697 research outputs found

    Creating common exercises for modelling building and district energy systems: lessons learnt from the IBPSA Project 1 - DESTEST

    Get PDF
    The District Energy Simulation Test (DESTEST) is a series of common exercises about modelling building stocks and district heating networks aiming at testing, benchmarking and verifying different urban-scale energy system simulation tools. For each common exercise, participants are modelling a case with well-defined characteristics, grid topology and boundary conditions. The DESTEST allows participants to discuss common mistakes and pitfalls and define guidelines from the experience and feedback. These common exercises can also be used for training purposes. This article discusses the development process of these common modelling exercises and presents the main lessons learnt during the creation of the DESTEST

    On restricted Analytic Gradients on Analytic Isolated Surface Singularities

    Full text link
    Let (X,O) be a real analytic isolated surface singularity at the origin o of a real analytic manifold M equipped with a real analytic metric g. Given a real analytic function f:(M,O) --> (R,0) singular at O, we prove that the gradient trajectories for the metric g|(X,O) of the restriction f|X escaping from or ending up at the origin O do not oscillate. Such a trajectory is thus a sub-pfaffian set. Moreover, in each connected component of X\O where the restricted gradient does not vanish, there is always a trajectory accumulating at O and admitting a formal asymptotic expansion at

    Cytomegalovirus-specific T-cell responses and viral replication in kidney transplant recipients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cytomegalovirus (CMV) seronegative recipients (R-) of kidney transplants (KT) from seropositive donors (D+) are at higher risk for CMV replication and ganciclovir(GCV)-resistance than CMV R(+). We hypothesized that low CMV-specific T-cell responses are associated with increased risk of CMV replication in R(+)-patients with D(+) or D(-) donors.</p> <p>Methods</p> <p>We prospectively evaluated 73 consecutive KT-patients [48 R(+), 25 D(+)R(-)] undergoing routine testing for CMV replication as part of a preemptive strategy. We compared CMV-specific interferon-γ (IFN-γ) responses of CD4+CD3+ lymphocytes in peripheral blood mononuclear cells (PBMC) using three different antigen preparation (CMV-lysate, pp72- and pp65-overlapping peptide pools) using intracellular cytokine staining and flow cytometry.</p> <p>Results</p> <p>Median CD4+ and CD8+T-cell responses to CMV-lysate, pp72- and pp65-overlapping peptide pools were lower in D(+)R(-) than in R(+)patients or in non-immunosuppressed donors. Comparing subpopulations we found that CMV-lysate favored CD4+- over CD8+-responses, whereas the reverse was observed for pp72, while pp65-CD4+- and -CD8+-responses were similar. Concurrent CMV replication in R(+)-patients was associated with significantly lower T-cell responses (pp65 median CD4+ 0.00% vs. 0.03%, p = 0.001; CD8+ 0.01% vs. 0.03%; p = 0.033). Receiver operated curve analysis associated CMV-pp65 CD4+ responses of > 0.03% in R(+)-patients with absence of concurrent (p = 0.003) and future CMV replication in the following 8 weeks (p = 0.036). GCV-resistant CMV replication occurred in 3 R(+)-patients (6.3%) with pp65- CD4+ frequencies < 0.03% (p = 0.041).</p> <p>Conclusion</p> <p>The data suggest that pp65-specific CD4+ T-cells might be useful to identify R(+)-patients at increased risk of CMV replication. Provided further corroborating evidence, CMV-pp65 CD4+ responses above 0.03% in PBMCs of KT patients under stable immunosuppression are associated with lower risk of concurrent and future CMV replication during the following 8 weeks.</p

    Metabolic Profiling of S-praziquantel: Structure Elucidation Using the Crystalline Sponge Method in Combination with Mass Spectrometry and Nuclear Magnetic Resonance

