250 research outputs found

    Disassembly of F-actin cytoskeleton after interaction of Bacillus cereus with fully differentiated human intestinal Caco-2 cells

    Get PDF
    In the present study, the role of direct procaryote-eucaryote interactions in the virulence of Bacillus cereus was investigated. As a model of human enterocytes, differentiated Caco-2 cells were used. Infection of fully differentiated Caco-2 cells with B. cereus in the exponential phase of growth, in order to minimize the concentration of spores or sporulating microorganisms, shows that a strain-dependent cytopathic effect develops. Interestingly, addition of 3-h-old cultures of some strains resulted in complete detachment of the cultured cells after a 3-h infection whereas no such effect was found after a 3-h infection with 16-h-old cultures. Infection of enterocyte-like cells with B. cereus leads to disruption of the F-actin network and necrosis. Even though the effect of secreted factors cannot be ruled out, direct eucaryote-procaryote interaction seems to be necessary. In addition, we observed that some B. cereus strains were able to be internalized in Caco-2 cells. Our findings add a new insight into the mechanisms of virulence of B. cereus in the context of intestinal infection.Facultad de Ciencias ExactasCentro de Investigación y Desarrollo en Criotecnología de Alimento

    Disassembly of F-actin cytoskeleton after interaction of Bacillus cereus with fully differentiated human intestinal Caco-2 cells

    Get PDF
    In the present study, the role of direct procaryote-eucaryote interactions in the virulence of Bacillus cereus was investigated. As a model of human enterocytes, differentiated Caco-2 cells were used. Infection of fully differentiated Caco-2 cells with B. cereus in the exponential phase of growth, in order to minimize the concentration of spores or sporulating microorganisms, shows that a strain-dependent cytopathic effect develops. Interestingly, addition of 3-h-old cultures of some strains resulted in complete detachment of the cultured cells after a 3-h infection whereas no such effect was found after a 3-h infection with 16-h-old cultures. Infection of enterocyte-like cells with B. cereus leads to disruption of the F-actin network and necrosis. Even though the effect of secreted factors cannot be ruled out, direct eucaryote-procaryote interaction seems to be necessary. In addition, we observed that some B. cereus strains were able to be internalized in Caco-2 cells. Our findings add a new insight into the mechanisms of virulence of B. cereus in the context of intestinal infection.Facultad de Ciencias ExactasCentro de Investigación y Desarrollo en Criotecnología de Alimento

    The effects of iron fortification on the gut microbiota in African children: a randomized controlled trial in Cote d'Ivoire.

    No full text
    BACKGROUND: Iron is essential for the growth and virulence of many pathogenic enterobacteria, whereas beneficial barrier bacteria, such as lactobacilli, do not require iron. Thus, increasing colonic iron could select gut microbiota for humans that are unfavorable to the host. OBJECTIVE: The objective was to determine the effect of iron fortification on gut microbiota and gut inflammation in African children. DESIGN: In a 6-mo, randomized, double-blind, controlled trial, 6-14-y-old Ivorian children (n = 139) received iron-fortified biscuits, which contained 20 mg Fe/d, 4 times/wk as electrolytic iron or nonfortifoed biscuits. We measured changes in hemoglobin concentrations, inflammation, iron status, helminths, diarrhea, fecal calprotectin concentrations, and microbiota diversity and composition (n = 60) and the prevalence of selected enteropathogens. RESULTS: At baseline, there were greater numbers of fecal enterobacteria than of lactobacilli and bifidobacteria (P < 0.02). Iron fortification was ineffective; there were no differences in iron status, anemia, or hookworm prevalence at 6 mo. The fecal microbiota was modified by iron fortification as shown by a significant increase in profile dissimilarity (P < 0.0001) in the iron group as compared with the control group. There was a significant increase in the number of enterobacteria (P < 0.005) and a decrease in lactobacilli (P < 0.0001) in the iron group after 6 mo. In the iron group, there was an increase in the mean fecal calprotectin concentration (P < 0.01), which is a marker of gut inflammation, that correlated with the increase in fecal enterobacteria (P < 0.05). CONCLUSIONS: Anemic African children carry an unfavorable ratio of fecal enterobacteria to bifidobacteria and lactobacilli, which is increased by iron fortification. Thus, iron fortification in this population produces a potentially more pathogenic gut microbiota profile, and this profile is associated with increased gut inflammation. This trial was registered at controlled-trials.com as ISRCTN21782274

    Investigating the Therapeutic Potential of a Probiotic in a Rat Model for Infection Following Fracture Fixation

