227 research outputs found

    How many of the digits in a mean of 12.3456789012 are worth reporting?

    Full text link
    OBJECTIVE. A computer program tells me that a mean value is 12.3456789012, but how many of these digits are significant (the rest being random junk)? Should I report: 12.3?, 12.3456?, or even 10 (if only the first digit is significant)? There are several rules-of-thumb but, surprisingly (given that the problem is so common in science), none seem to be evidence-based. RESULTS. Here I show how the significance of a digit in a particular decade of a mean depends on the standard error of the mean (SEM). I define an index, DM that can be plotted in graphs. From these a simple evidence-based rule for the number of significant digits ("sigdigs") is distilled: the last sigdig in the mean is in the same decade as the first or second non-zero digit in the SEM. As example, for mean 34.63 (SEM 25.62), with n = 17, the reported value should be 35 (SEM 26). Digits beyond these contain little or no useful information, and should not be reported lest they damage your credibility.Comment: 5 pages, 1 Table, 2 Figures. New simpler index unifies Table and Figures. Now publishe

    Nitrogen dynamics in a small arctic watershed: retention and downhill movement of 15N

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Monographs 80 (2010): 331-351, doi:10.1890/08-0773.1.We examined short- and long-term nitrogen (N) dynamics and availability along an arctic hillslope in Alaska, USA, using stable isotope of nitrogen (15N), as a tracer. Tracer levels of 15NH4+ were sprayed once onto the tundra at six sites in four tundra types; heath (crest), tussock with high and low water flux (mid- and foot-slope), and wet sedge (riparian). 15N in vegetation and soil was monitored to estimate retention and loss over a 3-yr period. Nearly all 15NH4+ was immediately retained in the surface moss-detritus-plant layer and > 57 % of the 15N added remained in this layer at the end of the second year. Organic soil was the second largest 15N sink. By the end of the third growing season, the moss-detritus-plant layer and organic soil combined retained ≥ 87 % of the 15N added except at the mid-slope site with high water flux, where recovery declined to 68 %. At all sites, non-extractable and non-labile-N pools were the principal sinks for added 15N in the organic soil. Hydrology played an important role in downslope movement of dissolved 15N. Crest and mid-slope with high water flux sites were most susceptible to 15N losses via leaching perhaps because of deep permeable mineral soil (crest) and high water flow (mid-slope with high water flux). Late spring melt-season also resulted in downslope dissolved-15N losses, perhaps because of an asynchrony between N release into melt water and soil immobilization capacity. We conclude that separation of the rooting zone from the strong sink for incoming N in the moss detritus-plant layer, rapid incorporation of new N into relatively recalcitrant soil-N pools within the rooting zone, and leaching loss from the upper hillslope would all contribute to the strong N limitation of this ecosystem. An extended snow-free season and deeper depth of thaw under warmer climate may significantly alter current N dynamics in this arctic ecosystem.Funding was provided by NSF grant #0444592. Additional support was provided by Toolik Field Station Long Term Ecological Research program, funded by National Science Foundation, Office of Polar Programs

    Vegetation and peat characteristics of restiad bogs on Chatham Island (Rekohu), New Zealand

    Get PDF
    Restiad bogs dominated by Sporadanthus traversii on Chatham Island, New Zealand, were sampled to correlate vegetation patterns and peat properties, and to compare with restiad systems dominated by Sporadanthus ferrugineus and Empodisma minus in the Waikato region, North Island, New Zealand. Classification and ordination resulted in five groups that reflected a disturbance gradient. The largest S. traversii group, which comprised plots from central, relatively intact bogs, had the lowest levels of total nitrogen (mean 1.20 mg cm-3), total phosphorus (mean 0.057 mg cm-3), total potassium (mean 0.083 mg cm-3), and available phosphorus (mean 18.6 μg cm-3). Modification by drainage, stock, and fires resulted in a decline of S. traversii and an increase of Gleichenia dicarpa fern cover, together with elevated peat nutrient levels and higher bulk density. Compared with peat dominated by Sporadanthus ferrugineus or Empodisma minus in relatively unmodified Waikato restiad bogs, Chatham Island peat under S. traversii has significantly higher total potassium, total nitrogen, available phosphorus, bulk density, and von Post decomposition indices, and significantly lower pH. Sporadanthus traversii and Empodisma minus have similar ecological roles in restiad bog development, occupying a relatively wide nutrient range, and regenerating readily from seed after fire. Despite differences in root morphology, S. traversii and E. minus are the major peat formers in raised restiad bogs on Chatham Island and in Waikato, respectively, and could be regarded as ecological equivalents

    Artificial drainage of peatlands: hydrological and hydrochemical process and wetland restoration

