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Abstract

Peatland ecosystems are valued as natural archives of past climatic and vegetation changes and as such their study is essen-
tial for palaeoenvironmental reconstructions over millennia. Fires in peatlands are dominated by smouldering combustion
which is the self-sustained, slow, low temperature, flameless form of burning. Most studies on peat fires to date have focused
on ignition conditions, C losses or atmospheric emissions, but there is a significant gap in the understanding of the evolution
of organic matter (OM) following smouldering. A key feature of smouldering fires is that they consume most of the pyrogenic
char produced. Consequently, it may be that most smouldering fires are simply not visible using standard palaeontological
techniques. Here we present the possibility of identifying palaeofires by following their physical and chemical signature along
a peat profile. We have undertaken laboratory experiments on Sphagnum peat columns and measured physical, chemical and
spectroscopic changes of OM features induced by smouldering on samples of varying moisture content. We reveal that there is
a higher production of aromatic and condensed molecules, an increase of the total N and a decrease of the C/N ratio, besides
significant variations of pH, electrical conductivity and ash content. Several of these changes have, in previous studies, been
taken to be indicative of alterations in atmospheric dust deposition and climate-driven changes (e.g., vegetation, water table
fluctuation, decomposition and mineralization processes), but are also produced by smouldering fires. Our results imply that
smouldering fires should therefore also be considered in climatic and floral reconstructions drawn from peat cores and that
these additional physical and chemical changes may serve to enhance our understanding of palaeofire histories.
� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/3.0/).
http://dx.doi.org/10.1016/j.gca.2014.04.018
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1. INTRODUCTION

The burning of soil organic matter (SOM) during wild-
fires has affected Earth’s terrestrial ecosystems for hundreds
of millennia; however, the influence of wildfire events on the
fate of SOM is still not completely understood. Studies of
chemical changes on a range of soil types following
wildfires mostly concentrate on erosion, ash, nutrient
availability, microbial dynamics and plant species recovery
ons.org/licenses/by/3.0/).
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(e.g., Viro, 1974; Raison, 1979; Giovannini et al., 1987,
1990; Pyne, 2001; Smith et al., 2001, 2008; Villar et al.,
2004; Certini, 2005; Beck et al., 2011), whereas only few
works focus on changes of SOM features (e.g., González-
Pérez et al., 2004; Knicker et al., 2005, 2008; Knicker,
2010; Alexis et al., 2012).

The SOM-rich ecosystems which are most affected by
fire are peatlands. Peat is particularly flammable in dry con-
ditions and when it burns, the dominating phenomenon is
not flaming but rather smouldering combustion (Rein,
2013). Smouldering is the slow, low temperature, flameless
form of combustion of organic matter (OM) in porous form
(Ohlemiller, 1985), and represents the most persistent type
of combustion phenomena (Rein, 2013). Smouldering
megafires in peat deposits occur frequently during the dry
season in tropical, temperate and boreal ecosystems, e.g.,
South-East Asia, Northern America, British Isles, Southern
Africa and others. Once ignited, these fires are particularly
difficult to extinguish despite extensive rainfalls, weather
changes, or fire-fighting attempts. This means that these
fires can persist for long periods of time (months or years)
providing the fire with time to spread deep into the ground
and over large areas.

No global studies exist on the frequency of peat fires in
literature. The most studied peat megafire occurred in Indo-
nesia during 1997 and led to an extreme smoke haze event.
These fires are estimated to have released the equivalent of
13–40% the mean annual global C emissions from fossil
fuels (Page et al., 2002). The 1997 megafire was not an iso-
lated case in the region; such haze episodes have drifted to
South East Asia once every three years on average (Field
et al., 2009). Rough figures at the global scale suggest that
mean annual greenhouse gas emissions from smouldering
peat fires are equivalent to >15% of anthropogenic emis-
sions (Poulter et al., 2006). Consequently, smouldering fires
represent a large perturbation within peatlands and to
atmospheric chemistry. Moreover, it is anticipated that
the release of ancient C during peat fires creates a positive
feedback mechanism in the climate system, i.e., a self-accel-
erating process that would lead to more smouldering fires
(Rein, 2013). Warmer temperatures at high latitudes are
already resulting in unprecedented permafrost thaw
(Tarnocai et al., 2009), leaving large organic C pools
exposed to fires for the first time in millennia.

The smouldering process is driven by the heat released
from heterogeneous oxidation of porous fuel as it reacts
with the oxygen in the atmosphere (Ohlemiller, 1985).
Smouldering chemistry can be approximated by a two-step
process: the pyrolysis of the OM produces pyrogenic char
which is then oxidized in situ (Hadden et al., 2013; Rein,
2013). This means that whilst smouldering fire creates char,
it also consumes it, a factor little considered in palaeofire
reconstructions.

Given its persistence and presence in a wide range of
modern ecosystems, it can be argued that smouldering
played an important role in Earth’s ancient ecosystems.
Much of our knowledge of past fire events is based on
the abundance of charcoal particles in the fossil and sub-
fossil records (e.g., Scott, 2010; Mooney and Tinner,
2011). The combustion of char by the smouldering process
implies that the record of past fires in peat cores may be
entirely hidden using standard techniques that quantify
charcoal in palynology or mesofossil preparations (e.g.,
Scott, 2010; Mooney and Tinner, 2011). We may therefore
be missing important information about variations in fire
frequency in peat soils (and in bogs, in particular) which
are seen as essential for palaeoenvironmental reconstruc-
tion because they serve as natural archives of climatic
and vegetation changes occurring during the past millennia
(e.g., Aaby, 1976; van Geel, 1978; Shotyk et al., 2002;
Tareq et al., 2004; Zaccone et al., 2011a; Langdon et al.,
2012).