    Get PDF
    Background: Staphylococcus aureus (S. aureus) is the most common pathogen responsible for osteomyelitis. Objectives: Our objective was to investigate the potential of a probiotic as a treatment for S. aureus-induced infection following fracture fixation in a rat model. Methods: Fifty male Sprague-Dawley rats were assigned to five groups (Control, S. aureus, S. aureus +ceftriaxone, S. aureus + once weekly probiotic, and S. aureus + twice weekly probiotic). Lactobacillus casei subsp. casei (ATCC: 39392) was selected from eight strains of probiotic bacteria with anti-staphylococcal activity. Infection was induced by inoculation with106 colony-forming units (CFU) of S. aureus in a closed femur fracture model stabilized with an intramedullary pin. Three weeks after the surgery, the development of infection and response to the therapy was documented using radiographs, microbiological and histopathological analysis. Results: No bacteria were recovered from rats in the Control group. The analysis of variance revealed a significant difference in the CFU/femur (P < 0.001) and CFU/pin (P = 0.001) across all five treatment groups. When the results were compared, the CFU/femur was significantly lower in the S. aureus + Probiotic twice weekly in comparison with S. aureus (P = 0.008) and the S. aureus + ceftriaxone (P = 0.012) groups. Repeated measure ANOVA to test the radiographic scores during the follow-up time between the intervention groups revealed no significant differences (P = 0.179). Conclusions: Parenteral administration of viable L. casei inhibits S. aureus-induced infection as shown by the bacteriologic analysis, but makes no difference to the radiological union rates. This could be the first step towards developing an effective, biologic adjunctive therapy for the management of osteomyelitis following fracture fixation

    Effect of Probiotic Lactobacillus (Lacidofil® Cap) for the Prevention of Antibiotic-associated Diarrhea: A Prospective, Randomized, Double-blind, Multicenter Study

    Get PDF
    Antibiotic-associated diarrhea (AAD) is a common complication of antibiotic use. There is growing interest in probiotics for the treatment of AAD and Clostridium difficile infection because of the wide availability of probiotics. The aim of this multicenter, randomized, placebo-controlled, double-blind trial was to assess the efficacy of probiotic Lactobacillus (Lacidofil® cap) for the prevention of AAD in adults. From September 2008 to November 2009, a total of 214 patients with respiratory tract infection who had begun receiving antibiotics were randomized to receive Lactobacillus (Lacidofil® cap) or placebo for 14 days. Patients recorded bowel frequency and stool consistency daily for 14 days. The primary outcome was the proportion of patients who developed AAD within 14 days of enrollment. AAD developed in 4 (3.9%) of 103 patients in the Lactobacillus group and in 8 (7.2%) of 111 patients in the placebo group (P=0.44). However, the Lactobacillus group showed lower change in bowel frequency and consistency (50/103, 48.5%) than the placebo group (35/111, 31.5%) (P=0.01). Although the Lacidofil® cap does not reduce the rate of occurrence of AAD in adult patients with respiratory tract infection who have taken antibiotics, the Lactobacillus group maintains their bowel habits to a greater extent than the placebo group

    Prebiotic and Probiotic Fortified Milk in Prevention of Morbidities among Children: Community-Based, Randomized, Double-Blind, Controlled Trial

    Get PDF
    HN019 to milk, in preventing diarrhea, respiratory infections and severe illnesses, in children aged 1–4 years as part of a four group study design, running two studies simultaneously. HN019 (PP; n = 312). Children were followed up for 1 year providing data for 1–4 years. Biweekly household surveillance was conducted to gather information on compliance and morbidity. Both study groups were comparable at baseline; compliance to intervention was similar. Overall, there was no effect of prebiotic and probiotic on diarrhea (6% reduction, 95% Confidence Interval [CI]: −1 to 12%; p = 0.08). Incidence of dysentery episodes was reduced by 21% (95% CI: 0 to 38%; p = 0.05). Incidence of pneumonia was reduced by 24% (95% CI: 0 to 42%; p = 0.05) and severe acute lower respiratory infection (ALRI) by 35% (95% CI: 0 to 58%; p = 0.05). Compared to children in Co group, children in PP group had 16% (95% CI: 5 to 26%, p = 0.004) and 5% (95% CI: 0 to 10%; p = 0.05) reduction in days with severe illness and high fever respectively.Milk can be a good medium for delivery of prebiotic and probiotic and resulted in significant reduction of dysentery, respiratory morbidity and febrile illness. Overall, impact of diarrhea was not significant. These findings need confirmation in other settings

