18 research outputs found

    Finding a Needle in the Virus Metagenome Haystack - Micro-Metagenome Analysis Captures a Snapshot of the Diversity of a Bacteriophage Armoire

    Get PDF
    Viruses are ubiquitous in the oceans and critical components of marine microbial communities, regulating nutrient transfer to higher trophic levels or to the dissolved organic pool through lysis of host cells. Hydrothermal vent systems are oases of biological activity in the deep oceans, for which knowledge of biodiversity and its impact on global ocean biogeochemical cycling is still in its infancy. In order to gain biological insight into viral communities present in hydrothermal vent systems, we developed a method based on deep-sequencing of pulsed field gel electrophoretic bands representing key viral fractions present in seawater within and surrounding a hydrothermal plume derived from Loki's Castle vent field at the Arctic Mid-Ocean Ridge. The reduction in virus community complexity afforded by this novel approach enabled the near-complete reconstruction of a lambda-like phage genome from the virus fraction of the plume. Phylogenetic examination of distinct gene regions in this lambdoid phage genome unveiled diversity at loci encoding superinfection exclusion- and integrase-like proteins. This suggests the importance of fine-tuning lyosgenic conversion as a viral survival strategy, and provides insights into the nature of host-virus and virus-virus interactions, within hydrothermal plumes. By reducing the complexity of the viral community through targeted sequencing of prominent dsDNA viral fractions, this method has selectively mimicked virus dominance approaching that hitherto achieved only through culturing, thus enabling bioinformatic analysis to locate a lambdoid viral “needle" within the greater viral community “haystack". Such targeted analyses have great potential for accelerating the extraction of biological knowledge from diverse and poorly understood environmental viral communities

    Abundant and Diverse Clustered Regularly Interspaced Short Palindromic Repeat Spacers in Clostridium difficile Strains and Prophages Target Multiple Phage Types within This Pathogen

    Full text link
    Clostridium difficile is an important human-pathogenic bacterium causing antibiotic-associated nosocomial infections worldwide. Mobile genetic elements and bacteriophages have helped shape C. difficile genome evolution. In many bacteria, phage infection may be controlled by a form of bacterial immunity called the clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) system. This uses acquired short nucleotide sequences (spacers) to target homologous sequences (protospacers) in phage genomes. C. difficile carries multiple CRISPR arrays, and in this paper we examine the relationships between the host- and phage-carried elements of the system. We detected multiple matches between spacers and regions in 31 C. difficile phage and prophage genomes. A subset of the spacers was located in prophage-carried CRISPR arrays. The CRISPR spacer profiles generated suggest that related phages would have similar host ranges. Furthermore, we show that C. difficile strains of the same ribotype could either have similar or divergent CRISPR contents. Both synonymous and nonsynonymous mutations in the protospacer sequences were identified, as well as differences in the protospacer adjacent motif (PAM), which could explain how phages escape this system. This paper illustrates how the distribution and diversity of CRISPR spacers in C. difficile, and its prophages, could modulate phage predation for this pathogen and impact upon its evolution and pathogenicity

    Development of a Phage Cocktail to Target <i>Salmonella</i> Strains Associated with Swine

    No full text
    Infections caused by multidrug resistant Salmonella strains are problematic in swine and are entering human food chains. Bacteriophages (phages) could be used to complement or replace antibiotics to reduce infection within swine. Here, we extensively characterised six broad host range lytic Salmonella phages, with the aim of developing a phage cocktail to prevent or treat infection. Intriguingly, the phages tested differed by one to five single nucleotide polymorphisms. However, there were clear phenotypic differences between them, especially in their heat and pH sensitivity. In vitro killing assays were conducted to determine the efficacy of phages alone and when combined, and three cocktails reduced bacterial numbers by ~2 × 10(3) CFU/mL within two hours. These cocktails were tested in larvae challenge studies, and prophylactic treatment with phage cocktail SPFM10-SPFM14 was the most efficient. Phage treatment improved larvae survival to 90% after 72 h versus 3% in the infected untreated group. In 65% of the phage-treated larvae, Salmonella counts were below the detection limit, whereas it was isolated from 100% of the infected, untreated larvae group. This study demonstrates that phages effectively reduce Salmonella colonisation in larvae, which supports their ability to similarly protect swine

    An antisense RNA in a lytic cyanophage links psbA to a gene encoding a homing endonuclease

    Get PDF
    Cyanophage genomes frequently possess the psbA gene, encoding the D1 polypeptide of photosystem II. This protein is believed to maintain host photosynthetic capacity during infection and enhance phage fitness under high-light conditions. Although the first documented cyanophage-encoded psbA gene contained a group I intron, this feature has not been widely reported since, despite a plethora of new sequences becoming available. In this study, we show that in cyanophage S-PM2, this intron is spliced during the entire infection cycle. Furthermore, we report the widespread occurrence of psbA introns in marine metagenomic libraries, and with psbA often adjacent to a homing endonuclease (HE). Bioinformatic analysis of the intergenic region between psbA and the adjacent HE gene F-CphI in S-PM2 showed the presence of an antisense RNA (asRNA) connecting these two separate genetic elements. The asRNA is co-regulated with psbA and F-CphI, suggesting its involvement with their expression. Analysis of scaffolds from global ocean survey datasets shows this asRNA to be commonly associated with the 3′ end of cyanophage psbA genes, implying that this potential mechanism of regulating marine ‘viral’ photosynthesis is evolutionarily conserved. Although antisense transcription is commonly found in eukaryotic and increasingly also in prokaryotic organisms, there has been no indication for asRNAs in lytic phages so far. We propose that this asRNA also provides a means of preventing the formation of mobile group I introns within cyanophage psbA genes
    corecore