    Get PDF
    Praziquantel (PZQ) is the drug of choice for treatment of the neglected tropical disease schistosomiasis. Although the drug has been extensively used over several decades and its metabolism well studied (several oxidative metabolites are known from literature), the knowledge of the complete structure of some of its metabolites remains elusive. Conventional techniques, such as nuclear magnetic resonance or liquid chromatography mass spectrometry were used in the past to investigate phase I and phase II metabolites of PZQ. These techniques are either limited to provide the complete molecular structure (liquid chromatography mass spectrometry) or require large amount of sample material (NMR), which are not always available when in vitro systems are used for investigation of the metabolites. In this study, we describe new structures of S-PZQ metabolites generated in vitro from human liver microsomes using the crystalline sponge method. After chromatographic separation and purification of the oxidative metabolites, ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry analysis was conducted to narrow down the position of oxidation to a certain part of the molecule. To determine the exact position of hydroxylation, singe-crystal X-ray diffraction analysis of the crystalline sponges and absorbed analyte was used to identify the structure of S-PZQ and its metabolites. The crystalline sponge method allowed for complete structure elucidation of the known metabolites S-trans-4'-hydroxy-PZQ (M1), S-cis-4'-hydroxy-PZQ (M2) and S-/R-11b-hydroxy-PZQ (M6) as well as the unknown metabolites S-9-hydroxy-PZQ (M3) and S-7-hydroxy-S-PZQ (M4). For comparison of structural elucidation techniques, one metabolite (M3) was additionally analyzed using NMR. SIGNIFICANCE STATEMENT: The information content of the metabolic pathway of praziquantel is still limited. The crystalline sponge method allowed the complete structural elucidation of three known and two unknown metabolites of S-praziquantel, using only trace amounts of analyte material, as demonstrated in this study

    Genetic dissection of dopaminergic and noradrenergic contributions to catecholaminergic tracts in early larval zebrafish

    Get PDF
    The catecholamines dopamine and noradrenaline provide some of the major neuromodulatory systems with far-ranging projections in the brain and spinal cord of vertebrates. However, development of these complex systems is only partially understood. Zebrafish provide an excellent model for genetic analysis of neuronal specification and axonal projections in vertebrates. Here, we analyze the ontogeny of the catecholaminergic projections in zebrafish embryos and larvae up to the fifth day of development and establish the basic scaffold of catecholaminergic connectivity. The earliest dopaminergic diencephalospinal projections do not navigate along the zebrafish primary neuron axonal scaffold but establish their own tracts at defined ventrolateral positions. By using genetic tools, we study quantitative and qualitative contributions of noradrenergic and defined dopaminergic groups to the catecholaminergic scaffold. Suppression of Tfap2a activity allows us to eliminate noradrenergic contributions, and depletion of Otp activity deletes mammalian A11-like Otp-dependent ventral diencephalic dopaminergic groups. This analysis reveals a predominant contribution of Otp-dependent dopaminergic neurons to diencephalospinal as well as hypothalamic catecholaminergic tracts. In contrast, noradrenergic projections make only a minor contribution to hindbrain and spinal catecholaminergic tracts. Furthermore, we can demonstrate that, in zebrafish larvae, ascending catecholaminergic projections to the telencephalon are generated exclusively by Otp-dependent diencephalic dopaminergic neurons as well as by hindbrain noradrenergic groups. Our data reveal the Otp-dependent A11-type dopaminergic neurons as the by far most prominent dopaminergic system in larval zebrafish. These findings are consistent with a hypothesis that Otp-dependent dopaminergic neurons establish the major modulatory system for somatomotor and somatosensory circuits in larval fish. J. Comp. Neurol. 518:439–458, 2010. © 2009 Wiley-Liss, Inc

    EC 10246-2707: a new eclipsing sdB + M dwarf binary⋆

    Get PDF
    We announce the discovery of a new eclipsing hot subdwarf B + M dwarf binary, EC 10246-2707, and present multi-colour photometric and spectroscopic observations of this system. Similar to other HW Vir-type binaries, the light curve shows both primary and secondary eclipses, along with a strong reflection effect from the M dwarf; no intrinsic light contribution is detected from the cool companion. The orbital period is 0.118 507 993 6 ± 0.000 000 000 9 days, or about three hours. Analysis of our time- series spectroscopy reveals a velocity semi-amplitude of K1 = 71.6 ± 1.7 km s−1 for the sdB and best-fitting atmospheric parameters of Teff = 28900 ± 500 K, log g = 5.64 ± 0.06, and log N(He)/N(H) = -2.5 ± 0.2. Although we cannot claim a unique solution from modeling the light curve, the best–fitting model has an sdB mass of 0.45 M⊙ and a cool companion mass of 0.12 M⊙. These results are roughly consistent with a canonical–mass sdB and M dwarf separated by a ∼ 0.84 R⊙. We find no evidence of pulsations in the light curve and limit the amplitude of rapid photometric oscillations to < 0.08%. Using 15 years of eclipse timings, we construct an O-C diagram but find no statistically significant period changes; we rule out | ˙P | > 7.2×10−12. If EC 10246- 2707 evolves into a cataclysmic variable, its period should fall below the famous CV period gap.Web of Scienc

    Azimuthal anisotropy of K0S and Lambda + Lambda -bar production at midrapidity from Au+Au collisions at sqrt[sNN]=130 GeV