Through a laboratory study, we seek to address this bias
in Sphagnum peat records trying to identify palaeofires by
the physical, chemical and spectroscopic signature that they
leave behind in the soil profile. It is also hoped to provide a
new “key of reading” of some physical and chemical signa-
tures previously ascribed exclusively to “traditional” cli-
mate-driven changes.

2. MATERIALS AND METHODS

2.1. Preparation of peat columns

We have created three laboratory mesocosms, each of
them made of pure Sphagnum peat moss from a commer-
cially available source which provides a consistent, repeat-
able and homogenous source of samples. The choice to
conduct our study on “constructed” samples rather than
on natural peat cores was imposed by the need to distin-
guish between changes caused by the smouldering fire and
those that occur due to the heterogeneity of peat samples
along a profile.

After drying and water addition to reach the desired
moisture content (MC) value, samples were thoroughly
mixed before each experiment. The peat column height
was kept constant for all tests. Ignition was applied on
top of the core (Fig. 1a) and the fire is allowed to spread
downwards (Fig. 1b).

The column set up was chosen in order to observe how
the fires interact at depth and to best capture the post-fire
physical and chemical gradients in the vertical direction.
The majority of previous experiments of smouldering peat
used shallow horizontal beds (Frandsen, 1997; Rein et al.,
2008; Belcher et al., 2010) which are reduced to a thin layer
of char and ash after smouldering, and do not provide suit-
able vertical gradients to study. Our experiments differ from
the few previous column experiments (e.g., Benscoter et al.,
2011; Watts, 2013) in that our samples are of homogenous
composition, thus offering a better control of the fuel fea-
tures as well as a high repeatability.

The effect of the MC has been considered here in order
to reflect the fire behaviour on a peat soil under different
conditions. Moisture content, in fact, is the most important
property governing the ignition and spread of smouldering
fires (Frandsen, 1987; Rein et al., 2008). The prominent role
of moisture is such that natural or anthropogenic-induced
droughts are the leading cause of peat megafires, i.e., fires
showing a fuel consumption per unit area about 100 time
larger than in flaming fires (Rein, 2013).



(a) (b)

(c) (d)

Fig. 1. The smouldering test. In panel (a), a schematic representation of the laboratory peat column before and following the smouldering
experiment is shown. The depth from the front represents the vertical distance into the residue starting from the final position reached by the
free surface after the smouldering front stopped spreading. Panel (b) shows a diagram of downward propagation in a column of peat (by X.
Huang, CC BY license). Panel (c) and (d) show sets of temperature measurements taken at different depths of the columns vs. time for 100%
and 200% MC series. Peak temperatures reached were 441.9 and 83.2 �C, respectively.
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In order to obtain different MC levels, samples were
prepared by first drying a batch of the peat at 80 �C, for
48 h, to remove moisture. Peat samples were then mixed
with appropriate amounts of water to reach the desired
range of MC. Being the column height kept constant for
all tests, the dry density of the bulk peat (g dry peat cm�3)
changed according to the water content; in fact, in natural
conditions, a negative correlation was observed between
these two parameters (Klemetti and Keys, 1983; Zaccone
et al., 2009; Poto et al., 2013). The wet peat was then
placed into an airtight container and left to homogenize
for one week. The nominal MC values originally desired
were 50%, 100% and 200% (in dry weight basis, d.w.;
i.e., g water/100 g dry peat), but the actual values reached
were 56%, 90% and 211%. These moisture values corre-
spond, in wet weight basis (i.e., g water/100 g wet peat), to
36%, 48% and 68%, respectively, that, in turn, might mir-
ror a peatland under very dry, dry and damp conditions,
respectively. Values of MC below the critical threshold
[i.e., �125% MC for a peat showing a mineral content
of 8%, according to Frandsen (1997) and Rein et al.
(2008)] are not frequent at the local scale in natural wet
ecosystems, but at the global level, peatlands are known
to reach MC below this value (and significantly lower)
under drought or perturbed conditions (e.g., Moreno
et al., 2011).

2.2. Smouldering tests

Experiments were conducted on a 26 cm deep column
with a 10 � 10 cm square cross section (Fig. 1a). The top
surface remained exposed to the atmosphere while the sides
and the bottom were insulated from heat losses and air
ingress with 2 cm thick plaster board walls and sealed
edges. Ignition is attempted using an electrically heated coil
buried 5 cm from the top free surface and providing 100 W
of energy for a period of 30 min. This is the same ignition
protocol used in previous smouldering experiments (Rein
et al., 2008; Belcher et al., 2010). Temperatures along the
central axis of the column were recorded using 10 K-type
thermocouples inserted at 2 cm intervals starting at the bot-
tom of the apparatus.
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When power is supplied to the coil, the thermocouple
placed closest to the igniter is the first to register heating
and the temperature rises until the igniter is turned off
30 min later. A successful peat ignition is followed by sus-
tained smouldering, evidenced by the horizontal and verti-
cal travelling of the peak temperature far from the ignition
source (Fig. 1b). Typical peak temperatures of around
450 �C are reached (Fig. 1c). Any arbitrary location of
the peat profile sees the successive arrival of four distinct
thermal and chemical waves that form the structure of a
smouldering front (Rein, 2013). The sample first experi-
ences preheating and is then followed by evaporation of
water, pyrolysis of the peat and finally oxidation of the
char. The preheating, drying and pyrolysis fronts are sinks
of thermal energy and move ahead of the oxidization front
where the heat is released and ash is produced. Previous
studies show that the residue of a smouldering fire is a com-
bination of ash, char and peat (Hadden et al., 2013) that
arranges in horizontal layers and lead to a gradient of com-
position that depends on the depth from the front. Fig. 1(a,
b) includes a visual schematic of this layer structure.

