, in previous studies, been taken to be indicative of alterations in atmospheric dust deposition and climate-driven changes (e.g., vegetation, water table fluctuation, decomposition and mineralization processes), but are also produced by smouldering fires. Our results imply that smouldering fires should therefore also be considered in climatic and floral reconstructions drawn from peat cores and that these additional physical and chemical changes may serve to enhance our understanding of palaeofire histories
    corecore