    Get PDF
    We report STAR results on the azimuthal anisotropy parameter v2 for strange particles K0S, Lambda , and Lambda -bar at midrapidity in Au+Au collisions at sqrt[sNN]=130 GeV at the Relativistic Heavy Ion Collider. The value of v2 as a function of transverse momentum, pt, of the produced particle and collision centrality is presented for both particles up to pt~3.0 GeV/c. A strong pt dependence in v2 is observed up to 2.0 GeV/c. The v2 measurement is compared with hydrodynamic model calculations. The physics implications of the pt integrated v2 magnitude as a function of particle mass are also discussed.Alle Autoren: C. Adler, Z. Ahammed, C. Allgower, J. Amonett, B. D. Anderson, M. Anderson, G. S. Averichev, J. Balewski, O. Barannikova, L. S. Barnby, J. Baudot, S. Bekele, V. V. Belaga, R. Bellwied, J. Berger, H. Bichsel, A. Billmeier, L. C. Bland, C. O. Blyth, B. E. Bonner, A. Boucham, A. Brandin, A. Bravar, R. V. Cadman, H. Caines, M. Calderón de la Barca Sánchez, A. Cardenas, J. Carroll, J. Castillo, M. Castro, D. Cebra, P. Chaloupka, S. Chattopadhyay, Y. Chen, S. P. Chernenko, M. Cherney, A. Chikanian, B. Choi, W. Christie, J. P. Coffin, T. M. Cormier, J. G. Cramer, H. J. Crawford, W. S. Deng, A. A. Derevschikov, L. Didenko, T. Dietel, J. E. Draper, V. B. Dunin, J. C. Dunlop, V. Eckardt, L. G. Efimov, V. Emelianov, J. Engelage, G. Eppley, B. Erazmus, P. Fachini, V. Faine, K. Filimonov, E. Finch, Y. Fisyak, D. Flierl, K. J. Foley, J. Fu, C. A. Gagliardi, N. Gagunashvili, J. Gans, L. Gaudichet, M. Germain, F. Geurts, V. Ghazikhanian, O. Grachov, V. Grigoriev, M. Guedon, E. Gushin, T. J. Hallman, D. Hardtke, J. W. Harris, T. W. Henry, S. Heppelmann, T. Herston, B. Hippolyte, A. Hirsch, E. Hjort, G. W. Hoffmann, M. Horsley, H. Z. Huang, T. J. Humanic, G. Igo, A. Ishihara, Yu. I. Ivanshin, P. Jacobs, W. W. Jacobs, M. Janik, I. Johnson, P. G. Jones, E. G. Judd, M. Kaneta, M. Kaplan, D. Keane, J. Kiryluk, A. Kisiel, J. Klay, S. R. Klein, A. Klyachko, A. S. Konstantinov, M. Kopytine, L. Kotchenda, A. D. Kovalenko, M. Kramer, P. Kravtsov, K. Krueger, C. Kuhn, A. I. Kulikov, G. J. Kunde, C. L. Kunz, R. Kh. Kutuev, A. A. Kuznetsov, L. Lakehal-Ayat, M. A. C. Lamont, J. M. Landgraf, S. Lange, C. P. Lansdell, B. Lasiuk, F. Laue, A. Lebedev, R. Lednický, V. M. Leontiev, M. J. LeVine, Q. Li, S. J. Lindenbaum, M. A. Lisa, F. Liu, L. Liu, Z. Liu, Q. J. Liu, T. Ljubicic, W. J. Llope, G. LoCurto, H. Long, R. S. Longacre, M. Lopez-Noriega, W. A. Love, T. Ludlam, D. Lynn, J. Ma, R. Majka, S. Margetis, C. Markert, L. Martin, J. Marx, H. S. Matis, Yu. A. Matulenko, T. S. McShane, F. Meissner, Yu. Melnick, A. Meschanin, M. Messer, M. L. Miller, Z. Milosevich, N. G. Minaev, J. Mitchell, V. A. Moiseenko, C. F. Moore, V. Morozov, M. M. de Moura, M. G. Munhoz, J. M. Nelson, P. Nevski, V. A. Nikitin, L. V. Nogach, B. Norman, S. B. Nurushev, G. Odyniec, A. Ogawa, V. Okorokov, M. Oldenburg, D. Olson, G. Paic, S. U. Pandey, Y. Panebratsev, S. Y. Panitkin, A. I. Pavlinov, T. Pawlak, V. Perevoztchikov, W. Peryt, V. A Petrov, M. Planinic, J. Pluta, N. Porile, J. Porter, A. M. Poskanzer, E. Potrebenikova, D. Prindle, C. Pruneau, J. Putschke, G. Rai, G. Rakness, O. Ravel, R. L. Ray, S. V. Razin, D. Reichhold, J. G. Reid, F. Retiere, A. Ridiger, H. G. Ritter, J. B. Roberts, O. V. Rogachevski, J. L. Romero, A. Rose, C. Roy, V. Rykov, I. Sakrejda, S. Salur, J. Sandweiss, A. C. Saulys, I. Savin, J. Schambach, R. P. Scharenberg, N. Schmitz, L. S. Schroeder, A. Schüttauf, K. Schweda, J. Seger, D. Seliverstov, P. Seyboth, E. Shahaliev, K. E. Shestermanov, S. S. Shimanskii, V. S. Shvetcov, G. Skoro, N. Smirnov, R. Snellings, P. Sorensen, J. Sowinski, H. M. Spinka, B. Srivastava, E. J. Stephenson, R. Stock, A. Stolpovsky, M. Strikhanov, B. Stringfellow, C. Struck, A. A. P. Suaide, E. Sugarbaker, C. Suire, M. Šumbera, B. Surrow, T. J. M. Symons, A. Szanto de Toledo, P. Szarwas, A. Tai, J. Takahashi, A. H. Tang, J. H. Thomas, M. Thompson, V. Tikhomirov, M. Tokarev, M. B. Tonjes, T. A. Trainor, S. Trentalange, R. E. Tribble, V. Trofimov, O. Tsai, T. Ullrich, D. G. Underwood, G. Van Buren, A. M. VanderMolen, I. M. Vasilevski, A. N. Vasiliev, S. E. Vigdor, S. A. Voloshin, F. Wang, H. Ward, J. W. Watson, R. Wells, G. D. Westfall, C. Whitten, Jr., H. Wieman, R. Willson, S. W. Wissink, R. Witt, J. Wood, N. Xu, Z. Xu, A. E. Yakutin, E. Yamamoto, J. Yang, P. Yepes, V. I. Yurevich, Y. V. Zanevski, I. Zborovský, H. Zhang, W. M. Zhang, R. Zoulkarneev, and A. N. Zubarev (STAR Collaboration