A failed peat ignition (e.g., because of the high MC) is
characterized by a drop of the thermocouple readings near
the igniter shortly after the ignition source is turned off. In
these no-ignition cases, the maximum temperature reached
away from the igniter region does not exceed 100 �C
(Fig. 1d). After each experiment, the remaining material
was collected in 1-cm ca. horizontal layers and analyzed.

2.3. Characterization of peat samples

2.3.1. Ash content

The ash content, expressed as a percentage of the origi-
nal dry weight, was determined for each peat sample by
combustion in a muffle furnace at 550 �C for 12 h. All sam-
ples were analyzed in triplicate. During the experiments, it
was observed that the ash layer results from the accumula-
tion of the combustion residues from the upper column
positions.

2.3.2. pH and EC

The pH and the electrical conductivity (EC) were deter-
mined on unfiltered samples using a Philips pH-meter
equipped with a Hanna Instruments HI 1230 probe and a
XS Cond 510 conductimeter, respectively. In both cases,
the solid:Milli-Q water ratio (1:20 w:v) was determined con-
sidering the dry mass of peat. All samples were analyzed in
triplicate.

2.3.3. Elemental composition

Total C, H, N and S concentrations in peat samples were
determined in triplicate, using dry combustion with an ele-
mental analyzer (Fisons EA1108, Milan, Italy). The instru-
ment was calibrated by BBOT [2,5-Bis-(5-tert-butyl-
benzoxazol-2-yl)-thiophen] standard (ThermoQuest Italia
s.p.a.). Total organic C was determined by difference
between total C and inorganic C (TOC = TC–IC), the latter
one determined, using the same elemental analyzer, on peat
samples pre-dried at 420 �C for 12 h. In this case, urea was
used as standard. Oxygen content was calculated by
difference: O% = 100 � (C + H + N + S)%. All samples
were analyzed in triplicate, and obtained data corrected
for ash and moisture content. Ratios between elements
(i.e., C/N, C/H and O/C) have been determined as atomic
ratios, considering as C concentration those of the TOC.

2.3.4. Fourier transform infrared (FT-IR) spectroscopy

The FT-IR spectra of peat samples were acquired in
transmittance mode using a Thermo Nicolet Nexus FT-
IR Spectrophotometer equipped with Nicolet Omnic 6.0
software. Potassium bromide pellets were obtained by
pressing, under vacuum, a homogenized mixture of
400 mg of infrared grade KBr and 1 mg of sample (d.w.).
Spectra were recorded under a N2 atmosphere in the range
4000–400 cm�1, with a 2 cm�1 resolution and with 64 scans
for each acquisition.

2.3.5. Molecular fluorescence

Fluorescence spectra were recorded on aqueous solu-
tions of peat samples. In particular, 2 mg of sample (d.w.)
were solubilised in few ml of NaOH (0.5 M) diluted with
MilliQ water, at a concentration of 100 mgl�1, equilibrated
overnight at room temperature, and adjusted to pH 8 with
0.05 M NaOH. The suspensions were then filtered through
0.45 lm GF/C filters (modified from Zsolnay, 2003). Fluo-
rescence spectra were recorded on each sample using a
Perkin–Elmer (Norwalk, CT) LS-55 luminescence spectro-
photometer, equipped with FL WinLab software (version
4.00.03). All spectra were recorded using the same instru-
mental conditions: emission and excitation slits were set
at a 5 nm band width, and a scan speed of 500 nm min�1

was selected for both monochromators. Fluorescence spec-
tra were electronically corrected for instrumental response,
and both the sensitivity and stability of the instrument were
previously measured using the Raman band signal inten-
sity. Total luminescence spectra, in the form of excita-
tion–emission matrix (EEM, contour maps), were
recorded over the emission wavelength range from 300 to
600 nm, increasing sequentially by 5 nm step the excitation
wavelength. The EEM plots were generated as contour
maps from fluorescence data by using the Surfer 8.01 soft-
ware (Golden Software Inc., 2002).

Positions and relative fluorescence intensity (RFI) values
of individual fluorescent peaks were determined to gain
information on changes in the composition of the peat
extracts following the smouldering fire. Preliminary experi-
ments carried out on samples with higher organic C concen-
tration showed no changes due to inner filter effects and/or
quenching phenomena.