    Get PDF
    Peatlands have been subject to artificial drainage for centuries. This drainage has been in response to agricultural demand, forestry, horticultural and energy properties of peat and alleviation of flood risk. However, the are several environmental problems associated with drainage of peatlands. This paper describes the nature of these problems and examines the evidence for changes in hydrological and hydrochemical processes associated with these changes. Traditional black-box water balance approaches demonstrate little about wetland dynamics and therefore the science of catchment response to peat drainage is poorly understood. It is crucial that a more process-based approach be adopted within peatland ecosystems. The environmental problems associated with peat drainage have led, in part, to a recent reversal in attitudes to peatlands and we have seen a move towards wetland restoration. However, a detailed understanding of hydrological, hydrochemical and ecological process-interactions will be fundamental if we are to adequately restore degraded peatlands, preserve those that are still intact and understand the impacts of such management actions at the catchment scale

    Relationship between ecosystem productivity and photosynthetically-active radiation for northern peatlands

    Get PDF
    We analyzed the relationship between net ecosystem exchange of carbon dioxide (NEE) and irradiance (as photosynthetic photon flux density or PPFD), using published and unpublished data that have been collected during midgrowing season for carbon balance studies at seven peatlands in North America and Europe. NEE measurements included both eddy-correlation tower and clear, static chamber methods, which gave very similar results. Data were analyzed by site, as aggregated data sets by peatland type (bog, poor fen, rich fen, and all fens) and as a single aggregated data set for all peatlands. In all cases, a fit with a rectangular hyperbola (NEE = α PPFD Pmax/(α PPFD + Pmax) + R) better described the NEE-PPFD relationship than did a linear fit (NEE = β PPFD + R). Poor and rich fens generally had similar NEE-PPFD relationships, while bogs had lower respiration rates (R = −2.0μmol m−2s−1 for bogs and −2.7 μmol m−2s−1 for fens) and lower NEE at moderate and high light levels (Pmax = 5.2 μmol m−2s−1 for bogs and 10.8 μmol m−2s−1 for fens). As a single class, northern peatlands had much smaller ecosystem respiration (R = −2.4 μmol m−2s−1) and NEE rates (α = 0.020 and Pmax = 9.2μmol m−2s−1) than the upland ecosystems (closed canopy forest, grassland, and cropland) summarized by Ruimy et al. [1995]. Despite this low productivity, northern peatland soil carbon pools are generally 5–50 times larger than upland ecosystems because of slow rates of decomposition caused by litter quality and anaerobic, cold soils

    Peatland Initiation, Carbon Accumulation, and 2 ka Depth in the James Bay Lowland and Adjacent Regions

    Get PDF
    Copyright © 2014 University of Colorado at Boulder, Institute of Arctic and Alpine ResearchPeatlands surrounding Hudson and James Bays form the second largest peatland complex in the world and contain major stores of soil carbon (C). This study utilized a transect of eight ombrotrophic peat cores from remote regions of central and northern Ontario to quantify the magnitude and rate of C accumulation since peatland initiation and for the past 2000 calendar years before present (2 ka). These new data were supplemented by 17 millennially resolved chronologies from a literature review covering the Boreal Shield, Hudson Plains, and Taiga Shield bordering Hudson and James Bays. Peatlands initiated in central and northern Ontario by 7.8 ka following deglaciation and isostatic emergence of northern areas to above sea level. Total C accumulated since inception averaged 109.7 ± (std. dev.) 36.2 kg C m–2. Approximately 40% of total soil C has accumulated since 2 ka at an average apparent rate of 20.2 ± 6.9 g C m–2 yr–1. The 2 ka depths correlate significantly and positively with modern gridded climate estimates for mean annual precipitation, mean annual air temperature, growing degree-days > 0 °C, and photosynthetically active radiation integrated over days > 0 °C. There are significantly shallower depths in permafrost peatlands. Vertical peat accumulation was likely constrained by temperature, growing season length, and photosynthetically active radiation over the last 2 ka in the Hudson Bay Lowlands and surrounding regions.US National Science Foundatio

    An experimental study on the response of blanket bog vegetation and water tables to ditch blocking

    Get PDF
    We studied the effect of ditch blocking on vegetation composition and water-table depths in a blanket peatland. Measurements were made for a period of four years (water tables) and five years (vegetation) in the inter-ditch areas of three experimental treatments: (i) open ditches, (ii) ditches blocked with closely-spaced dams and (iii) ditches partially infilled with peat and blocked with dams. It is often assumed that ditch blocking will lead to an increase in the abundance of Sphagnum and, potentially, a reduction in the abundance of sedges, particularly the cotton grasses. However, our data show no treatment effects on the abundance of either group. We did find an effect of time, with the abundance of both sedges and Sphagnum spp. varying significantly between some years. For the sedges there was no systematic change over time, while for the Sphagnum spp. abundance tended to increase through the study period. This systematic change was not related to a measure of the vigour of the sedges, although vigour was lower towards the end of the study compared to the beginning. Our vegetation data are consistent with our water-table data. As with plant type abundance, we did not find any statistically significant differences in water-table depths between treatments, both for annual averages and summer averages. We comment on why ditch blocking does not seem to have affected water tables and vegetation composition at our study site
    corecore