    Complexity of coronary artery disease and the release of cardiac biomarkers after CABG

    Get PDF
    Objective: In patients with complex coronary artery disease (CAD) undergoing cardiac surgery, myocardial protection might be impaired due to microvascular obstruction, resulting in myocardial injury and subsequent biomarker release. Therefore, this study investigated the correlation between the complexity of CAD, reflected by the SYNTAX Score, and the release of cardiac biomarkers after CABG. Methods: In a consecutive series of 919 patients undergoing isolated CABG SYNTAX scores I and II were calculated to assess the complexity of CAD. Levels of high sensitivity cardiac troponin T (hs-cTnT) and creatine kinase-myocardial band (CK-MB) were routinely measured once before and serially after surgery. Patients were divided into tertiles according to their SYNTAX Scores I and II. Spearman correlations and regression models were performed to measure the degree of association between the release of hs-cTnT and CK-MB and the SYNTAX Scores. Results: Patients with a higher SYNTAX Score I had more comorbidities reflected in a higher EuroSCORE II. Preoperatively, higher levels of cardiac biomarkers were found in patients with higher SYNTAX Score II. No correlation was observed between hs-cTnT, CK-MB and SYNTAX Score I or II. Regression models did not show any association between cardiac biomarkers and the complexity of CAD. Conclusion: The complexity of CAD is not associated with the release of cardiac biomarkers after CABG. Factors influencing postoperative biomarker release need to be elucidated in future trials to include postoperative biomarker release into risk stratification models predicting outcome after cardiac surgery

    Rapidity and centrality dependence of proton and antiproton production from 197Au + 197Au collisions at √SNN = 130 GeV

    Get PDF
    We report on the rapidity and centrality dependence of proton and antiproton transverse mass distributions from 197Au + 197Au collisions at sqrt[sNN ]=130 GeV as measured by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). Our results are from the rapidity and transverse momentum range of |y| <0.5 and 0.35< pt <1.00 GeV/c . For both protons and antiprotons, transverse mass distributions become more convex from peripheral to central collisions demonstrating characteristics of collective expansion. The measured rapidity distributions and the mean transverse momenta versus rapidity are flat within |y| <0.5 . Comparisons of our data with results from model calculations indicate that in order to obtain a consistent picture of the proton (antiproton) yields and transverse mass distributions the possibility of prehadronic collective expansion may have to be taken into account
    corecore