2.3.6. UV–Vis spectroscopy

UV–Vis analyses were conducted using a PerkinElmer
model Lambda 15 spectrophotometer. The molar absorp-
tivity (or molar extinction coefficient) at 280 nm (e280)
(l mole OC�1 cm�1), i.e., the region where the p! p* elec-
tron transitions occur for a number of aromatic substances
(Chin et al., 1994), was recorded for each sample. Specific
UV absorbance at 254 nm (SUVA254) (l mg OC�1 m�1)
was calculated by normalizing the absorbance at this
wavelength by the concentration in organic C of the
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corresponding sample (Weishaar et al., 2003). All measure-
ments were carried out a solution obtained by dissolving
0.15 g of each sample in 100 ml of aqueous NaOH
(0.5 M), and than diluting again using a ratio 1:3 (v:v).

2.3.7. Statistical analyses

Statistical correlation and analysis of variance
(ANOVA) were performed using the Statistica Version
9.1 software (StatSoft Inc., 2010). Significant differences
were calculated on the basis of the Tukey’s test, considering
a significance level of p < 0.05.

3. RESULTS AND DISCUSSION

3.1. Depth of burn

The depth of burn is the vertical distance from the origi-
nal sample surface to the location where the fire extin-
guished itself (Fig. 1a). Our laboratory tests exclude the
effects of wind and rain, therefore the reasons why a smoul-
dering front extinguishes at a particular location in a col-
umn sample is related to the controlling mechanisms of
smouldering combustion (Rein, 2013). These controlling
mechanisms are oxygen supply and heat transfer
(Ohlemiller, 1985; Frandsen, 1987; Rein, 2013). Extinguish-
ing is primarily due to the progressive reduction as the ash
layer, and therefore the airflow resistance across it, builds
up with depth. Due to this decrease of oxygen diffusion into
the front, lower depths of burn are expected for weaker
fires. For example, in samples of high MC, water evapora-
tion is a substantial heat loss that causes extinction at
shorter depths. Consequently, the depth of burn in these
experiments represents a proxy for the general flammability
of a peat column.

The experimental results show that the depth of burn
decreases with MC. In the 50% MC peat column, the fire
spread downwards from the top to the very bottom
(21 cm depth of burn), whereas in the 100% MC it spread
to a depth of 17 cm, leaving 9 cm of ash and char residues.
The smouldering fire did not spread beyond the igniter
region (top 7 cm) in the wettest peat column (200% MC),
but the peat next to and on top of the igniter were affected
by the fire due to nearby contact with the strong heat
source. As the igniter was buried 5 cm into the column,
the depth of burn for the 200% MC sample was 7 cm, just
2 cm deeper than the igniter.

We report in this work three MC experiments, but a
total of six experiments were conducted at different values
of MC ranging from 0% (oven-dry) to 200% to study the
variability of the depth of burn. These included repeats of
Table 1
Main physical and chemical features (avg. ± st. dev.; n = 3) of the Sphagn

ash-free basis.

pH EC (mS cm�1) C (%) H (%) N (%)

3.9 ± 0.2 0.20 ± 0.03 52.63 ± 0.36� 5.91 ± 0.01 1.31 ± 0.0

� Of which inorganic C (%) = 0.41 ± 0.01.
� Determined by difference [100 � (C + H + N + S)%].
§ Determined as atomic ratio.
the 50%, 100% and 200% MC experiments. A linear and
negative dependence between MC and depth of burn was
obtained (R2 = 0.832, p = 0.011), i.e., the higher the MC,
the shorter the depth of burn.

3.2. Physical and chemical changes in smouldering peat

The fresh Sphagnum peat employed for the preparation
of column tests was also used as control (FP). The main
physical and chemical features of this Sphagnum peat are
reported in Table 1 and they closely resemble those of the
upper layers of ombrotrophic bogs (e.g., Cocozza et al.,
2003; Zaccone et al., 2007).

In the following discussions, we define the depth from
the front as the vertical distance into the residue starting
from the position of the free surface after the test (Fig. 1).
The results show that, when a smouldering front was estab-
lished, it led to substantial changes for all the studied
parameters with respect to the FP. These changes depend
on both the initial MC and the depth of the sample, mea-
sured from where the front extinguished itself. Generally
speaking, these variations were observed to be more signif-
icant in the layers closer the extinguished front, and
occurred through the entire remaining profile in the 50%
MC series, and within a depth of 8 cm in the 100% MC ser-
ies. No relevant differences were observed for most of the
studied parameters in the 200% MC, because the smoulder-
ing front did not propagate. In detail, comparing the burnt
remains in the 50% and 100% MC series with the FP
(Fig. 2a,b), an increase of the ash content, pH, EC, IC,
TC, total N (TN) and of the C/H ratio was observed, whilst
the C/N ratio was observed to decrease.