    Formulation technologies for oral vaccines

    Get PDF
    Many options now exist for constructing oral vaccines, which, in experimental systems, have shown themselves to be able to generate highly effective immunity against infectious diseases. Their suitability for implementation in clinical practice, however, for prevention of outbreaks particularly in LMIC, is not always guaranteed, because of factors such as cost, logistics, and cultural and environmental conditions. This brief overview provides a summary of the various approaches which can be adopted, and evaluates them from a pharmaceutical point of view, taking into account potential regulatory issues, expense, manufacturing complexity etc., all of which can determine whether a vaccine approach will be successful in the late stages of development. Attention is also drawn to problems arising from inadequate diet, which impacts on success in stimulating effective immunity, and identifies use of lipid‐based carriers as a way to counteract the problem of nutritional deficiencies in vaccination campaigns

    Recombinant Probiotic Expressing Listeria Adhesion Protein Attenuates Listeria monocytogenes Virulence In Vitro

    Get PDF
    BACKGROUND: Listeria monocytogenes, an intracellular foodborne pathogen, infects immunocompromised hosts. The primary route of transmission is through contaminated food. In the gastrointestinal tract, it traverses the epithelial barrier through intracellular or paracellular routes. Strategies to prevent L. monocytogenes entry can potentially minimize infection in high-risk populations. Listeria adhesion protein (LAP) aids L. monocytogenes in crossing epithelial barriers via the paracellular route. The use of recombinant probiotic bacteria expressing LAP would aid targeted clearance of Listeria from the gut and protect high-risk populations from infection. METHODOLOGY/PRINCIPAL FINDINGS: The objective was to investigate the ability of probiotic bacteria or LAP-expressing recombinant probiotic Lactobacillus paracasei (Lbp(LAP)) to prevent L. monocytogenes adhesion, invasion, and transwell-based transepithelial translocation in a Caco-2 cell culture model. Several wild type probiotic bacteria showed strong adhesion to Caco-2 cells but none effectively prevented L. monocytogenes infection. Pre-exposure to Lbp(LAP) for 1, 4, 15, or 24 h significantly (P<0.05) reduced adhesion, invasion, and transepithelial translocation of L. monocytogenes in Caco-2 cells, whereas pre-exposure to parental Lb. paracasei had no significant effect. Similarly, Lbp(LAP) pre-exposure reduced L. monocytogenes translocation by as much as 46% after 24 h. Lbp(LAP) also prevented L. monocytogenes-mediated cell damage and compromise of tight junction integrity. Furthermore, Lbp(LAP) cells reduced L. monocytogenes-mediated cell cytotoxicity by 99.8% after 1 h and 79% after 24 h. CONCLUSIONS/SIGNIFICANCE: Wild type probiotic bacteria were unable to prevent L. monocytogenes infection in vitro. In contrast, Lbp(LAP) blocked adhesion, invasion, and translocation of L. monocytogenes by interacting with host cell receptor Hsp60, thereby protecting cells from infection. These data show promise for the use of recombinant probiotics in preventing L. monocytogenes infection in high-risk populations

    Bacteriomimetic invasin-functionalized nanocarriers for intracellular delivery.

    Get PDF
    Intracellular bacteria invade mammalian cells to establish an infectious niche. The current work models adhesion and subsequent internalization strategy of pathogenic bacteria into mammalian cells to design a bacteriomimetic bioinvasive delivery system. We report on the surface functionalization of liposomes with a C-terminal fragment of invasin (InvA497), an invasion factor in the outer membrane of Yersinia pseudotuberculosis. InvA497-functionalized liposomes adhere to mammalian epithelial HEp-2 cell line at different infection stages with a significantly higher efficiency than liposomes functionalized with bovine serum albumin. Covalent attachment of InvA497 results in higher cellular adhesion than liposomes with physically adsorbed InvA497 with non-specific surface protein alignment. Uptake studies in HEp-2 cells indicate active internalization of InvA497-functionalized liposomes via β1-integrin receptor-mediated uptake mechanism mimicking the natural invasion strategy of Y. pseudotuberculosis. Uptake studies in Caco-2 cells at different polarization states demonstrate specific targeting of the InvA497-functionalized liposomes to less polarized cells reflecting the status of inflamed cells. Moreover, when loaded with the anti-infective agent gentamicin and applied to HEp-2 cells infected with Y. pseudotuberculosis, InvA497-functionalized liposomes are able to significantly reduce the infection load relative to non-functionalized drug-loaded liposomes. This indicates a promising application of such a bacteriomimetic system for drug delivery to intracellular compartments
    corecore