The significant increase of ash in soils following fires is
well known since the beginning of agriculture and forestry
(Pyne, 2001), as it leads to an enhancement of the available
elements content (mainly in a water-soluble form) which, in
turn, causes a raise in soil pH and EC. This phenomenon
has been frequently observed in several other soils (e.g.,
grasslands, forests) after a (flaming) fire, although to a
varying extent (Raison, 1979 and referene therein;
González-Pérez et al., 2004 and reference therein), and
has been generally associated with an increase in exchange-
able cations (Viro, 1974; Raison, 1979), to the loss of OH
groups resulting from the denaturing of the clay minerals,
as well as to the formation of oxides of elements derived
from disruption of the carbonates (Giovannini et al.,
1990). However, these explanations do not justify the extent
of enhanced pH observed in our laboratory experiments
(i.e., from 3.9 ± 0.2 in FP to 8.0 ± 0.2 in the 50% MC ser-
ies), considering that the mineral content in our peat is very
um peat used as control (FP). Elemental content is reported on dry,

S (%) O (%) C/N C/H O/C Ash (%)

5 0.19 ± 0.06 39.97� 46.6§ 0.74§ 0.67§ 3.39 ± 0.18
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Fig. 2. Evolution of some physical and chemical features of the organic matter throughout the peat columns. The figure shows the variation
of ash content, pH, EC, inorganic C, total C and N, C/N and C/H atomic ratios in the (a) 50% MC series; (b) 100% MC series; (c) 200% MC
series (data only down a depth of 13 cm of depth have been plotted, as no significant variation was observed). Error bars represent standard
deviations of the means (n = 3). The broken green line represents the average value of each parameter in the control (FP), i.e., in the peat
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low (i.e., 3.4 ± 0.2 in FP). Therefore, we suggest that, in
Sphagnum dominated peatlands (e.g., bogs), the increase
in pH is manly due to the decrease of acidic functional
groups (e.g., carboxylic) in peat OM and the consequent
release of CO and CO2 to the atmosphere. At the same
time, part of these gases could be re-dissolved in the water
phase, thus promoting the formation and accumulation of
ash rich in oxides and carbonates of basic ions (e.g., Ca,
Mg). This is consistent with the increase of IC in our burnt
peat samples (avg. values: 2.16 ± 0.23% and 0.86 ± 0.65%
in 50% MC and 100% MC series, respectively) when com-
pared with FP (0.41 ± 0.01%).

Both series show a general increase of TC and TN con-
centration in the burnt peat remains. In particular, TC
reaches maximum values of 65.7 ± 2.4% and 68.3 ± 2.5%
in the 50% and 100% MC series, respectively, vs.

52.6 ± 0.4% in the FP. In detail, TC was maximum 1.2
and 1.3 times higher in the 50% MC profile and the first
8 cm of the 100% MC series, respectively, when compared
to the FP. A similar trend was observed for TN, showing
maximum values of 6.60 ± 0.29% and 3.61 ± 0.28%,
respectively, vs. 1.31 ± 0.05% in the FP. In detail, TN was
from 2.4 to 5.1 times higher in the 50% MC profile, and
from 1.3 to 2.8 higher in the first 8 cm of the 100% MC ser-
ies, than in the FP. As peak temperatures reached during
smouldering are too low (<450 �C) to disassociate atmo-
spheric N2, the N found in the fire residue is expected to
come from N originally present in the peat, and not from
atmospheric N.

The higher relative increase of TN compared to TC
resulted in the decrease of the C/N ratio at a certain depth
below where the fire front extinguished itself. That suggests
the incorporation of, and the relative enrichment in, N dur-
ing charring and highlights the importance of “black N” as
an integral part of the resulting material. These data are in
agreement with those reported by Knicker (2010) who
hypothesized that N enrichment may result from the low
thermal stability of the main plant constituent (i.e., cellu-
lose), thus leading to a preferential loss of C, O and H,
and to a relatively enrichment of peptide derived N com-
pounds. Moreover, several authors have reported the for-
mation of N-containing pyrogenic structures including
pyrrole/indole-type N, pyridine N, pyrroline, and pyrroli-
dine as a consequence of vegetation fires (Knicker et al.,
2008) and laboratory thermal oxidation of sapric peat
(Almendros et al., 2003). Finally, the significantly higher
C/H ratios found in the burnt peat samples from the 50%
and 100% MC series indicates an increase of the aromatic
degree with respect to the FP. Besides TC and TN, both
50% and 100% MC series show also an increase of total S
concentration, ranging from 0.75 ± 0.17% to 1.34 ± 0.46%
(0.95 ± 0.23, average value) and from 0.18 ± 0.03% to
0.45 ± 0.10% (0.30 ± 0.10, average value), respectively
(data not shown), vs. 0.19 ± 0.06% in the FP (Table 1).

In the 200% MC, the only significant variation observed
can be ascribed to the total organic C content and, as a con-
sequence, of the C/N ratio (Fig. 2c), probably due to the
dissolution and migration of the more labile OM, favoured
by the extracting power of hot water produced by heat from
the igniter.
A negative correlation in both 50% MC (R2 = 0.990,
p < 0.01) and 100% MC (R2 = 0.886, p < 0.0001) series
can be observed when plotting together the C/N and the
C/H atomic ratios (Fig. 3a and Table 2). This indicates that
the more aromatic the burnt peat is (higher C/H ratio), the
more N is incorporated in the pyrogenic char (lower C/N
ratio). Furthermore, plotting together the H/C and the O/
C atomic ratios (Fig. 3b) in a van Krevelen diagram (van
Krevelen, 1950), it is possible to observe that samples
resulting from the smouldering fire in the 50% MC show
a higher aromaticity (lower H/C ratio) and a lower polarity
(lower O/C ratio) when compared with 100% and 200%
MC series and the FP. At the same time, in both the 50%
and 100% MC series, this phenomenon is more evident
for the samples closer to the fire front, while it tends to
disappear with depth.

3.3. Spectroscopic features of smouldering peat

3.3.1. FT-IR

The FT-IR spectrum of the Sphagnum peat used as con-
trol (FP) is characterized by a number of absorption bands
exhibiting variable relative intensities, accordingly to the
presence of cellulosic, hemi-cellulosic, ligno-cellulosic, lig-
nin-derived structures and other plant by-products
(Cocozza et al., 2003; Zaccone et al., 2007, 2008, 2011b).
The main absorption bands observed are reported in
Table 3.

As a consequence of the smouldering phenomena, FT-
IR spectra of burnt peat samples feature a quite different
shape with depth (i.e., with the increasing of the distance
from the front), thus suggesting considerable variations of
the molecular composition and the chemical structures of
the peat remains throughout the profile and compared to
the FP. In general, FT-IR spectra of the 50% and 100%
MC samples (Fig. 4a, b) show that the aliphatic structures
and the oxygen-containing functional groups (e.g., carboxyl
and hydroxyl) are easily removed in the first layers follow-
ing smouldering combustion, whereas aromatic moieties
tend to increase. No relevant differences have been observed
along the profile in 200% MC series (Fig. 4c). In detail, the
main variations in absorption bands observed in the smoul-
dered peat with respect to the FP are related to: (1) a gen-
eral increase in the aromatic/aliphatic ratio, as underlined
by a lower absorption intensity at ca. 2920–2850 cm�1 (ali-
phatic C-H stretching) and a simultaneous relative increase
in absorption intensity at 1615–1625 cm�1 (mainly aro-
matic C@C stretching); (2) a general decreasing/disappear-
ance of the peak at ca. 1700 cm�1 (C@O stretching of
carbonyl and carboxyl groups); (3) the disappearance of
the peak at 1063 cm�1, ascribed to C–O stretching of poly-
saccharide or polysaccharide-like substances, and the
simultaneous appearance of two peaks around 1110–
1115 cm�1 and 1155–1160 cm�1, probably ascribed to the
increase of mineral impurities and/or the occurrence of S
functional groups (e.g., C@S, S@O).

The differences reported above are more significant in
the upper layers of the residual columns, and can be
observed throughout the whole profile in the 50% MC ser-
ies, and the first 8 cm of depth in the 100% MC series. This
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Table 2
Statistical correlations. Significant correlations (p < 0.05) are reported in bold.

C/H C/N O/C e280 SUVA254

(a) 50% MC series
C/H
C/N p = 0.0016 (n = 5)
O/C p = 0.4536 (n = 5) p = 0.3377 (n = 5)
e280 p = 0.1321 (n = 5) p = 0.1359 (n = 5) p = 0.5060 (n = 5)
SUVA254 p = 0.1284 (n = 5) p = 0.1330 (n = 5) p = 0.3249 (n = 5) p = 0.0000 (n = 5)

(b) 100% MC series
C/H
C/N p = 0.0000 (n = 17)
O/C p = 0.0004 (n = 17) p = 0.0001 (n = 17)
e280 p = 0.0052 (n = 10) p = 0.0098 (n = 10) p = 0.0049 (n = 10)
SUVA254 p = 0.0048 (n = 10) p = 0.0092 (n = 10) p = 0.0048 (n = 10) p = 0.0000 (n = 10)

(c) 200% MC series
C/H
C/N p = 0.0248 (n = 14)
O/C p = 0.7406 (n = 14) p = 0.9204 (n = 14)
e280 p = 0.8980 (n = 6) p = 0.5172 (n = 6) p = 0.3965 (n = 6)
SUVA254 p = 0.9245 (n = 6) p = 0.5306 (n = 6) p = 0.3771 (n = 6) p = 0.0000 (n = 6)
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Table 3
Major IR adsorption bands and corresponding assignments.

Wavenumbers (cm�1) Assignments

ca. 3440 b O–H stretching of hydrogen bonded O–H groups
2922, 2853 p Asymmetric stretching of aliphatic C–H
ca. 1700 p C@O stretching of carbonyl functions, particularly aldehydes, ketones, and carboxyl groups
ca. 1630 b Aromatic C@C vibrations and COO– symmetric stretching
1515 p Aromatic skeletal vibrations, to conjugated C@N systems and amino functionalities
1380 p O–H deformations of phenolic and aliphatic groups
1263 p C–O stretching of ethers and/or carboxyl groups
1157 p O–H stretching of alcoholic groups
ca. 1065 b C–O stretching of polysaccharide or polysaccharide-like substances and Si–O stretching of mineral

impurities

b = band; p = peak.

500   1000  1500  2000  2500  3000  3500  4000  

Wavenumbers (cm-1)

582

799

1063

1157
12631380

1515

1628

2853

2922

468
596613

678

797

1616

2924

3420

610

1424

14321514

471

597
675

775

11141155

1621

2852

2922

50%MC-1

50%MC-2

50%MC-4

FP

50%MC-5

D
ep

th
, T

ra
ns

m
it

ta
nc

e 
(%

)

2702

500   1000  1500  2000  2500  3000  3500  4000  

Wavenumbers (cm-1)

582

799

1063

1157
12631380

1515

1628

2853

2922

100%MC-1

100%MC-2

100%MC-4

FP

100%MC-6

1111
1158

597

774

2852

2921 1431

465

597
676

797

1456

1615

604
672

1113

1378
2854

2923

1067

12651379
1515

1623

602

2852

2921

100%MC-9

D
ep

th
, T

ra
ns

m
it

ta
nc

e 
(%

)

500   1000  1500  2000  2500  3000  3500  4000  

Wavenumbers (cm-1)

1061

1158
12661378

1515

1627

2852

2921

12641376
1428

1515

2853

2922

1158

1377
1432

614

1433

200%MC-1

200%MC-2

200%MC-6

200%MC-9

582

799

1063

1157
12631380

1515

1628

2853

2922

FP

D
ep

th
, T

ra
ns

m
it

ta
nc

e 
(%

)

(a) (b) (c)

Fig. 4. FT-IR spectra of representative peat samples: (a) 50% MC series; (b) 100% MC series; (c) 200% MC series. The FT-IR spectrum of the
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the reader is referred to the web version of this article.)
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finding is in full agreement with changes observed consider-
ing both physical (i.e., ash) and chemical parameters (i.e.,
C/H and O/C atomic ratios, changes in S concentration).

3.3.2. Molecular fluorescence and UV–Vis

Both molecular fluorescence and UV–Vis spectroscopy
revealed several differences between the smouldered sam-
ples and the FP, as well as among different MC series.
Again, variations were more significant in the upper layers
of the columns, and regarded the whole profile in the 50%
MC series, and the first 8 cm of depth in the 100% MC ser-
ies. No relevant differences have been observed along the
200% MC profile.

In particular, Fig. 5 clearly shows:

(a) An increase of the RFI of the main fluorophore in
burnt peat samples compared to the FP, probably
due to the formation of simpler and aromatic organic
molecules (Senesi, 1990). Then, the RFI generally
decreases with depth.
(b) A shift of the main fluorophore to lower excitation/
emission wavelength pairs (EEWP) (e.g., 320exc/
415em and 335exc/445em in the 50% MC-1 and 100%
MC-2, respectively) with respect to the FP (345exc/
450em). Observed shifts are function of the depth
from the front (i.e., largest shifts occurred in corre-
spondence of short distances) and probably mirror
the fire severity, being the latter one function of the
MC (e.g., 50% vs. 100% MC).

(c) The occurrence of a secondary fluorophore, generally
located at EEWP of 250exc/420–450em, that could be
probably ascribed to the formation of N-containing
pyrogenic structures (e.g., pyrrole-type N; Knicker
et al., 2005).

UV–Vis spectroscopy confirmed the findings of the
molecular fluorescence. First of all, it is to notice that e280

and SUVA254, both positively related with the aromaticity
and the molecular complexity, are significantly correlated
to each other (R2 = 0.997, p < 0.0001, n = 21). In particu-
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lar, e280 values ranged between 39.5 and 175.9 l mole OC�1

cm�1 in the 50% MC, and between 47.2 and 135.3 l mole
OC�1 cm�1 in the 100% MC (vs. 131.0 in FP), while
SUVA254 values ranged between 0.3 and 1.3 l mg OC�1 -
m�1 in the 50% MC, and between 0.4 and 1.0 l mg OC�1 -
m�1 in the 100% MC (vs. 1.0 in FP). Both spectroscopic
indices showed values increasing with depth.

The relationships between e280 and C/H, and between
SUVA254 and C/H (Fig. 3c, d and Table 2), are strongly
dependent on the chemical processes occurring and the
peak temperature which decreases with depth (Fig. 1c, d).
This is particularly evident for the 50% and 100% MC ser-
ies. The low e280 and SUVA254 values observed for the peat
extract from the samples closer to the fire front are possibly
associated to the occurrence of small and simple aromatic
molecules showing very discrete fluorophores (Fig. 5), i.e.,
a high fluorescence efficiency (Senesi, 1990). This result
matches with the high C/H and low O/C values observed
for the corresponding solid samples, possibly ascribed to
highly condensed aromatic moieties deriving from the pyro-
lysis of the organic structures. With the decreasing peak
temperature as depth increases, the pyrolysis effect of aro-
matic condensation of the solid phase of peat is probably
reduced as indicated by the decrease of the C/H ratio and
increase of O/C ratio, and by the progressive increase of
the e280 and SUVA254 until the maximum depth. There, in
fact, the soluble fraction of the peat samples is likely char-
acterized by a very wide molecular diversity and, conse-
quently, higher molecular absorption with a resulting
decrease of the fluorescence (or quantum) efficiency of the
peat extracts (Fig. 5).

As a consequence of the inverse relationship between the
C/H and the C/N ratios (Fig. 3a), peat samples showing a
lower C/N ratio (i.e., higher N content) seem to corre-
spond, in the peat extracts, to more simple organic mole-
cules with very discrete fluorophores (low e280 and
SUVA254) (Fig. 3e, f). Therefore, trends shown in
Fig. 3(c–f) describe the inverse relationships between the
organic molecules in the liquid phase (i.e., the more soluble
ones), whose physical expression (e.g., molecular conforma-
tion and shape, aggregation state) is a function of the sur-
rounding chemical conditions (Senesi, 1990), and the
solid, bulk OM, whose structure and complexity are a func-
tion of the pyrolytic gradient.

This finding is also extremely important as underscores
that data obtained on the peat extracts (or peat liquid
phase) using UV–Vis and molecular fluorescence could
not always be sufficient to correctly understand and explain
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complex phenomena. As they could be in complete agree-
ment or just represent the “negative”, data obtained on peat
extracts need to be coupled to analyses carried out on the
corresponding solid phase.

4. POSSIBLE IMPLICATIONS FOR PALAEOFLORAL

AND PALAEOCLIMATIC RECONSTRUCTIONS

The findings reported in this study suggest the possibility
that similar chemical and physical signatures detected pre-
viously throughout peat cores might have been wrongly
ascribed to past environmental changes (e.g., climatic, flo-
ral, hydrological variations). The possibility that such
changes may be the result of smouldering fires has not been
considered before. For example, peaks in ash content, such
as those observed in our study (i.e., ca. 27% and 13% in the
50% MC and 100% MC series, respectively, vs. ca. 3% in the
FP), have in the past been ascribed to an increase of either
dust depositions or mineralization processes, typically
linked to climatic changes (Zaccone et al., 2012 and refer-
ence therein). Similarly, large variations in pH values (i.e.,
from <4 in the FP to >8 and >5 in the 50% MC and
100% MC series, respectively) and EC (that was 5–15 and
2–8 times higher in the 50% MC and 100% MC series,
respectively, than the FP) following a smouldering fire
could have been wrongly ascribed to a transition from
ombrotrophic-to-minerotrophic conditions or vice versa

(Shotyk, 1988), depending on the depth of the smouldered
horizon. And the bog-to-fen or fen-to-bog transition
reflects, in turn, environmental changes, including climatic,
floral and hydrological changes.

Likewise, variations in C/N ratio, such as those
observed in our experiments, have been often suggested to
reflect, although with some limitations, changes in the veg-
etation composition, in the humification degree of peat, or
both (Kuhry and Vitt, 1996; Hornibrook et al., 2000;
Zaccone et al., 2008, 2011a, 2012), that, in turn, might
reflect variations either in the trophic status of the peatland
or in the depth of the water table, both of them induced
mainly by climatic changes (Charman, 2002).

We believe that our data provide an important addi-
tional contribution towards a more accurate assessment
of palaeoenvironmental conditions, especially when the fos-
sil record of palaeofires in the form of charcoal (which does
not consider smouldering fires) is absent or if possible bio-
markers of the fire history (e.g., N-containing pyrogenic
structures, levoglucosan) are not well preserved. For exam-
ple, Pitkänen et al. (2001), describing the natural fire regime
as obtained analyzing peat strata from Finland, reported
some lack of agreement between dendrochronological
estimates and number of charcoal layers, as well as little
evidence of fires during a particularly dry period (5290–
5920 cal. yr BP). Moreover, the utilization of biomarkers
of fire events (e.g., N-containing pyrogenic structures, levo-
glucosan) has to be taken with caution, as they might show
a low stability in dry, oxic, less acidic post-fire environ-
ments (Knicker et al., 2013) like a peatland following a
smouldering fire. Levoglucosan could be completely
degraded or reworked by microorganisms (Kitamura
et al., 1991; Xie et al., 2006; Knicker et al., 2013), thus
leading to an underestimation of palaeofires. Hydrolysis
over millennial time periods also needs to be evaluated,
according to Elias et al. (2001). At the same time, several
authors demonstrated the occurrence of levoglucosan
almost exclusively in low temperature char (i.e., <350 �C;
Kuo et al., 2008; Knicker et al., 2013); thus, this marker
could be a good candidate to distinguish, in some cases,
between “recent” flaming (higher temperature) vs. smoul-
dering (lower temperature) fires occurring in peat.

Finally, our results highlight that smouldering fires have
probably been overlooked as the cause of both physical and
chemical variations observed in peat cores, and that smoul-
dering fires should be considered in interpretations of palae-
oenvironmental changes.

5. CONCLUSIONS

Measurements carried out on the peat columns after the
smouldering fire show a general variation of the physical
and chemical properties across the interface between the
burnt residue and the undisturbed peat. In particular,
strong increases of pH, EC, ash content, TN, and C/H
ratio, and a strong decrease in C/N and O/C ratios were
observed in the peat columns of 50% and 100% MC. The
depth over which the chemical markers vary extends the
whole residual column in 50% MC, and 8 cm deep in
100% MC. No relevant variation of any of the considered
parameters is observed in 200% MC peat column.

The results of this study show that smouldering fires
could occur when peatlands are in quite dry conditions.
This is particularly important as warmer temperatures at
high latitudes are already resulting in unprecedented per-
mafrost thaw, leaving large organic C pools exposed to fires
for the first time in millennia. Following smouldering, there
is a higher production of aromatic and condensed mole-
cules a few centimetres below the fire front, as suggested
by the variation in C/H and O/C values and by FT-IR
and fluorescence spectra. Moreover, the relative enrichment
in N observed suggests its incorporation into pyrogenic-
OM and underlines the importance of “black N” as an inte-
gral part of the char.

Consequently, smouldering events should be considered
in palaeoenvironmental reconstructions from ombrotrophic
peat cores. This is particularly important when interpreting,
for example, peaks in ash content or variations of the C/N
ratio in Quaternary peat cores, as these could be as much
related to palaeofires as to other environmental perturba-
tions (e.g., dust depositions, OM mineralization, changes
in either vegetation or humification degree).

Further research is required to consider physical and
chemical signatures that may allow reconstruction of
smouldering fires from peat cores or other older organic
deposits, in absence of fossil charcoals or specific recalci-
trant pyrogenic biomarkers.
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